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ABSTRACT. The role of biotic forcing in fluvial geomorphology is understudied.
This paper investigates the suggestion that the activities of signal crayfish
(Pacifastacus leniusculus) can increase suspended sediment fluxes in rivers.
Previous field work, supported by mesocosm experiments, suggests that crayfish
nocturnalism can cause night time increases in turbidity, but field data are limited
to a 16-hour period from a single site where suspended sediment time-series are
not available. Here, field data collected over a 28-day period on the Brampton
Branch of the River Nene, UK, are used to quantify the impact of diel fluctuations
in suspended sediment concentration on sediment fluxes. Field observations and
laboratory experiments are used to evaluate the likelihood that crayfish, which
are abundant in this river, are responsible for the diel patterns. Turbidity and
water stage were measured at 2-minute intervals at a single site. Water was
sampled for suspended sediment concentration on a diel cycle and during storm
events. A relation between suspended sediment concentration and turbidity, along
with a local discharge time-series, permitted calculation of sediment flux and
sediment loads. Aquarium experiments with one or two crayfish were used to
directly observe the relative impacts of crayfish activity and conspecific
interactions on sediment suspension. Over the 28-day period, turbidity and
suspended sediment exhibited a strong diel pattern, characterised by night-time
increases in the frequency and magnitude of spikes in the turbidity data and by
increases in ambient suspended sediment concentrations. Small diel fluctuations
in stage were also measured, but the rises in stage were out of phase with
turbidity and there was no correlation between stage and turbidity at any
frequency. In the absence of a credible hydraulic explanation for the increases in
night-time suspended sediment concentration, several lines of evidence, including
results from the aquarium experiments, strongly suggest that crayfish are the most
likely cause. We estimate that crayfish activity contributed at least 20% of the
suspended sediment load over the 28-day period (which included two moderate
floods) and this proportion was 47% during the days when baseflow conditions
prevailed. This work extends and strengthens the argument that crayfish are
important zoogeomorphic agents with potential implications for managing fine
sediment pressures. It also highlights the need to better understand the link
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between crayfish activity, sediment suspension and downstream dispersal,
particularly the catchment-scale distribution and seasonality of such impacts.

Patrones diarios del flujo de sedimento en suspensión y el efecto
zoogeomórfico del cangrejo de río invasor

RESUMEN. Este trabajo investiga la idea de que las actividades del cangrejo
señal (Pacifastacus leniusculus) pueden aumentar los flujos de sedimento en sus-
pensión en los ríos. Trabajos previos de campo, apoyados en experimentos,
sugieren que la actividad nocturna del cangrejo puede aumentar la turbidez
durante la noche, aunque tales datos de campo se limitan a un periodo de 16
horas en un solo sitio donde no existen series temporales de sedimento en sus-
pensión. En este trabajo se han utilizado datos de campo recogidos durante un
periodo de 28 días en el Brampton Branch del río Nene, Reino Unido, con el fin
de cuantificar el impacto de las fluctuaciones diarias en la concentración de
sedimento en suspensión. Se han empleado observaciones de campo y experi-
mentos de laboratorio para evaluar la probabilidad de que los cangrejos, que
son abundantes en este río, sean responsables de los patrones diarios. La turbi-
dez fue medida a intervalos de 2 minutos en un único punto.El muestro de agua
para la concentración de sedimento en suspensión se realizó en un ciclo diario y
durante eventos tormentosos. La relación entre concentración de sedimento en sus-
pensión y turbidez, junto con las series temporales de caudal, permitió el cálculo del
flujo y la carga de sedimento. Los experimentos en acuario con uno o dos cangre-
jos fueron utilizados para observar directamente el impacto relativo de la acti-
vidad de los cangrejos. Durante el periodo de 28 días la turbidez y el sedimento
en suspensión exhibieron un acusado patrón diario, caracterizado por aumentos
nocturnos en la frecuencia y magnitud de los picos en la turbidez y por aumen-
tos en la concentración de sedimento en suspensión. Se midieron también las
pequeñas fluctuaciones, pero los incrementos estuvieron desfasados con la tur-
bidez y no hubo relación entre turbidez y caudal a ningún nivel. En ausencia de
explicación hidráulica creíble para los aumentos nocturnos de la concentración
de sedimento en suspensión, varias líneas de evidencia, incluyendo los resulta-
dos de los experimentos en el acuario, sugieren consistentemente que los can-
grejos son la causa más probable. Estimamos que la actividad de los cangrejos
contribuye en al menos el 20% de la carga de sedimento en suspensión durante
el periodo de 28 días (incluyendo dos crecidas moderadas), y esta proporción fue
del 47% durante los días en que prevalecieron las condiciones de flujo de base.
Este trabajo amplía y refuerza el argumento de que los cangrejos son importan-
tes agentes zoogeomórficos. También subraya la necesidad de entender mejor las
relaciones entre la actividad de los cangrejos, sedimentos en suspensión y su dis-
persión hacia aguas abajo, particularmente la distribución a escala de cuenca y
la estacionalidad de tales impactos.

Key words: crayfish, ecosystem engineering, diurnal variability, fines, suspended
sediment transport, turbidity, biogeomormorphology.
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1. Introduction
Anthropogenic impacts on fine sediment dynamics in river networks associated

with, for example, agriculture, forestry, damming and urbanisation are pervasive and
problematic (Owens et al., 2005). Disruption of the fine sediment cascade has
implications for the health of aquatic habitats (Wood and Armitage, 1997; Kemp et al.,
2011), for siltation of navigation channels and reservoirs (Foster and Leys, 1999; Wang
et al., 2005; Batalla, 2003) and for river channel morphodynamics (Sidorchuk and
Golosov, 2003). These pressures require management of fine sediment dynamics based
on an understanding of the key mechanisms and drivers. A pervasive assumption is that
abiotic forcing entirely dominates fluvial sediment dynamics; that is, the interplay
between suspension hydraulics and sediment availability controls fine sediment flux.
However, numerous recent studies have suggested that river fauna might play a
significant role in fluvial sediment dynamics by affecting sediment recruitment and
transport processes (Harvey et al., 2011; Statzner, 2012; Rice et al. 2012). This paper
investigates the possibility that fauna are relevant for understanding fluvial, fine
sediment dynamics by examining the cumulative impact of a particular species, the
signal crayfish (Pacifastacus leniusculus) on summertime sediment flux in a small,
agricultural catchment in the United Kingdom.

The signal crayfish (Pacifastacus leniusculus) is established in Europe as a
formidable invasive species that has had a deleterious impact on native fauna
(Crawford et al., 2006). Signal crayfish are large (10-15 cm long), decapod crustaceans
that have been measured at densities up to 15 m-2 in UK rivers (Peay, 2001). They
burrow into river banks causing collapse where densities are high (Guan, 1994).
Experiments by Johnson et al. (2010; 2011) extended work by Statzner et al. (2000,
2003) to demonstrate that signal crayfish dismantle the sedimentary structures that
provide stability to gravel-bed river substrates, increasing entrainment rates and
bedload transport. Some work also suggests that crayfish can affect fine, suspended
sediment dynamics. Using enclosure experiments, Angeler et al. (2001) noted that
bioturbation by red swamp crayfish (Procambarus Clarkii) substantially increased fine
sediment suspension in a Spanish floodplain wetland and Creed and Reed (2004)
observed reductions in the quantity of fine particulate matter (including inorganic fine
sediment) in enclosures populated by the common crayfish (Cambarus bartonii) in
headwater Appalachian streams. More recently, turbidity data collected at a site on the
River Windrush, UK, over a 16-hour period in 2009 identified fine sediment
suspension events during the hours of darkness in the absence of any hydraulic forcing.
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This site supports high densities of signal crayfish (Moorhouse and Macdonald, 2011),
which are known to be nocturnal (Bubb et al., 2002; Johnson et al., 2014), suggesting
that crayfish activity may have been responsible for the fine sediment entrainment
(Harvey et al., 2014). Subsequent mesocosm experiments that investigated the links
between crayfish nocturnalism, burrowing activity and sediment suspension, confirm
that this argument is viable (Harvey et al., 2014).

In a review of the available evidence, Harvey et al. (2011; their Fig. 1) propose
that crayfish may be important agents in catchment-scale sediment dynamics, with
potentially important implications for fine sediment management at large scales.
However, the paucity of available field data begs the question of how widespread and
persistent any crayfish effect is. Moreover, if crayfish do increase sediment suspension
at field scales, it is not clear whether there is a cumulative impact on downstream
sediment fluxes or yield. The work reported in this paper is a response to Harvey et al.
(2011) call for further research examining the role of crayfish in river geomorphology
and aims to extend the work done to date by asking three questions:

1. Are nocturnal increases in turbidity and suspended sediment concentration
apparent in another lowland UK river affected by crayfish and are they
temporally persistent?

2. What evidence is there to support the argument that crayfish are responsible for
any diel patterns?

3. What is the quantitative impact of any diel pattern in sediment suspension on
local sediment flux and sediment yield?

Together these questions allow us to evaluate the hypothesis that signal crayfish
can increase suspended sediment fluxes in rivers.

2. Methods
In the summer of 2012, measurements were made at a single site on the Brampton

Branch of the River Nene in Northamptonshire, UK, which supports an abundant signal
crayfish population. The work was carried out during the summer because this is the
season when crayfish are most active. From approximately November until March the
animals become relatively inactive probably in response to lower water temperatures
and stronger flows, but during the warmer summer months they are more active (Bubb
et al., 2002; Johnson et al., 2014). This means that the observations described here are
seasonally biased toward identifying a crayfish impact, an intentional decision given
the novelty of the investigation.

2.1. Study reach
The Brampton Branch is a small, mixed sand and gravel bed stream draining a

catchment of approximately 160 km2. Mean annual rainfall averaged across the
catchment is approximately 650 mm. Mean flow, measured at the St Andrews gauging
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station, close to the catchment outlet (Ordnance Survey grid reference SP749613), is
1.13 m3 s-1, the Q10 (90th percentile) flow is 2.31 m3 s-1 and the Q1 flow is
approximately 10 m3 s-1. Topography consists of gently undulating low hills and well-
developed floodplains. Total relief across the catchment is 147 m and the mean
drainage path slope is 0.043 m m-1. The dominant land use is arable farming (54%),
sheep and cattle grazing on grassland (28%), some woodland (9%) and no significant
urban influence except in the lower reaches around the city of Northampton (4%). The
subsurface geology consists of mudstones and siltstones of Early to Middle Jurassic
age that belong to the Whitby Mudstone Formation at lower elevations and the
Northampton Sand Formation (berthierine-ooidal and sideritic ironstones) on the
interfluves. Surficial deposits consist of alluvial floodplain and terrace sands and
gravels along the stream valleys with some mid-Pleistocene tills on the interfluves.

Figure 1. Location of the Brampton Branch of the River Nene showing the field site and
location of the gauge used for discharge estimation.
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Monitoring focused on a single site near the village of Brixworth (SP736717; Fig. 1).
Environment Agency sampling has persistently recorded the presence of signal crayfish
at the site since 1998, although there is anecdotal evidence that they have been present
since the late 1980s (Fig. 2). The stream channel is straight with a subtle pool-riffle
structure and an average bed slope of 0.0006. The channel cross section is
approximately rectangular and 3.0 m wide (Fig. 2). The river bed consists of mixed
sands and gravels and the banks are composed of fine-grained sands, silts and clay. A
single subsurface bed material sample collected with a McNeil sampler and sieved at 1-
phi intervals, recorded a log-normal grain size distribution with: D16 = 0.3 mm, D50 =
1.7 mm, D84 = 9.7 mm and 53.7% by mass finer than 2 mm.

Figure 2. (A) The Brampton Branch of the Nene near Brixworth, immediately downstream of the
monitoring site, looking downstream. Channel here is approximately 3m wide.

(B) Signal crayfish emerging from an underwater burrow and (C) evidence of extensive
burrowing activity in the banks upstream of the monitoring site.

2.2. Field measurements
To address question 1, we measured turbidity at two-minute intervals between

midnight on August 9th/10th and midnight on September 6th/7th 2012. Turbidity was
measured using a Greenspan TS1000 self-wiping turbidity sensor (ISO 7027) with a
range from 0 to 1000 NTU and quoted error of ±3%. The turbidity sensor was located
0.3 m from the right bank, approximately 0.1m above the bed. A point measurement is
assumed representative of the average cross-section turbidity based on our visual
observations of excellent mixing across a range of flows. Water depth was measured as
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a proxy for entrainment hydraulics (also at 2 minute intervals), using an IML vented
pressure transducer with a range of 0 to 5.0 m and quoted error of ±0.05%. The
pressure transducer was mounted inside a vertical PVC pipe fitted to a support structure
installed at the stream bank. The turbidity sensor was mounted inside an open,
horizontal PVC pipe that was attached to the same structure. The sensor head was flush
with the pipe orifice and the pipe was oriented downstream at approximately 30
degrees to the mean flow direction to minimise the risk of fouling by floating debris
and weed.

An ISCO 6700 automated sampler was used to collect 1000 ml river water samples via
a hose inlet located immediately adjacent to the turbidity sensor. Two sampling programmes
were used to collect water samples. First, from August 17th until September 18th samples
were collected at midday and midnight (33 days, 66 samples) to provide corroborating
evidence for any diel pattern in suspended sediment concentration (SSC) inferred from the
turbidity measurements (question 1). These samples also provided 42 measurements (those
coinciding with the period when the turbidity sensor was deployed) for use in calibrating
measured turbidity to SSC. Second, a water level actuator was used to trigger sampling
during a storm event on October 5th and 6th 2012. Twenty-four samples were collected at
1-hour intervals to extend the range of SSC available for the calibration. The resulting
power model calibration (Fig. 3) is significant (p << 0.01) and has an R2 value of 0.93:

SSC = 0.238 Tu1.219 (1)

for SSC in mg l-1 and Tu in NTU. The turbidity values used in the calibration range from
24 to 309 NTU. Measured turbidity values over the 28-day period ranged between 16
and 739 NTU, so the calibration is used to estimate SSC beyond its range. This is
reasonable given the quality of the fit and the strong linearity in the log-log plot (Fig. 3).

Figure 3. Relation between measured turbidity and concurrent suspended sediment
concentration obtained by water sampling at the Brixworth site (n = 66).
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An Environment Agency gauge (Brixworth gauge) located approximately 1 km
downstream of the monitoring site (SP737708) recorded discharge in 15-minute
intervals (Qgauge). Between the monitoring site and gauge, a sewage treatment works
(STW) and a single tributary add water to the Brampton Branch. In order to estimate
discharge at the monitoring site (QBrix), these additions were estimated and subtracted
from the gauge data. Outflow discharge data from the STW (QSTW) were available for
the same 15-minute intervals as the gauge measurements. Mean discharge from the
STW is small (0.012 m3 s-1, standard deviation = 0.008 m3 s-1, n = 2689), and for
individual 15-minute measurements contributes an average of 8.4% to the stream
discharge. The tributary that enters the Brampton Branch downstream of the STW
contributes 37.3% of the total drainage area at the confluence. The tributary
catchment’s land use, topography and hydrology are similar. A simple correction was
therefore made by assuming that the Brampton Branch contributes 1 - 37.3 = 62.7% of
the discharge measured at the gauge, after correction for the STW input. Discharges at
the Brixworth monitoring site was then estimated as:

QBrix = 0.627 (Qgauge – QSTW) (2)

To answer question 3, suspended sediment fluxes and loads were calculated for
the 28-day period. A mean turbidity value for each fifteen-minute time interval of the
discharge record was extracted from the 2-minute time series of turbidity
measurements. Equation 1 was used to estimate the corresponding SSC (mg l-1) and
this result was used with the mean corrected discharge for the 15 minute period (QBrix,
m3 s-1) to estimate mean sediment flux (Qs = SSC x QBrix x 1000, mg s-1) and
suspended sediment load (L15 = Qs x 900 x 106, kg) for each 15 minute interval.
2.3. Laboratory experiments

To help address question 2, an aquarium experiment was used to investigate how
active crayfish affected fine sediment suspension. Bed material sediment recovered
from the upper, exposed layer of the bed at the Brixworth site, was placed in a glass
aquarium (0.76 x 0.3 x 0.38 m) with 0.25 m deep water. This material was fine grained
consisting of mixed gravels, sands and silts with grain size characteristics similar to
those of the McNeil sample described above. The river bed at Brixworth is poorly
structured with no apparent armour layer, so the mixed sediment was simply placed in
the aquarium with water from the site and allowed to settle. A turbidity sensor
(Greenspan, non-wiping TS100, ISO 7027, 0-1000 NTU) was mounted inside the
aquarium, 10 cm above the bed and programmed to measure turbidity at 10 second
intervals. Both 10 second time-series’ and 1 minute averages of this data are presented.
A video camera was set up outside the aquarium and was used to record each
experiment.

Three experimental runs were undertaken; two runs with one hour exposure to two
crayfish (runs 1 and 2) and one with one hour exposure to one crayfish (run 3).
Crayfish were captured from the Brixworth site and were 15 cm in total length,
representing commonly caught, full-grown crayfish at the site. Each experimental run
had three phases. Phase 1 lasted approximately 45 minutes prior to the addition of
crayfish allowing turbidity prior to treatment to be monitored and acting as a control
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phase. Phase 2 followed immediately and consisted of one hour exposure to either one
or two crayfish. After crayfish were removed, Phase 3 began and lasted 92 hours,
monitoring the settling of fine sediment after disturbance by crayfish.

3. Results
3.1. Temporal patterns of turbidity and water depth

The two-minute turbidity time series shows substantial high-frequency variability,
but the overall pattern, evidenced by the 3-hour mean series, is clear: there are strong
diel fluctuations in water turbidity at Brixworth that persist throughout the 28-day
period (Fig. 4). During two summer flood events (16:00 15th August to 00:00 17th
August and 01:00 28th August to 00:00 1st September), turbidity responded as
expected and increased beyond the levels measured during low-flow periods. In both
cases there was a slight clockwise hysteresis, suggesting widespread sediment
availability upstream of the site.

Outside of the two flood periods, stage measurements varied very little, between
approximately 0.20 and 0.30 m (Fig. 5), but these data also show a strong diel
tendency. Fig. 6 provides a detailed view of this pattern over five typical days (August
10th to 14th): depth consistently declined by 0.01 to 0.02 m between approximately
noon and midnight each day, followed by no change or a slight rise of up to 0.01 m
between midnight and noon. Between floods, this cycle is superimposed on a general
decline in stage; approximately 0.03 m for these five days. For a number of reasons,
discussed below, it is highly unlikely that this step-like pattern is responsible for the
diel turbidity signal.

A persistent feature of the raw turbidity data is the presence of large, short-lived
excursions from the mean trend, which often reflect a single 2-minute data point. To
facilitate analysis, these spikes were defined as individual turbidity values that
exceeded the local 3-hour mean by more than one global standard deviation (37.7
NTU; the standard deviation of the entire turbidity time series, excluding values
measured during the two floods). Although the pattern is not consistent, there is clear
evidence in Fig. 4 of an increase in the magnitude and number of turbidity spikes a
night, which is reinforced by the diurnal pattern of 3-hour standard deviation values in
Fig. 4B. A plot of mean spike magnitude (M) and spike count (P) for 12-hour night-
time (18:00 to 06:00) and daytime (06:00 to 18:00) periods (Fig. 7) confirms that night
time values tend to be higher. Fig. 7 excludes data from days affected by flooding,
because otherwise flood timing would bias the result. For the non-flood data set shown in
Fig. 6, the ratios Mnight/Mday and Pnight/Pday have mean values of 1.20 and 3.35 (n = 20),
respectively, which suggest that on average, spikes are more than three times more
common at night and have a 20% higher magnitude. Significance testing confirmed
that for the 21 non-flood days, mean spike count and mean spike magnitude are higher
during night-time hours from 18:00 to 06:00 (1-tailed t-tests, df = 39 and 34, p = 0.084
and p = 0.016, respectively).
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Figure 4. (a) Turbidity time series at the Brixworth monitoring site for the 28 days between
August 10 and September 6, 2012. The grey line is 2-minute time-series and the red line connects
3-hour mean values. (B) Detail of the time-series for the final six days of monitoring showing the
2-minute time-series (grey line), 3-hour mean series (red line) with confidence bands (solid black
lines) at ± 2 standard errors and the corresponding standard deviation of the 3-hour series

(dashed black line). Dotted vertical lines indicate midnight.

Rice et al.

16 CIG 40 (1), 2014, p. 7-27, ISSN 0211-6820



Figure 5. Water depth time series at the Brixworth monitoring site for the 28 days between
August 10 and September 6, 2012.

Figure 6. Detail of turbidity and water depth time series at the Brixworth monitoring site for the
28 days between August 10 and September 6, 2012. The grey line is the 2-minute turbidity data
and the red line with circular symbols is the 3-hour mean turbidity series. The black line is the
2-minute depth data and the white line with square symbols is the 3-hour mean depth series.

3.2. Suspended sediment sampling
Water samples collected at midnight and at midday for a period of 33 days and

analysed for suspended sediment concentration, confirmed that the diel pattern in
measured turbidity was caused by night-time increases in suspended sediment
concentration (Fig. 8). The mean value of SSC for samples collected at noon and at
midnight was 19.04 and 31.90 mgl-1, respectively; a significant difference (2-tailed,
paired t-test, df = 32, p < 0.001).
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Figure 7. Turbidity spike frequency and magnitude at the Brixworth monitoring site for the 28
days between August 10 and September 6, 2012. Magnitude data (circles) are calculated as
average values for 12-hour night-time (18:00 to 06:00; filled circles) and daytime (06:00 to
18:00; open circles) periods. Frequency counts (squares) are for the same 12-hour periods:
night-time (18:00 to 06:00; filled squares) and daytime (06:00 to 18:00; open squares).

Figure 8. Suspended sediment concentration for water samples collected at noon (open circles)
and at midnight (filled circles) for 33 days in August and September 2012, at the Brixworth

monitoring site.
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3.3. Suspended sediment fluxes and loads
For the 28-day monitoring period, sediment fluxes and loads were estimated using

the procedure described above. Average sediment flux at the monitoring site was 3.29 g s-1

and the maximum recorded value, which occurred during the first flood event, was
191.24 g s-1. During low flow periods, sediment flux varied on a diel cycle, peaking at
between approximately 2 and 3 g s-1 at night and dropping to between approximately
0.8 and 1 g s-1 during the day. Sediment loads were calculated by integrating sediment
fluxes. The total estimated sediment load was 7954.7 kg for the 28 days of monitoring,
of which 4508.5 kg (57%) passed through the monitoring section during the two floods
(evident on Fig. 4A and 5) and 3446.2 kg (43%) passed through the section during low
flow conditions when the diel cycle was evident.

To estimate the impact of the diel cycle on sediment load, simple modelling was
undertaken. It was assumed that, in the absence of the mechanism causing the night-time
elevation of SSC (e.g. crayfish activity), turbidity would have reached a maximum value
equal to that of the daytime minimum. Two synthetic turbidity time series were then
constructed. In the first, which was for the entire 28 day period including flood events,
measured NTU values were retained for the flood periods but the minimum daily
turbidity value for a given non-flood day (from the 15 minute time series) replaced all of
the values for that non-flood day. In the second, flood days were removed entirely to
leave only the low-flow record and the minimum daily turbidity value for a given day
replaced all of the values for that day. Sediment loads were calculated under these two
“no diel cycle” scenarios and compared with the corresponding measured loads for the
entire period and for the low-flow days, respectively (Table 1). The with-floods estimate
is that night-time increases in SSC contributed 20% to the total yield and the low-flow
estimate is that night time increases in SSC contributed 47% to the low-flow yield.

Table 1. Contribution of diel cycles to suspended sediment loads.

3.4. Crayfish observations and experiment
Turbidity in the aquaria prior to the introduction of crayfish was stable around

values of 20, 26 and 22 NTU for runs 1, 2 and 3, respectively. After the addition of
crayfish, turbidity increased substantially (Fig. 9). The 10-second time-series in all
three runs is characterised by numerous, irregularly distributed spikes in turbidity with

Suspended sediment load
Including flood days Excluding flood days

Measured, including diel cycles, kg 7954.7 3446.2

“No diel cycle” modelling, kg 6339.7 1831.2

Difference (due to diel cycles) kg 1615.0 1615.0

Difference (due to diel cycles) % 20.3 46.9
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maximum measured turbidity values of 729, 503 and 767 NTU, respectively. Spikes
did not occur when crayfish were not present (i.e. during phases 1 and 3) and video
recordings confirmed that spikes were associated with crayfish activity near the sensor.
It was not possible to quantify the apparent correlation between activity and turbidity
because the water quickly became too murky to see the crayfish.

In the first fifteen minutes of runs 1 and 2, with two crayfish, mean turbidity
(averaged over 1 minute) increased from 20 to 134 NTU and from 26 to 120 NTU,
respectively. As activity declined after an initial burst of exploration and fighting, so
did the average turbidity (Fig. 9). However, in these two runs, turbidity was on average,
six (6.09) and three and half (3.53) times higher when crayfish were present compared
with the phase 1 control periods. After the crayfish were removed, turbidity slowly
declined, but over the 92-hour period of phase 3, did not decline to pre-crayfish levels.

Figure 9. Laboratory aquarium experiments with crayfish on a substrate of Brixworth sediment.
(A) Two separate experiments with a single crayfish and with two crayfish. The arrows indicate
the periods during which crayfish were present. The grey line is a 10-second turbidity time series
and the black line is a 60-second mean series during an experment with a single crayfish. The
pink line is a 10-second turbidity time series and the red line is a 60-second mean series during
an experment with two crayfish. (B) Video stills are from the experiment with two crayfish and

are labelled with time since crayfish introduction.
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Turbidity increases were most affected by the fighting of crayfish and, consequently,
two crayfish had a substantially greater impact on turbidity than a single crayfish. In run 3,
the single crayfish, was less active, remaining stationary for extended periods. However,
digging and foraging did result in large turbidity spikes up to 767 NTU and 1-minute
averages reached 164 NTU (Fig. 9). During the period of crayfish exposure, turbidity
levels were on average two (2.03) times higher than during phase 1. In phase 3, turbidity
dropped back to the pre-crayfish level of approximately 22 NTU after 48 hours, so the
long-term effect was less persistent than when two crayfish were deployed, but was still
substantial.

4. Discussion
A diel pattern of SSC persisted for at least 28 days during the Summer of 2012

on the crayfish-infested Brampton Branch of the River Nene. This suggests that the
observation of an overnight increase in turbidity spikes recorded by Harvey et al.
(2014) for a 16-hour period on the River Windrush, where there is also a significant
population of signal crayfish, was not an isolated case and is indicative of a more
widespread phenomenon.

4.1. Causes of the diel patterns in stage and turbidity

The diel pattern in low-flow stage (Fig. 4 and 5) was unexpected. Its explanation is
less important herein than the question of whether it could be responsible for the observed
variation in turbidity and SSC, but some consideration of possible causes is instructive.
There are no licensed water discharges to the Brampton Arm above the study site except
for a single STW at Draughton, approximately 6 km upstream, which adds water.
However, the discharge from Draughton during the study period does not exhibit a diel
pattern and pumped outflows rarely exceeded 0.006 m3 s-1, which is equivalent to a depth
of approximately 0.005 m at Brixworth, less than the measured variation. It is possible
that there is an unlicensed discharge to the river, but this would be very unusual. Third, it
is possible that the diel pattern in depth is a natural phenomenon; for example, driven by
summertime fluctuations in evapotranspiration in this catchment where arable crops,
woodland and grassland make up 91% of the land cover. Such patterns have been widely
observed (Burt, 1979; review in Grobovski et al., 2010) but most examples have only a
short lag between peak evapotranspiration and minimal discharge, such that the diel cycle
peaks in the early morning and is lowest in the late afternoon. This is not what was
observed here, with stage maxima in the early afternoon and stage minima around
midnight. However, Bond et al. (2002) have pointed out that the lag between peak
vegetative water use and flow minimum can vary significantly as the strength of
vegetation-streamflow coupling changes in response to seasonal shifts in soil water
availability.

Whatever the cause of the stage fluctuation, it is unlikely that it be responsible
for the daily fluctuation in turbidity and suspended sediment concentration. There are
two principle mechanisms that might link stage and turbidity. First increased water
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depth could be associated with increased bed shear and turbulence sufficient to entrain
and maintain suspension of a greater sediment load. One would then expect a strong
positive correlation between stage and turbidity, but this is not apparent in the measured
time series. Comparing the high frequency measurements in Fig. 6, it is clear that there
is no correlation between the two signals, with spikes in turbidity that are unrelated to
any concurrent increase in stage. When the diel periodicity in the 2-minute data series
is removed, by subtracting respective 3-hour means from the corresponding data
sequences, the Pearson correlation coefficient for the five days of data shown in Fig. 6
is -0.027 (n = 3600). This is not what one would expect if spikes in turbidity were
being driven by short-term fluctuations in local hydraulics. Similarly, the phase shift in
the low-frequency (3-hour) time series do not support this possibility because the peaks
in stage are associated with turbidity minima when one would expect them to be
associated with maxima (Fig. 6). In addition, the overall reductions in depth shown in
detail in Fig. 6 and apparent between each of the flood periods in Fig. 5, are not associated
with corresponding trends in turbidity, which one would expect if entrainment and
suspension was being driven by small changes in water depth.

The second mechanism that might link stage and turbidity is a dilution effect. In
particular, it is possible that the decrease in SSC observed during the day does not
reflect an increase in sediment load, but is the result of the increased daytime flow
volume acting on an unchanged sediment load. If this were the case, the ratio of two
discharges from the time series would be the reciprocal of the ratios of SSC at the same
two points in time:

(Q1/Q2) / (SSC2/SSC1) = 1 (3)

Using the 15-minute time series of discharges and the equivalent SSC estimates,
pairs of values were extracted for the fifteen minutes following midnight and noon for
the days excluding flood events. Comparison of the resulting ratios (Qmidnight/Qnoon and
SSCnoon/SSC midnight) shows that the SSC ratios are substantially and consistently higher,
so that the ratio in Equation 3 is, on average, 0.13. This confirms that the rises in night-
time SSC cannot be explained by a dilution effect.

In sum, the relations between depth and turbidity at minute to week timescales
(Fig. 6) suggest that the turbidity signal is driven by a sediment supply or entrainment
mechanism independent of stream flow, not by a hydraulic process. Crayfish activity is
then a prime candidate for explaining the observed diel pattern in SSC.

Higher turbidity values at night are consistent with crayfish nocturnalism.
Crayfish activity levels were not measured in the field during this period of monitoring,
so we cannot demonstrate nocturnal behaviour patterns at this site, but numerous
studies in similar UK settings have shown nocturnalism (Bubb et al., 2002), including
our own observations on the River Bain in Lincolnshire (Johnson et al., 2014). With
higher levels of activity at night, we would expect more burrow construction and
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maintenance activities, as well as a larger number of interactions between crayfish and
the bed while foraging, fighting and fleeing from each other.

Like Harvey et al. (2014), we believe that individual turbidity spikes observed
in the time-series correspond to the advection of sediment plumes generated by these
crayfish activities and that the general night-time elevation of turbidity is the net
effect of increases in the magnitude and frequency of the spikes (Fig. 7), especially
the persistence of finer fraction suspension. To date, there is no direct field evidence
tying crayfish activity to turbidity spikes, but during daylight hours, when crayfish
were tempted out onto the substrate by bait, we observed them generating fine
sediment plumes as they practised their defensive backward swimming manoeuvre.
The aquarium experiments support these observations: the turbidity trace from the
aquarium is very similar to those observed in the river with spikes in measured
turbidity associated with entrainment events that were caused by crayfish
movements. Both the turbidity spikes and the associated elevation of average
turbidity could be qualitatively related to crayfish activity levels. Furthermore, the
turbidity traces obtained in our aquarium experiments are qualitatively similar to
those in the mesocosm experiments reported by Harvey et al. (2014) in which
crayfish were directly observed to mobilise fine sediment when walking across the
substrate and burrowing.

4.2. The impact of diel cycles on sediment flux

Comparison of observed sediment loads with modelled estimates for a “no diel
cycle” scenario suggest that during base flow periods, night time SSC elevation is
responsible for 47% of the measured load. This highlights the short-term, inter-flood
significance of the diel cycling for sediment dynamics. If flood events are incorporated,
night-time increases in SSC contributed 20% to the total yield, which provides a first-
order approximation of the potential long-term impact of the diel cycle on sediment load.
It is likely that this approach overestimates the true ambient turbidity (i.e. the minimum
values used to represent each day’s turbidity level is too high), because the recorded
daytime minima possibly reflect a residual effect of the previous night’s elevation of SSC.
In this case, these estimations of the diel effect are probably conservative. If crayfish are
responsible for the diel pattern, and noting that the two floods were not trivial
(exceedence probabilities of 10 and 30%), this result suggests that crayfish can have an
important effect on sediment mobility and suspended sediment loads both in the short
term and over longer periods that incorporate flood activity.

Although we do not yet have data to investigate what the downstream effects of
such a change in sediment flux are, it is possible to anticipate the likely controls on
patterns of fine sediment dispersal and accumulation in streams with substantial
crayfish populations. It is likely that four suites of factors are important. First, the
degree of burrowing activity and extent of bank failure by which fines are recruited to
the river bed. Second, the dispersal mechanics of the sediment entrained by crayfish,
which is largely a function of ambient turbulence characteristics and the grain sizes
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entrained. Third, interactions between suspended sediment and downstream
heterogeneities in morphology, vegetation, bed materials and hydraulics, that promote
sediment sorting and deposition. Fourth, the distribution of crayfish along the reach, in
terms of their density and location, which will determine the propensity for the re-
entrainment of accumulating sediment. Temporal variability is inherent in both the
biotic and abiotic elements of this model, suggesting that there may be synoptic and
seasonal variations in crayfish-induced fine sediment mobility.

4.3. Biota and fluvial sediment systems

Work on the interactions between plants, water and fine sediments is well
established and a few studies have recognised invertebrate agents too (e.g. Wharton et
al., 2006), but the bulk of zoogeomorphic and ecosystem engineering research in rivers
has focused on salmonids and beaver (Gurnell, 1998; Butler and Malanson, 2005;
Hassan et al., 2008). The work reported here therefore adds to a small but growing crop
of evidence that points to the role of a wider group of biota in fluvial sediment
dynamics (cf. Statzner, 2012; Rice et al., 2012). For example, similar diel turbidity
cycles have been associated with nocturnal fish feeding in Georgia and Iowa, USA
(Gillain, 2005; Loperfido et al., 2010). This growing body of evidence challenges the
conventional view that abiotic drivers entirely dominate fluvial sediment transfer
systems.

5. Conclusions

In relation to the three questions stated in the introduction, the following answers
can be given based on the data collected from the Brampton Branch of the Nene in
August-September 2012.

1. Diel, night time increases in turbidity and suspended sediment concentration,
persisted for a 28-day period. This finding usefully extends the work of Harvey
et al. (2014) by confirming that their overnight observation of a turbidity peak
in the River Windrush was not an isolated case.

2. Numerous lines of evidence support the argument that heightened nocturnal
crayfish activity was responsible for this pattern.

3. Crayfish activity contributed at least 20% of the suspended sediment load
measured over the monitoring period that included two summer floods and this
proportion was 47% during the days when base flow conditions prevailed. This
is the first quantification of the possible impact of crayfish on suspended
sediment fluxes and strongly suggests that their impact is not trivial. It adds to a
very small set of published work quantifying biotic impacts on sediment fluxes
in field settings (e.g. Hassan et al., 2008).
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Together, these conclusions suggest that where crayfish are present, impacts on
fine sediment suspension are likely and strongly support the hypothesis that signal
crayfish can increase suspended sediment fluxes in rivers.

In combination with other recent investigations (Harvey et al., 2014), this work
extends and strengthens the argument that crayfish are important zoogeomorphic
agents in at least some rivers, some of the time. However, neither the data presented
here nor anywhere else provides comprehensive proof of the link between levels of
crayfish activity and increases in turbidity in the field. Nor does this data or any
other demonstrate the catchment-scale distribution and seasonality of such impacts
and, crucially, whether there is a measureable cumulative impact on sediment yield
at larger scales or over longer periods of time. Going forward, these are key issues
that require attention before it is possible to properly address the implications of
crayfish activities for managing fine sediment pressures (e.g. on phosphate
dynamics, spawning habitat, benthic productivity, river bank erosion, channel
dredging). Managing fine sediment in rivers requires robust understanding of all the
relevant mechanisms and drivers. If crayfish are important agents in the fine
sediment cascade, then a better understanding of their role could improve managers’
ability to successfully target limited resources to sustainable and effective
management solutions.
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