
PyCatch: COMPONENT BASED HYDROLOGICAL
CATCHMENT MODELLING

N. LANA-RENAULT1*, D. KARSSENBERG2

1 Área de Geografía, Departamento de Ciencias Humanas, Universidad de La Rioja,
26004 Logroño, España.

2 Department of Physical Geography, Faculty of Geosciences, Utrecht University,
P.O. Box 80115, Utrecht, The Netherlands.

ABSTRACT. Dynamic numerical models are powerful tools for representing and
studying environmental processes through time. Usually they are constructed with
environmental modelling languages, which are high-level programming languages
that operate at the level of thinking of the scientists. In this paper we present
PyCatch, a set of components for process-based dynamic hydrological modelling
at the catchment scale, built within the PCRaster Python framework. PCRaster
Python is a programming tool based on Python, an easy-to-learn programming
language, to which components of the PCRaster software have been added.
In its current version, PyCatch simulates the processes of interception,
evapotranspiration, surface storage, infiltration, subsurface and overland flow.
The model represents those hydrological processes as a series of interconnected
stores, and it is structured in such a way that the exchange of water fluxes between
the stores is easily performed. The modular structure of PyCatch makes it easy to
replace or adapt components (such as a snow melt component or a soil erosion and
sediment transport component) according to the aim of the study.

PyCatch: modelización hidrológica a escala de cuenca con una estructura
basada en componentes

RESUMEN. Los modelos numéricos de tipo dinámico son herramientas poten-
tes para representar y estudiar la evolución de los procesos naturales a través
del tiempo. Normalmente se construyen a partir de lenguajes de programación
de nivel alto, es decir, próximos a la capacidad cognitiva de los investigadores.
En este trabajo se presenta PyCatch, un set de componentes construido en el
entorno PCRaster Python para desarrollar modelos dinámicos de base física a
escala de cuenca. PCRaster Python es una herramienta de programación basa-
da en Python, un lenguaje de programación sencillo al que se le han añadido ele-
mentos del programa PCRaster. En su versión actual, PyCatch simula procesos
de interceptación, evapotranspiración, almacenamiento de agua superficial,
infiltración, flujo subsuperficial y flujo superficial. El modelo representa estos

315

Nº 39 (2) pp. 315-333 ISSN 0211-6820Cuadernos de Investigación Geográfica 2013

© Universidad de La Rioja



316

Lana-Renault and Karssenberg

procesos hidrológicos a partir de una serie de depósitos conectados entre sí, y
está estructurado de tal manera que favorece el intercambio de flujos de un
depósito a otro. La estructura modular de PyCatch permite reemplazar o añadir
componentes fácilmente (por ejemplo, fusión de nieve o erosión de suelo y trans-
porte de sedimentos) en función de los objetivos del estudio.

Key words: dynamic modelling, environmental modelling language, PCRaster Python,
hydrological model.
Palabras clave: modelos dinámicos, lenguaje de modelización ambiental, PCRaster
Python, modelo hidrológico.

Enviado el 15 de enero de 2013
Aceptado el 2 de febrero de 2013

* Correspondencia: Área de Geografía, Departamento de Ciencias Humanas, Universidad
de La Rioja, 26004 Logroño, España. E-mail: noemi-solange.lana-renault@unirioja.es

1. Introduction

Environmental scientists are concerned with the understanding of how living
organisms and their non-living environments function and interact (Mulligan and
Wainwright, 2004). This understanding may contribute to the sustainable management
of these systems upon which, eventually, humans depend. Also, it makes scientists such
as hydrologists, ecologists, soil scientists or climatologists capable of predicting the
impacts of events that have not yet happened or happened in the past. Hydrologists, for
instance, need to know how the hydrological system works in order to explore the
direction of changes due to changes in climate or land use and to predict how those
changes in the system will affect water supply.

Numerical modelling can be a powerful means for representing and communicating
our understanding of environmental systems. Models have a scientific value since they can
be used to conceptualize system processes and to develop and test hypotheses concerning
these processes. They are also important for management because they can be used as
virtual laboratories to explore the outcomes of (numerical) experiments: models enable the
assessment of changes in systems, and the prediction of their future evolution given these
changes. A model of the environment is a representation of the natural processes that
usually include spatial components that change over time. Thus, models are mostly
spatially explicit and their temporal behaviour is simulated using rules of cause and effect,
for that reason they are called dynamic models (Wesselling et al., 1996).

New observations techniques and new methods of data processing in environmental
sciences involve improvement of scientific understanding and the development of new or
updated theories that need to be tested. For instance, Bracken and Croke (2007) stated that
recent research in hydrology has demonstrated the occurrence of non-linearities in
hillslope hydrological response to rainfall, and claimed that the concept of hydrological

CIG 39 (2), 2013, p. 315-333, ISSN 0211-6820



connectivity still needs to be fully incorporated in our conceptual (but also computer
simulations) models. This means that models also need to evolve continuously and
scientists should be able to adjust or update them without too many difficulties. For this,
they need a model construction tool (i.e., a modelling language) suitable for people who
have the knowledge of the environmental processes but are not specialists in
programming. As stated by Karssenberg (2002), for this tool to be efficient, it should
i) operate at the level of thinking of the scientists, i.e., use components resembling
environmental concepts with entities and high level operators that represent natural
processes; ii) support re-use and combination of program code; iii) provide a generic
approach to model construction; iv) hide technical details from the user; v) result in short
development times, vi) minimize programming errors; and vii) minimize run times. 

The range of existing tools for environmental model construction is large but very
few fulfill all the requirements mentioned above: system program languages (C++,
FORTRAN) allow any model to be constructed from scratch, but they are difficult for
non-programmers to use; technical computing languages (e.g., MATLAB) are
powerful tools for numerical computation but they often lack a generic approach for
temporal modelling, and the coupling with spatial databases is difficult; graphical
languages (e.g., ModelMaker, STELLA) include process modelling and can be easily
used without programming knowledge but do not provide spatial operators; modelling
languages incorporated in Geographical Information Systems (GIS) are spatial by
definition and a good alternative for developing environmental models but many of
them often deal with static spatial data so they are not suitable for dynamic modelling.
Therefore, new languages designed for the specific purpose of environmental spatio-
temporal modelling were developed. These so-called environmental modelling
languages (EML) are high level programming languages embedded in a GIS that
provide a set of functions capable to operate on spatio-temporal data, database
management and visualization routines (Wesselling et al., 1996; Karssenberg, 2002).
Recently, the PCRaster Python extension and PCRaster Python frameworks were
developed (Karssenberg et al., 2007; Schimtz and Karssenberg, 2009; PCRaster, 2013)
as a powerful tool for supporting environmental model construction. The PCRaster
Python extension enables the use of PCRaster modelling engine from Python (Python,
2013), a generic and easy-to-learn programming language. More details on the
PCRaster Python extension and frameworks are given in the next sections.

In our study, a set of components for process-based dynamic hydrological modelling
(PyCatch) was built within the PCRaster Python framework. The aim of the study was to
investigate the consequences of vegetation recovery on stream flow response related
to forest re-establishment in previously cultivated areas. For this purpose, we used data
collected in two neighbouring small catchments with different land cover (abandoned land
recolonized by shrubs and natural forest, respectively) located in the Spanish Pyrenees. We
wanted the model to be capable of separating and quantifying the relative effect of changes
in soils and vegetation on the hydrograph properties, so we needed a dynamic model
representing the hydrological processes occurring at the catchment scale. Since the model
included widely accepted generic hydrological processes, we avoided constructing the

317

Component based hydrological modelling

CIG 39 (2), 2013, p. 315-333, ISSN 0211-6820



318

Lana-Renault and Karssenberg

model from scratch; instead, we used pre-programmed blocks of code and combined them
to build up a model tailored to our aim study. Here, we first explain briefly the concept of
dynamic modelling; then we present the mathematical description of PyCatch; and finally
we describe how the model was built within the PCRaster Python framework, emphasizing
on the capacity of such tool to improve program efficiency and quality.

2. Dynamic spatial environmental modelling

The property of a dynamic model is that it is run forward in time, i.e., the state of
the model at time t+1 is defined as a function of its state in a previous time step t. The
concept of dynamic modelling has been described elsewhere (e.g., Beck et al., 1993;
Van Deursen, 1995; Wesseling et al., 1996) and can be represented by the following
equation, which is illustrated in Fig. 1:

for each t                                  (1)

Each landscape attribute that is modelled is represented by a state variable z
k
, k = 1.. m.

The change in the attributes z1.. m
over time is given by the functional f associated with the

parameters p1.. l
. The so-called transition function f can be an update rule, explicitly

specifying the change of the state variable over the time slice (t, t+1); a probabilistic
function, when the model behaviour is better described as a stochastic process; or a
derivative of a differential equation describing the change of the state variables as
a continuous function (Karssenberg and de Jong, 2005a). The inputs to the model i1.. n

are
also called disturbances. They can be, for instance, incoming rainfall in a hydrological
model or a vegetation map. Boundary conditions are also regarded as inputs. Note that z1.. m,
i1.. n

and p1.. l
may be defined in two- or three- spatial dimensions. In most environmental

models, the transition function f includes a set of functions f1.. j
describing the complex

interactions between variables and inputs, and this is often referred to as the model structure.

3. Mathematical description of PyCatch

PyCatch is a set of process-based distributed hydrological model components aimed at
simulating the effect of vegetation recovery on stream flow response in small catchments.

CIG 39 (2), 2013, p. 315-333, ISSN 0211-6820

Figure 1. Dynamic model in two dimensional space; z1.. m are state variables,
f the transition functions, i1.. n are inputs, and p1.. l, the parameters of f.



It is dynamic because it is designed to operate over successive short time steps (e.g., 1 hour)
in order to get a detailed shape of the stream flow hydrograph. The model describes the
processes of interception, evapotranspiration, surface storage, infiltration, subsurface and
overland flow with process-based equations that use spatially and temporally distributed
field data. In this first version, snow melt was not considered because our study was carried
out in the Spanish Pyrenees, where most of the hillslopes affected by land abandonment and
subsequent expansion of vegetation are located below 1600 m a.s.l., i.e., below the 0ºC
isotherm during the cold season. Fig. 2 shows a schematic overview of the model, with
boxes representing a particular subdomain of the hydrological system, and table 1 lists all
input variables and parameters required for the model application.

Table 1. Main inputs and parameters for PyCatch.

Description Unit

Meterological inputs

Incoming shortwave radiation W m-2

Air temperature ºC

Air relative humidity –

Wind velocity m h-1

Vegetation parameters

Leaf Area Index (LAI) –

Interception storage per LAI m

Albedo –

Vegetation height m

Vegetation stomatal conductance m h-1

Soil parameters

Regolith thickness m

Soil water content at which root water uptake by the plant declines –

Soil water content at saturation –

Soil water content at wilting point –

Soil water content at field capacity –

Saturated conductivity m h-1

Saturated conductivity of the upper soil m h-1

Wetting front capillary pressure head m

Others

Digital elevation model m

Maximum surface storage m

Latitude, longitude º

319

Component based hydrological modelling

CIG 39 (2), 2013, p. 315-333, ISSN 0211-6820



320

Lana-Renault and Karssenberg

3.1. Interception and evapotranspiration

Precipitation (P, [m h-1]) can either be intercepted by vegetation or directly reach
the soil. The part of the precipitation that it is intercepted by vegetation (Pint [m h-1]
depends on the canopy gap fraction fgap:

(2)

(3)

where k is the light extinction coefficient [–] and LAI the leaf area index [–]. Here we
took k = 0.5 (Brolsma et al., 2010). The intercepted water evaporating from the canopy
is computed using the Penman-Monteith equation for potential evaporation of open
water, E0

[m h-1]. The actual interception (I, [m h-1]) at time t is limited by the maximum
interception capacity of the vegetation, and the water that was not evaporated in the
previous time step and is still present in the canopy. The precipitation that reaches
the ground as throughfall (Pnet, [m h-1]) is

(4)

Evapotranspiration was calculated using the Penman-Monteith (Allen et al., 1998)
equation for potential evapotranspiration (Ep, [m h-1]):

CIG 39 (2), 2013, p. 315-333, ISSN 0211-6820

Figure 2. Schematic overview of the hydrological model PyCatch.



(5)

In Eq. 5, λ [J kg-1] is the latent heat of vaporization of water, Rn [W m-2] is the net
radiation, δ [Pa K-1] is the slope of the saturation vapour pressure-temperature
relationship, ρ

a [kg m-3] is the mean air density at constant pressure, cp [J kg-1 K-1] is the
specific heat of the air at constant pressure, υ [Pa] is the vapour pressure deficit of
the air, γ [Pa K-1] is the psychrometric constant, r

c
and r

a
are the canopy (or surface) and

aerodynamic resistances [h m-1], respectively.

Net radiation (Rn
) was determined taking into account the shading effect of the

relief imposed by the digital elevation model (DEM) and the land surface inclination.
For the latter we followed the same approach used in POTRAD 5.0 (Dam, 2000).

For each time step t, first evaporation takes place from the canopy using the
Penman equation for open water conditions, i.e., with rc

= 0. No transpiration occurs as
intercepted water evaporates. Soil evapotranspiration (ET, [m h-1]) depends on the
evaporation taken from canopy (I):

(6)

When there is no water in the canopy to be evaporated (I = 0), transpiration is at
potential evapotranspiration rate E

p. Ep is additionally controlled by the vegetation
stomatal conductance (g

s,max
, [m h-1]) which depends on the soil water content (θ, [–]).

To account for this effect, a soil moisture reduction function f(θ) based on Feddes et al.
(1978) and Brolsma et al. (2010) was included:

(7)

(8)

with θ
lp

the soil water content at which root water uptake by the plant declines and θ
wp

the
soil water content at wilting point. The actual evapotransiration from the soil (T, [m h-1])
is limited by the soil potential evapotranspiration (ET) and the water available in the soil:

(9)

3.2. Soil water balance and subsurface flow

The soil water storage represents both the unsaturated and the saturated zone. The
Green and Ampt equation approach was used to simulate the potential infiltration rate

321

Component based hydrological modelling

CIG 39 (2), 2013, p. 315-333, ISSN 0211-6820



322

Lana-Renault and Karssenberg

(Inf
p, [m h-1]), which is related to the cumulative infiltration F [m] as follows (Chow et

al., 1988):

(10)

where Kinf [m h-1] is the saturated conductivity of the upper soil, φ is the wetting front
capillary pressure head, and Δθ is the available pore space. The water that is infiltrated
(Inf, [m h-1]) is limited by the potential infiltration rate and the water available for
infiltration above the soil surface Qs [m h-1] at time step t:

(11)

Soil water storage (G
t
, [m]) at time step t is determined by the amount of water

present in the soil in the previous time step (G
t-1), soil evapotranspiration (T), infiltration

(Inf), subsurface inflow from the upstream neighbouring cells (Qg
,i
, [m h-1]) and the

subsurface outflow to the downstream cell (Qg
o, [m h-1]):

(12)

For each cell, subsurface flow (Qg, [m h-1]) to the downstream area is modelled
using Darcy’s law as follows:

(13)

in which K
sat

is saturated conductivity [m h-1], L [m] is the cell length and α [–] is the
slope to the downstream neighbouring cell. Qg is routed over the local drain direction
(ldd) map which simulates the flow of material over a gridded surface (here, the digital
elevation model) according to the direction of the steepest downhill cell and a D8
algorithm (Burrough and McDonnell, 1998). When G at time step t exceeds the volume
of soil pores, upward seepage (Qx, [m h-1]) occurs and is added to the surface water (Qs,
[m h-1]) as saturation excess overland flow:

(14)

where s
th [m] is the soil thickness and θsat [–] is the soil water content at saturation.

3.3. Overland flow

For each time step t, overland flow (Qr, [m h-1]) is determined by the precipitation
that reaches the ground (P

net), the exfiltrated water (Qx), the water available at the soil
surface (Qs) in the previous time step, and infiltration (Inf):

(15)

CIG 39 (2), 2013, p. 315-333, ISSN 0211-6820



The overland flow measured at the outlet of the catchment is the cumulative value
of Qr routed over the ldd. No travel times were considered because we assumed that Qr
is brought to the outlet point at the same time.

4. The implementation of PyCatch in PCRaster Python

Python is an interpreted, object-oriented, extensible and free distributed programming
language. Its very simple syntax makes it attractive to researchers. However, to make it
useful for environmental modelling, additional spatio-temporal functionality is necessary.
The PCRaster Python extension (Karssenberg et al., 2007) has taken this functionality
from the PCRaster software (PCRaster, 2013), offering i) data structures containing spatial
and temporal entities and operators, ii) a script framework that can be used for temporal
modelling, and iii) an interactive visualization routine.

4.1. Entities, operators, functions and syntax

Environmental modelling languages need to operate at the conceptual level of
thinking of the scientist. For this, they need to deal with entities and operators
representing environmental attributes, dimensions and processes. In the PCRaster
environmental modelling language, entities are raster maps of spatio-temporal
attributes, time-series of temporal non-spatial data, and look up tables. Map entities
are assigned a type according to the properties of the data they represent: they can be
Boolean, nominal or ordinal for classified data (e.g., outlflow point, types of
vegetation); scalar and directional for continuous data (e.g., temperature, elevation,
aspect); and local drain direction for drainage networks. Fig. 3 shows three examples
of PCRaster entities used in our study case: in the upper panels, two raster maps of the
catchment (containing vegetation and the local drain direction); and a rainfall time
series in the bottom panel.

The PCRaster language contains a set of operators and pre-programmed functions
operating on these entities, including a large range required for environmental modelling
such as hillslope and catchment analysis or routing functions to model transport of
material over the local drain direction. Functions are grouped into (Burrough and
McDonnell, 1998): point functions; direct and entire neighbourhood functions;
neighbourhood defined by a given topology functions; time functions for retrieving and
storing temporal data in iterative dynamic modelling (e.g., hydrographs at specific
locations); and functions calculating descriptive statistics (Karssenberg and de Jong,
2005a, b). In PCRaster Python, all these PCRaster functions are callable from Python
through the PCRcalc Python extension.

As in the PCRaster language, the syntax for these operators and functions follows
an algebraic notation, which means that they can be used and combined in the same way
as in mathematical equations (Wesselling et al., 1996): 

323

Component based hydrological modelling

CIG 39 (2), 2013, p. 315-333, ISSN 0211-6820



324

Lana-Renault and Karssenberg

result=function (2.0 * input1…n)

where function is one of the functions of the language, having the input variable

input1…n multiplied by 2.0, resulting in the output variable result. All functions

check the data type of their inputs, and might change their behaviour depending on the

data type of the input variable (van Deursen, 1995). Also, the functions can be nested in

one statement:

result=function(anotherFunction (2.0 * input1…n), input1…m)

where the result of anotherFunction is the input variable of another PCRaster

function.

With these data structures and functions embedded, Python becomes a powerful

tool for map algebra and static modelling. For instance, in PyCatch, creating a map

containing runoff is done as follows:

ldd = readmap(‘ldd.map’)

discharge = accuthresholdflux (ldd, throughfall, availableSurface)

report (discharge, ‘runoff.map’)

CIG 39 (2), 2013, p. 315-333, ISSN 0211-6820

Figure 3. Examples of entities used in our study case: map of vegetation (upper left panel);
zoom to the ldd map (upper right panel); and rainfall time series (lower panel).



The arguments of the function accuthresholdflux are three variables: the
local drain direction (ldd) which is a map directly read from disk; and two variables
referring to throughfall and the water available at the soil surface, calculated by the model
(see Eq. 15). The accuthresholdflux function calculates the input of material
downstream over a local drain direction network when a transport threshold is exceeded
(here, availableSurface), and assigns it to discharge. The report function
writes the variable discharge from memory to the hard disk and stores it under the file
name ‘runoff.map’. For model building, the functions can be glued together in a
model script structured in sections. Sections are important in environmental modelling
language because they tell the computer how to execute the model but also help the user
to organize and structure the components of the model (Wesselling et al., 1996).

4.2. The script for dynamic modelling

Environmental models are dynamic models that need a framework for modelling
changes over time. In the PCRaster language, the two main sections for building a
sequential dynamic model are (Wesseling et al., 1996):

– The initial section, which sets the values of maps and non-spatial attributes
representing the state of the model at the start of the model run.

– The dynamic section, which is an iterative sequential section and loops for the
number of time steps defined in the model, and. For each time step t, it defines
a set of operations that result in Map1…t

. The results of time step t are the input
values for time step t+1, and so on.

Table 2. Template script for dynamic modelling in PCRaster Python.

325

Component based hydrological modelling

CIG 39 (2), 2013, p. 315-333, ISSN 0211-6820



326

Lana-Renault and Karssenberg

Based on these concepts, the PCRaster Python tool provides a framework as a
Python class to construct and run dynamic models. Table 2 shows the template script of
this framework. In the first line of the example script, the class definition is imported to
the Python script, together with all other components of the PCRaster Python library.
Below, the class UserModel is defined, with a given initialization and the definition
of the initial and dynamic functions, also called methods. The __init__ method is
used to instantiate (i.e., to create) the objects of the class. Here, setting the map attributes
(e.g. number of rows and columns and cell size) is done by using setclone. In the
initial method the state of the model at t=0 is defined. The dynamic method
defines the change of the variables over one time step, and it is executed iteratively for
a defined number of time steps. The execution of the model defined in the framework is
done in the last statements. Here, the number of time steps is given as second argument
to the framework constructor in line 13.

As within PCRaster, the dynamic section contains the operations representing the
temporal behaviour of the model. In PyCatch, it includes calls to modules each
represen-ting a particular hydrological process, here interception, evapotraspiration,
infiltration, subsurface and overland flow. As shown in Fig. 2, these processes are
represented as a series of interconnected stores. The output flow from one store may
be determined by the input flow to that store. We need therefore a model structure
capable of embodying such exchange of information. This is a key concept in complex
environmental modelling and it can be done in a straightforward manner with the
PCRaster Python framework. Unlike the original PCRaster language, PCRaster
Python allows to use control flow constructs provided by Python, such as functions,
built in types and classes (Python, 2013). Model code, for instance, can be embedded
in a function, and this function can be called in a script as many times as necessary,
minimising the amount of code in the script. The advantage of embedding code in a
function is that the code can be easily re-used, but also that another person can call the
implementation of that function in a different script, improving thus the property of
shareability (Karssenberg et al., 2007). Similarly, functions can be embedded in
classes that combine functions and variables. It is easy then to embed additional
functions in a script, by using existing extensions, writing new extensions or
developing new modules written in Python. In this way, large and complex models can
be written keeping the code readable.

In PyCatch, each hydrological process is represented by an independent PCRaster
Python class (written as a Python module or component) and the exchange of information
between them is possible through a main script where each of these components is available
as a class instance. Fig. 4 shows the structure of PyCatch with the components and the
exchange of information between them. Table 3 gives a simplified version of the main script
of PyCatch, highlighting the call to the interception component.

CIG 39 (2), 2013, p. 315-333, ISSN 0211-6820



Table 3. Simplified version of the main model script main.py for PyCatch with references
to the interception component.

327

Component based hydrological modelling

CIG 39 (2), 2013, p. 315-333, ISSN 0211-6820



328

Lana-Renault and Karssenberg

In the first lines, the components used in the model are imported. The model is created
by defining the standard Python class for dynamic modelling, here CatchmentModel
(line 5), with the required initial and dynamic methods used in the dynamic framework. The
initial method (line 10) defines the time step duration, the time at which the model run
start, and the digital elevation model, which is a file read from disk and assigned to the
variable self.dem. With the self prefix Python reads them as member variables. The
initial is evaluated once at the start of the model. In our study, we used time step of 1
hour and run the model for the hydrological year 2005-2006, starting three months before,
on the 1st of July 2005. The initial method also includes the function
CreateInstancesInitial, which is defined later on in the script, and is used to
instantiate the components of the model.

The dynamicmethod contains the set of operations included in the transition function
f in Eq. 1 and represented in the hydrological system depicted in the flow diagram of Fig. 4.
In this section the exchange of fluxes is done, as the outcome of one component feeds another
component, which in turn feeds another one and so on. In the case of interception, rainfall is
imported through the timeinputscalar operation in line 17. For every time step, this
operator links the value read from the time series ‘rain.tss’ to the map
rainfallFlux. The water added to the interception store is calculated by passing as an
argument rainfallFlux in the function addWater, contained in the component
interceptionuptomaxstore and invoked in line 19. The result of the function is used
to calculate throughfallFlux in the next line. In the same way, throughfallFlux
is used to calculate the runoff, by passing it as an argument in the function update
contained in the runoffAccthreshold component, invoked in line 22.

CIG 39 (2), 2013, p. 315-333, ISSN 0211-6820

Figure 4. Flow diagram representing the structure of PyCatch with the components
and the exchange of information between components.



In the CreateInstancesInitialmethod, all the components that are used in the
model need to be initiated. In the case of the interception store, this is done in lines 27 to 35.
The initial interception store is set to a very small value, and the Leaf Area Index and
maximum interception capacity per Leaf Area Index are read from disk. These variables are
used as inputs to calculate the gap fraction and the maximum interception store which, together
with the initial interception store, instantiate the d_interceptionuptomaxstore
component. Finally, in the reportComponentsDynamicmethod (line 38), the report
function is invoked for every component, allowing the results of each component to be
written to disk.

Table 4 gives a simplified version of the script for the interception component. The
class InterceptionUpToMaxStore is instantiate in line 6. The function
addWater, referred above, is defined in line 21, and the function report in line 15.
Here, the result of the function addWater, ie, actualAdditionFlux (line 33), is
stored as ‘Vi’ in memory disk.

Table 4. Simplified version of the script for the interception component.

329

Component based hydrological modelling

CIG 39 (2), 2013, p. 315-333, ISSN 0211-6820



330

Lana-Renault and Karssenberg

4.3. The interactive visualization routine

The spatio-temporal data stored on the hard disk can be displayed with the Aguila
visualization tool integrated within PCRaster. Aguila (Pebesma et al., 2007) allows prompt
visualization of model inputs and outputs. For temporal data, map views or time series can
be animated through time. Fig. 5 shows screenshots of how Aguila visualizes the runoff
calculated with PyCatch. The bottom panel corresponds to the time series of the runoff at
the outlet of the catchment for one hydrological year. The location of the outlet is shown
by the cross in the map view (the upper left panel). The user can browse the map to show
time series of other locations. The value for a specific location and a specific time step is
shown in the cursor window (the upper right panel). Here, we selected time step 6475,
which corresponds to 27th of March 2006 at 18:00, when the maximum discharge for that
hydrological year was reached, and is shown in the time series plot with a vertical line. The
player at the bottom can be used to animate all the panels over time.

CIG 39 (2), 2013, p. 315-333, ISSN 0211-6820

Figure 5. Screenshots of Aguila visualizations of the modelled runoff: map view of the
catchment where the outlet is shown by a cross (upper left panel); time series with the runoff

at the outlet of the catchment for one hydrological year (bottom panel); cursor window
(upper right panel) for the selected outflow and time step, which is shown by a vertical

line in the time series plot; animation dialog (below the cursor window).



5. Conclusions

When modelling environmental processes, scientists are able to understand
observations and develop and test theory. The environment is a complex system under
continuous change including important spatial interactions; therefore environmental
processes need to be simulated on a spatial domain and by dynamic modelling. For this,
scientists need a modelling language capable of representing such complexity in the
simplest possible way. The PCRaster Python environmental modelling language is a
recently developed programming tool based on Python, an easy-to-learn high-level
programming language, to which components of the PCRaster software have been added.
This makes PCRaster Python a powerful tool for supporting spatio-temporal modelling.

In this study, we presented the mathematical description of the process-based
hydrological model PyCatch designed for small catchments located at mid altitudes
mountain areas. We also explained how it has been implemented in PCRaster Python to
illustrate the efficiency of the language for constructing complex environmental models.
The modular structure of PyCatch makes it easy to replace or adapt modules (or
components) according to the aim of the study. For instance, a snow melt module could
be easily added when running the model for high elevation catchments. Similarly, soil
erosion and sediment transport could also be included in the model without too much
effort, by incorporating new modules based on existing erosion models. 

Acknowledgements

This research was conducted with the support of INDICA projects CGL2011-27753-
C02 and C01, financed by the Spanish Ministry of Economy and Competitiveness, and
RESEL, financed by the Spanish Ministry of the Environment. N. Lana-Renault was the
recipient of a research contract (Juan de la Cierva programme) funded by the Spanish
Ministry of Sciences and Innovation. Oliver Schmitz and Kor de Jong are grateful thanked
for their help.

References

Allen, R.G., Pereira, L.S., Raes, D., Smith, M. 1998. Crop evapotranspiration. FAO Irrigation and
Drainage Paper No. 56, FAO, Roma.

Beck, M.B., Jakeman, A.J., Mcaleer, M.J. 1993. Construction and evaluation of models of
environmental systems. In Modelling Change in Environmental Systems, M.B. Beck, A.J.
Jakeman, M.J. McAleer (Eds.), Wiley, New York, pp. 3-35.

Burrough, P.A., McDonnell, R.A. 1998. Principles of Geographical Information Systems. Oxford
University Press, Oxford.

Bracken, L.J., Croke, J. 2007. The concept of hydrological connectivity and its contribution to
understanding runoff-dominated geomorphic systems. Hydrological Processes 21, 1749-1763.

Brolsma R.J., Karssenberg, D., Bierkens, M.F.P. 2010. Vegetation competition model for water
and light limitation. I: Model description, one-dimensional competition and the influence of
groundwater. Ecological Modelling 221, 1348-1363.

Chow, V.T., Maidment D.R., Mays, L.W. 1988. Applied Hydrology. McGraw-Hill, New York.

331

Component based hydrological modelling

CIG 39 (2), 2013, p. 315-333, ISSN 0211-6820



332

Lana-Renault and Karssenberg

Dam, O. 2000. Modelling incoming Potential Radiation on a land surface with PCRaster:
POTRAD5.MOD manual. Utrecht University, Utrecht, 6 pp.

Feddes, R.A., Kowalik, P., Jaradny, H. 1978. Simulation of field water use and crop yield.
Simulation Monographs, Pudoc, Wageningen, 189 pp.

Karssenberg, D., 2002. The value of environmental modelling languages for building distributed
hydrological models. Hydrological Processes 16, 2751-2766.

Karssenberg, D., De Jong, K. 2005a. Dynamic environmental modelling in GIS: 1. Modelling in
three spatial dimensions. International Journal of Geographical Information Science 19,
559-579.

Karssenberg, D., De Jong, K., 2005b. Dynamic environmental modelling in GIS: 2. Modelling
error propagation. International Journal of Geographical Information Science 19, 623-637.

Karssenberg, D., De Jong, K., Van der Kwast, J. 2007. Modelling landscape dynamics with
Python. International Journal of Geographical Information Science 21, 483-495.

Mulligan, N., Wainwright, J. 2004. Modelling and model building. In Environmental Modelling:
Finding Simplicity in Complexity, N. Mulligan, J. Wainwright (eds.), John Wiley, Chichester,
430 pp.

PCRaster, January 2013. PCRaster internet site. Available online at: http://www.pcraster.eu/.
Pebesma, E.J., De Jong, K., Briggs, D. 2007. Interactive visualization of uncertain spatial and

spatio-temporal data under different scenarios: an air quality example. International Journal
of Geographical Information Science 21, 515-527.

Python, January 2013. Python Programming Language internet site. Available online at: http://
www.python.org.

Schimtz, O., Karssenberg, D. 2009. Framework for Spatio-Temporal Modelling: Supporting
Deterministic and Stochastic Modelling, Data Assimilation and Model Calibration. Faculty
of Geosciences, Utrecht University, Utrecht, 24 pp.

Van Deursen, W.P.A. 1995. Geographical Information Systems and Dynamic Models. Koninklijk
Nederlands Aardrijkskundig Genootschap/Faculteit Ruimtelijke Wetenschappen. Universiteit
Utrecht, Utrecht.

Wesseling, C.G., Karssenberg, D., van Deursen, W.P.A., Burrough, P.A. 1996. Integrating
dynamic environmental models in GIS: the development of a Dynamic Modelling language.
Transactions in GIS 1, 40-48.

Appendix. List of symbols for PyCatch

Symbol Meaning Unit

c
p

specific heat of the air at constant pressure J kg-1 K-1

Ep Penman-Monteith potential evapotranspiration m h-1

E0 potential evaporation for open water conditions m h-1

ET potential soil evapotranspiration m h-1

F cumulative infiltration m

f
gap canopy gap fraction -

G soil water storage m

g
s,max

stomatal conductance m h-1

I actual evaporation taken from canopy m h-1

CIG 39 (2), 2013, p. 315-333, ISSN 0211-6820



Symbol Meaning Unit

Inf actual infiltration rate m h-1

Inf
p

potential infiltration rate m h-1

k light extinction coefficient -

K
inf saturated conductivity of the upper soil m h-1

K
sat

saturated conductivity m h-1

L cell length m

LAI leaf area index -

P precipitation m h-1

Pint precipitation intercepted by vegetation m h-1

P
net

precipitation that reaches the ground as throughfall m h-1

Qg subsurface flow m h-1

Qr overland flow m h-1

Qs water available above the soil surface m

Qx exfiltrated water m h-1

ra aerodynamic resistance h m-1

r
c

canopy (or surface) resistance h m-1

R
n

net radiation W m-2

s
th

soil thickness m 

T actual evapotranspiration from soil m h-1

α slope to the downstream neighbouring cell –

γ psychrometric constant Pa K-1

δ the slope of the saturation vapour pressure-temperature
relationship Pa K-1

θ soil water content –

θ
lp

soil water content at which root water uptake by the
plant declines –

θ
sat soil water content at saturation –

θ
wp soil water content at wilting point –

λ latent heat of vaporization of water J kg-1

ρa mean air density at constant pressure kg m-3

υ vapour pressure deficit of the air Pa

φ wetting front capillary pressure head m 

333

Component based hydrological modelling

CIG 39 (2), 2013, p. 315-333, ISSN 0211-6820


