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ABSTRACT. Acquiring information on snow depth distribution at high spatial 
and temporal resolution in mountain areas is time consuming and generally these 
acquisitions are subjected to meteorological constrains. This work presents a 
simple approach to assess snow depth distribution from automatically observed 
snow variables and a pre-existing database of snow depth maps. By combining 
daily observations of in-situ snow depth, georectified time-lapse photography 
(snow presence or absence) and information on snowpack distribution during 
annual snow peaks determined with a Terrestrial Laser Scanner (TLS), a 
method was developed to simulate snow depth distribution on day-by-day 
basis. This method was tested is Izas Experimental Catchment, in the Central 
Spanish Pyrenees, a site with a large database of TLS observations, time-lapse 
images and nivo-meteorological variables for six snow seasons (from 2011 to 
2017). The contrasted snow climatic characteristics among the snow seasons 
allowed analysis of the transferability of snowpack distribution patterns 
observed during particular seasons to periods without spatialized snow depth 
observations, by TLS or other procedures. The method i) determines snow 
depth ratio among the observed maximum snow depths and all other snow map 
pixels at the TLS yearly snow peak accumulation, ii ) rescales these ratios on 
a daily basis with time-lapse images information and iii) calculates the snow 
depth distribution with; the rescaled ratios and the snow depth observed at the 
automatic weather station. The average of the six TLS observed peaks was the 
combination showing optimal overall applicability. Despite its simplicity, these 
simulated values showed encouraging results when compared with snow depth 
distribution observed on particular dates. This was due primarily to the strong 
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topographic control of small scale snow depth distribution on heterogeneous 
mountain areas, which has high inter- and intra-annual consistencies.

Generación de mapas diarios de espesor de nieve a alta resolución espacial a 
partir de observaciones puntuales y fotografías automáticas diarias (time-lapse)

RESUMEN. En zonas de montaña, la adquisición de información distribuida del 
manto de nieve a elevada resolución espacio-temporal es muy laboriosa y ade-
más se ve limitado por las condiciones ambientales. Este trabajo presenta una me-
todología sencilla para generar mapas diarios de espesor de nieve combinando 
observaciones automáticas in-situ con una base de datos pre-existente de mapas 
de espesor de nieve. Las observaciones automáticas las constituyen datos diarios 
de espesor de nieve en un punto conocido (estación meteorológica) y fotografías 
time-lapse georectificadas de la superficie cubierta por nieve. La base de datos 
pre-existente, la conforman mapas de espesor de nieve obtenidos en el pico de acu-
mulación de nieve anual generados con un Láser Escáner Terrestre (TLS). La zona 
de estudio en la que se ha validado esta metodología es la Cuenca Experimental de 
Izas en los Pirineos Centrales Españoles, cuenca en la que existen un total de seis 
temporadas hibernales (2011-2017) con las observaciones TLS así como con las 
variables nivo-meteorológicas necesarias para simular la distribución diaria del 
espesor de nieve. Las contrastadas características climáticas de las seis tempora-
das disponibles, permite analizar la posibilidad de emplear patrones de distribu-
ción de nieve observados una temporada en particular para simular la distribución 
en periodos sin observaciones distribuida (TLS u otros métodos). La mitología i) 
determina para las observaciones TLS en el pico de acumulación el ratio entre el 
valor máximo de espesor de nieve y los valores observados en el resto de pixeles, 
ii) re-escala diariamente dichos ratios para las zonas cubiertas por nieve a partir 
de la información de las fotografías time-lapse y iii) calcular la distribución de 
nieve con los ratios re-escalados y la observación diaria de espesor en nieve en la 
estación meteorológica. El promedio de los seis picos de acumulación observados 
con el TLS ha resultado ser la combinación que ha obtenido los mejores resultados. 
Pese a la simplicidad de esta metodología, los valores simulados han demostrado 
resultados alentadores cuando han sido comparados con observaciones de espesor 
de nieve en fechas particulares. Esto es debido principalmente al importante con-
trol que ejerce la topografía en la distribución del manto de nieve a pequeña escala 
en zonas heterogéneas de montaña, la cual tiene una elevada consistencia inter e 
intra-anual.
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1. Introduction

Observing, studying and understanding the temporal changes in snow depth 
distribution in mountain areas is significant for various environmental and socioeconomic 
issues. Spatio-temporal changes in snowpack depth are directly associated with plant 
survival (Wipf et al., 2009), erosion rates (Pomeroy and Gray, 1995) and the hydrological 
response of mountain rivers (Pomeroy et al., 2004). These factors play a significant 
role in water resource management relative to climate change scenarios worldwide 
(Barnett et al., 2005). This has been observed for Mediterranean mountains (García-
Ruiz et al., 2011), not only because of the major effects of seasonal snowpack dynamics 
on stream flow dynamics (López-Moreno and García-Ruiz, 2004; Abbas et al., 2017) 
but also due to its effects on other geomorphological features such as permafrost and 
glaciers (Serrano et al., 2001; López-Moreno et al., 2016). Studies of snow on Iberian 
Mountains have utilized detailed information on snowpack distribution (Herrero et al., 
2009; López-Moreno et al., 2008; Revuelto et al., 2016a; Pimentel et al., 2017). The 
present study sought to develop a simple method of generating daily small scale snow 
depth distribution maps in remote mountain areas, based on automatically generated 
snow variables and pre-existing observations of snow depth distribution at peak snow 
accumulation over several snow seasons.

Understanding snow-related processes requires detailed information on the spatio-
temporal changes in various snowpack variables. Using snowpack models (Bartelt and 
Lehning, 2002; Vionnet et al., 2012) and currently available computational resources, 
snow researchers can simulate snowpack evolution in remote areas at any time having 
details on any snow variable. Despite the good results of snowpack models for many 
operational applications, forecasted values can deviate when snow dynamics are 
simulated on heterogeneous mountain terrain at medium to small scales (Revuelto et al., 
2018). Thus, a fuller understanding of snowpack evolution in mountain areas requires 
both (i) continuous automatic observations and (ii) field observations to obtain detailed 
snapshots of snowpack variables. Automatic Weather Stations (AWS) placed in mountain 
areas may be equipped with sensors, usually ultrasonic or laser sensors, that measure 
snow depth, Snow Water Equivalent (SWE, snow pillows or snow scales) or snow 
surface temperature/albedo (infrared sensors/radiometers). These systems provide high 
temporal resolution of certain snowpack variables at particular locations (~m2, usually 
named in-situ observations). However, few snow variables can be continuously observed 
over large areas by autonomous sensors. These include the snow covered area extent 
generated by time-lapse photography with specific routines (Corripio, 2004; Härer et al., 
2013; Dizerens, 2016). Thus, fieldwork is required to obtain distributed information of 
particular snowpack variables at precise times. Information on snowpack distribution has 
been traditionally provided by manual measurements, with different sampling strategies 
at various spatial scales used to measure SWE and snow depth (Watson et al., 2006; Jost 
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et al., 2007, 2009; López-Moreno et al., 2011, 2013). However, manual sampling is not 
feasible over large areas because of the time involved. Over the last decade, light detection 
and ranging (LiDAR) technologies, including both Terrestrial Laser Scanning (TLS) and 
Airborne Laser Scanning (ALS), have been recursively applied to measure snow depth 
distributions in different study areas, with these methods yielding encouraging results 
(Deems et al., 2013). The large database of snow depth distribution maps generated 
with LiDAR technology worldwide has been exploited to better understand snowpack 
dynamics (Mott et al., 2010; Schirmer et al., 2011; Revuelto et al., 2015; Schön et al., 
2015). Nevertheless data acquisition and data processing are time consuming and require 
highly specialized work teams and expensive measurement devices. Recently developed 
methods currently applied to mountain areas, such as unmanned aerial vehicles (UAVs) 
and high spatial resolution stereo satellite images (De Michele et al., 2016; Marti et al., 
2016), have overcome some TLS/ALS limitations, but also have important meteorological 
and technical limitations that prevent the determination of snowpack distribution on a 
regular basis. Thereby, there is a scientific need to formulate methods that allow the 
generation of snow depth distribution maps without remote sensing observations, by 
combining certain automatically acquired snowpack variables. The present study sought 
to develop a novel and simple method of generating daily snow depth maps from 
observations automatically obtained in mountain areas.

The methodology was designed and its results evaluated in the Izas Experimental 
Catchment (Central Spanish Pyrenees). This site is equipped with an AWS that can 
determine changes in snow depth over time on a precise location, as well as a time-lapse 
camera that can be used to assess snow cover extent on a daily basis. Moreover, a TLS 
database of snow depth at high spatial resolution is available for particular dates from 
2011 to 2017 (Revuelto et al., 2017). This approach utilizes mean values of the TLS 
annual peak accumulation to calculate the ratio among snow depths pixels. These ratios 
were subsequently used to generate daily snow depth distribution maps, by combining 
snow depth from the AWS and the snow cover extent derived from time-lapse images.

2. Study site and period

The Izas Experimental Catchment is located in the Central Spanish Pyrenees 
(42°44’N, 0°25’ W), at the headwaters of the Gallego River. Its elevation ranges from 
2000 to 2300 m above sea level, with a surface of approximately 55 ha. Snow covers 
most of the study area from November to May (López-Moreno et al., 2010), with 
snow patches in preferential snow accumulation areas generally lasting until July. The 
catchment is mainly covered with high mountain pastures and some rocky outcrops in 
steeper areas. It is predominantly east-facing, with some areas also facing north or south. 
The catchment has a mean slope of 16° (López-Moreno et al., 2012), with flat, concave 
and convex areas (Fig. 1). The characteristics of the Izas Experimental Catchment 
make this site appropriate for studying snowpack dynamics in a subalpine mountain 
environment. The absence of trees, the small size of the study site, and the average 
gentle slope make possible in-depth analyses of small-scale snowpack interaction with 
topography and atmosphere. Since the selection and instrumentalization of this study 
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site in the 1980s (Alvera et al., 1991), studies have analyzed various scientific questions, 
including sediment transport (Alvera and Garcia-Ruiz, 2000; Lana-Renault et al., 2011), 
mountain landscape properties related to vegetation and topographic characteristics (del 
Barrio et al., 1997), and several snow-related processes (Anderton et al., 2002, 2004; 
López-Moreno et al., 2010, 2013, 2014, 2014b).

The study site is equipped with an AWS, which measures air pressure [mbar], relative 
humidity [%] and air temperature [ºC]; wind speed [m/s] and direction [º from North]; 
solar radiation [W m-2 day](incident and reflected); soil temperature [ºC], water discharge 
[m3/s]; precipitation [mm]; snow depth [m] and the temperature of the snow surface [ºC]. In 
addition, a digital camera takes three photographs per day (time-lapse photography) of the 
east facing area of the catchment. The images obtained cover approximately 30 ha of the 
study area. Since the winter of 2011-2012, the snow depth distribution has been measured 
2 to 6 times per snow season with a TLS. Time-lapse photographs and AWS observations 
have also been available for the time period between 2011 and 2017. These six snow seasons 
were selected for testing the methodology defined in this work. This study period included 
snow seasons with above average (2012-13, 2013-14), below average (2011-12 and 2016-
17) and average (2014-15 and 2015-16) snow accumulations (Revuelto et al., 2017).

Figure 1. Location of the Izas Experimental Catchment. Red squares denote the 
location of the two scanning positions of the TLS. Continuous lines from Scan station 1 

delimit the area covered by time lapse images.
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3. Methods and database

The methodology to generate daily snow depth distribution maps is mainly sustained 
on the strong topographic control of snowpack distributions observed in mountain areas. 
These areas show strong inter- and intra-annual consistency (Revuelto et al., 2014a; 
López-Moreno et al., 2017), indicating that the main snow distribution patterns are 
repeated from year to year (Sturm and Wagner, 2010). Once a repeat distribution pattern 
is confirmed in an area, the proposed method is designed to generate a daily database 
of snow depth distribution from automatically obtained observations of snow depth at 
a particular location and the distribution of snow presence or absence over the target 
area. The database available to test and define the methodology at the Izas Experimental 
Catchment was composed of 25 TLS snow depth distribution maps, georectified time-
lapse photographs of daily changes in snow covered area, and in-situ observations of 
changes in snow depth from the AWS.

3.1. Terrestrial Laser Scanner snow depth maps

Terrestrial laser scanners use LiDAR technology to measure the distance between 
the scanner and the target area, generating a three dimensional point cloud of the scanned 
surface. Once this information is georeferenced, based on the positions of fixed reflective 
targets within the study area, surfaces assessed at different times could be compared. 
Snow depth distribution is determined by subtracting the surface measured in the absence 
of snow during the summer from the snowy surface (Prokop, 2008). At distances up to 
1000 m from the scanner, the mean absolute error in the snow depth maps has been 
reported to be 0.07 m (Revuelto et al., 2014b).

The TLS used for obtaining information on the snow depth distribution in the 
Izas Experimental Catchment is a long-range device (RIEGL LPM-321) with technical 
characteristics suitable for assessing snow distribution (Prokop, 2009). Details about the 
protocol used to acquire data in this study area and to generate the final snow depth 
distribution maps at a 1 m x 1 m spatial resolution have been reported in Revuelto et al. 
(2014b). Table 1 summarizes the average snow depths observed on various acquisition 
dates throughout the entire study period.

Table 1. Mean snow depth (SD) yearly TLS peak classification and snow covered areas on the 25 
dates of scanning. This table also includes a comparison of seasonal classifications with the AWS 

climatic record.

Date (scan number) Mean SD (m) TLS Peak classif. SCA (%) Snow season  
classification

Snow season 
2011/12

22-02-12 (1) 0.46 71

Low snow accumulation

02-04-12 (2) 0.17 35

17-04-12 (3) 0.56 97

02-05-12(4) 0.90 Min. 100

14-05-12(5) 0.21 32

24-05-12(6) 0.09 20
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Date (scan number) Mean SD (m) TLS Peak classif. SCA (%) Snow season  
classification

Snow season 
2012/13

17-02-13(7) 2.91 98

High snow Accumulation

03-04-13(8) 3.19 Max. 100

25-04-13(9) 2.42 100

06-06-13(10) 1.98 90

12-06-13(11) 1.69 81

20-06-13(12) 0.76 69

Snow season 
2013/14

03-02-14(13) 2.16 98

High snow Accumulation
22-02-14(14) 2.56 Max. 100

09-04-14(15) 2.54 93

05-05-14(16) 1.67 77

Snow season
2014/15

06-Nov-14(17) 0.22 87

Average snow accumu-
lation

26-01-15(18) 0.74 93

06-03-15(19) 2.13 Average 100

12-05-15(20) 0.67 58

Snow season 
2015/16

04-02-16(21) 0.82 94
Average snow accumu-

lation25-04-16(22) 1.86 Average 100

26-05-16(23) 1.16 44

Snow season 
2016/17

20-01-17(24) 1.26 Min. 100
Low snow accumulation

08-05-17(25) 0.77 59

3.2. Snow-covered area from time-lapse photography

In 2011, a Campbell CC640 digital camera was installed in the study area. This 
camera automatically takes three photographs per day of the study area, with these 
photographs covering approximately 55% of the surface. Despite providing photographs 
every day, photographs on about 20% of the days had to be discarded because the 
presence of clouds and/or due to ice on the camera lens. Using previously described 
methodology (Corripio, 2004), the RGB information of the images was projected into a 
Digital Elevation Model (DEM) with 1 m spatial resolution. This method was based on 
an initial georectification of the images, which considers the characteristics of the camera 
lens and the correspondence between the camera pixels and their exact GPS position, and 
a recursive projection of all photographs. The procedure used to generate the database of 
the distribution of snow covered areas (snow presence/absence) in the Izas Experimental 
Catchment has been described previously (Revuelto et al., 2016b). The final product had 
the same geometry as the snow depth distribution obtained with the TLS. Both databases 
are available in UTM 30N (ETRS89 datum) with the same limits and the same spatial 
resolution (1 m x 1 m), enhancing the applicability of the methods defined in this study. 
Table 1 includes information on the Snow Covered Area (SCA) of TLS scanning dates 
derived from georectified time-lapse photographs.
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3.3. Generation of daily snow depth distribution maps

Several steps were required to generate daily databases of snow depth distribution:

1. In the first step, the ratios of average snow depth for each pixel to the maximum 
average snow depths at various yearly snow peak observation times were calculated. 
Average snow depth distributions were obtained from the selected scans (note that 
various combinations of annual TLS observations were tested). Subsequently, the ratio 
(P(x,y)) between the mean snow depth for each grid cell (SDavg(x,y)) and the maximum 
mean snow depth value (SDmax) was calculated using the equation:

    (1)

Thus, P(x,y) is a ratio that falls in the interval (0, 1]. Moreover, all yearly snow 
peaks in the study area were entirely covered with snow.

2. In the second step, the P(x,y) ratios from step 1 for each time with valid time-
lapse photographs were rescaled to their original interval of (0, 1] for snow covered 
pixels, with snow free pixels assigned a value of 0. That is, the snow cover distribution 
information (snow presence/absence) obtained with the digital camera was exploited to 
generate daily P(x,y,t) ratios, all of which fell within the same interval, i.e., 0 for snow 
free pixels and (0, 1] for snow covered pixels.

3. Subsequently, the daily snow depth distributions were obtained using a direct 
proportionality rule among the quotidian P(x,y,t) from step 2 and the snow depth observed 
by the AWS. This allowed calculations of snow depth for each pixel and each day:

    (2)

where SDmodel(x,y,t) is the simulated snow depth at pixel (x,y) on day t, P(x,y) is the ratio 
for pixel (x,y), Pobs=P(xobs,yobs,tobs) is the ratio at the AWS location and SDobs(t) is the daily 
snow depth at the AWS.

Calculations of the snow depth distribution for the entire period were based on 
two simple premises: (i) when the study area is entirely covered, ratios remain constant 
and (ii) when the study area is partially snow covered, P(x,y) ratio can be rescaled to 
the original interval (0,1] for the snow covered area, and forced to zero for pixels not 
snow covered (PSCA=0(x,y)=0). A prerequisite for these premises is that TLS snow depth 
distribution maps at the time of maximum annual accumulation show an SCA of 100% 
in daily georectified images (Table 1).
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3.4. Selection of peak accumulation years

Different combinations of TLS snow depth maps at the times of peak annual 
accumulation were tested to assess the impact on the modeled results of including 
or not including years with different climatic characteristics, as illustrated by snow 
accumulation. After considering the peak TLS classifications summarized in Table1, the 
following combinations of TLS peak accumulation maps were tested:

i) All: Mean of all peak TLS (the six yearly peak dates)

ii) Max: Mean of maximum peak TLS (2013 and 2014 peak dates)

iii) Average: Mean of average peak TLS (2015 and 2016 peak dates)

iv) Min: Mean of minimum peak TLS (2012 and 2017 peak dates)

For each of these four TLS peak combinations, a different distribution of P ratios of 
the base to the mean values obtained from eq. (1) was generated.

3.5. Synthetic in-situ snow depth

The methodology presented in this study has an important limitation. In the absence 
of snow at an AWS location, it was impossible to generate the snow depth distribution. 
This was applicable to seven of the 25 TLS snow depth maps available, mostly at the 
end of the snow season. Despite the ability of the methods presented in this study to 
generate a daily database of snow depth distributions, the only alternative is to evaluate 
the results with snow distribution obtained from TLS observations. Moreover, as the 
average snow depth distribution at peak snow accumulation was calculated based on 
two to six TLS observations, the number of independent observations available to 
evaluate the performance of the methodology was drastically reduced. To overcome 
these limitations, and to be able to test simulated results for all TLS observation dates, a 
procedure was established to generate synthetic in-situ snow depth observations for dates 
on which AWS showed no snow.

The synthetic in-situ snow depth was defined as the average of all TLS observed 
snow depths belonging to a particular P(x,y) ratio interval. This average value was 
considered an in-situ snow depth observation to generate snow depth distributions 
from equation. Four different P(x,y) ratio intervals were tested: P(x,y)= 0.15 ± 0.02, 
P(x,y) = 0.30 ± 0.02, P(x,y) = 0.40 ± 0.02 and P(x,y) = 0.50 ± 0.02 (hereafter called 
O_15, O_30, O_40 and O_50, respectively). Because AWS ratios (Pobs) ranged from 
0.12–0.17 for the different TLS peak combinations presented in Section 3.4, the results 
obtained with the O_15 synthetic observations can be compared with those obtained 
from true in-situ observations of snow depth. This method also allows testing of the 
impact of potentially placing the AWS at locations with particular characteristics of 
snow depth accumulation.



Revuelto et al.

68 Cuadernos de Investigación Geográfica 46 (1), 2020, pp. 59-79

3.6. Simulated versus observed snow depths

During the entire study period, four simulations with almost daily outputs were 
obtained for the four TLS peak combinations described in Section 3.4 (we must 
remember that due to environmental conditions limiting visibility, time-lapse images 
were not available for about 20% of the days). The four simulations were calculated from 
equation (2), based on changes in snow depth over time observed at the AWS (SDobs(t)). 
Additionally, for each of the four simulations, the snow depth distributions on the TLS 
scanning dates were calculated using the four synthetic in-situ snow depth observations. 
A total of 20 combinations were generated for four different P ratios and five different 
in-situ snow observations (including both true and synthetic observations) for almost all 
TLS dates.

To assess the capability of the method described above the snow depth distribution 
maps simulated are evaluated against the snow depth observed with the TLS. The 
evaluation is based on the temporal changes in the coefficient of determination (R2) and 
the standardized Root Mean Squared Error (RMSE). To assess the overall performance of 
each of the 20 possible evaluations, the mean values of R2 and RMSE were computed for 
TLS dates on which snow was present on the AWS (i.e., dates on which it was possible 
to assess snow depth distribution for every evaluation).

4. Results

Simulations using the P ratio obtained from the average of the six yearly TLS peaks 
(All selection) showed better performance than the other P ratios in reproducing observed 
snow depth distributions (Table 2). This superior result was obtained for both AWS and 
synthetic snow depth observations. Moreover, optimal improvement was obtained using 
the O_30 synthetic observation. O_50 synthetic observations in Table 2 were not further 
analyzed, because O_30 and O_40 showed better simulation results. Although the above 
results showed that the model obtained from the six yearly TLS peaks was better at 
reproducing snow depth distribution, it was necessary conduct additional analyses of the 
temporal changes in R2 and RMSE metrics.

Table 2. Average RMSE and R2 for comparisons of observed and simulated snow depth 
distributions. Columns present the values obtained for the four P ratios derived from the 

combinations of TLS yearly peak accumulations for the different observations.

P ratio All Max Avg. Min

Obs. RMSE (m) R2 RMSE (m) R2 RMSE (m) R2 RMSE (m) R2

AWS obs 0.333 0.626 0.356 0.592 0.360 0.585 0.415 0.398

O_15 0.377 0.582 0.414 0.536 0.381 0.532 0.378 0.456

O_30 0.307 0.707 0.328 0.669 0.307 0.688 0.355 0.576

O_40 0.348 0.695 0.356 0.666 0.331 0.686 0.381 0.570

O_50 0.414 0.673 0.414 0.628 0.355 0.678 0.561 0.390
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Figures 2 and 3 depict encouraging results for TLS scanning dates with high snow 
accumulations. In contrast, dates with lower snow depths, generally at the end of the snow 
season, showed poorer results. For example, for the snow season with the lowest snow 
accumulation during the study period (2011-12), the calculations failed to reproduce the 
observed snow depth distributions on almost all dates. Only the fourth scanning date 
(02/05/2012, peak yearly observation) showed an R2 value >0.8 with the P ratio derived 
from the average minimum TLS peaks. A similar result was observed during the season 
with the second lowest snow accumulation (2016-17).

The snow depth distributions calculated for high (2012-13 and 2013-14) and average 
(2014-15 and 2015-16) snow seasons showed results similar to simulations determined 
using P ratios calculated from “All”, “Max” and “Average” combinations of TLS yearly 
peaks. However, these three combinations also failed to reproduce the snow depth 

Figure 2. Normalized RMSE calculated by comparing observed and simulated snow depth 
distributions maps on the 25 scanning dates. The upper panels show results obtained with AWS 

snow depth observations and the lower panels show results obtained with O_15, O_30 and O_40 
synthetic observations. Each panel includes results from the different TLS peak combinations. 

Vertical dashed lines depict the transition between snow seasons.
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distributions during the earliest seasonal TLS observations (scan number 17, 06/11/ 
2014), when average snow depth was low (0.22 m, Table 1), but a high percentage (87%) 
of the study area surface was covered with snow. During the two snow seasons with high 
snow accumulation, the TLS yearly peak combination that showed the best match with 
observed values was the “Max” combination. In contrast, during the average snow season, 
the best performance was obtained with either the “Average” or “All” TLS yearly peak 
combination. However, the differences among “All”, “Average” and “Max” TLS peak 
combinations during seasons of average and high snow accumulation were minor.

Synthetic observations allowed generating snow depth distribution for TLS 
scanning dates to be generated without the presence of snow on the AWS. Thus, O_30 
and O_40 synthetic observation graphs (Figs. 2 and 3) showed simulation performances 

Figure 3. R2 calculated by comparing observed and simulated snow depth distributions maps 
on the 25 scanning dates. The upper panels show results obtained with AWS snow depth 

observations and the lower panels show results obtained with O_15, O_30 and O_40 synthetic 
observations. Each panel includes results from the different TLS peak combinations. Vertical 

dashed lines depict the transition between snow seasons.
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that would not have been possible otherwise. Additionally, the results of simulated snow 
depth distributions with O_15, O_30 and O_40 were similar to those obtained with the 
AWS observations on dates with snow presence at the AWS location.

Figure 4 shows the spatial distribution of the differences between observed and 
simulated (observed-predicted) snow depths on three particular dates. This figure also 
shows the observed and simulated snow depth distributions. The predicted snow depth 
distribution was obtained with the O_30 synthetic observation and with the P ratio 
obtained from the combination of all TLS peak scans; this simulation showed better 
average results compared with to the other simulations (Table 2). Dates included in this 
figure were selected because they showed most of the study area snow covered and 
because they belonged to snow seasons that differed in snow climatic characteristics 
(i.e., low, high and average snow seasons).

On 14/04/2012, the Izas Experimental Catchment was almost entirely covered with 
snow, with an average snow depth of 0.56 m. This scan was obtained before the seasonal 
snow peak and thus is considered a scan during the period of accumulation. Differences 
between observed and simulated values indicated that the simulations underestimated areas 
of high snow accumulation, while overestimating areas of lower snow depths. Similar 

Figure 4. Observed (left panel) and simulated (central panel) snow depth distributions on 
three particular dates. The simulated snow depth maps were obtained with the O_30 synthetic 

observation and the P ratios obtained all TLS peak scans. Maps in the right panel represent the 
differences between the observed and simulated maps.
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behavior was observed on 12/05/2015, in which the snowpack was dominated by melting 
dynamics, as this scan was obtained after the seasonal snow peak, with an SCA of 58% and 
an average snow depth of 0.67 m). The snow differences map showed that areas of high 
snow accumulation were underestimated. The differences observed on 02/02/2014, a scan 
obtained before the annual snow peak (i.e., during the accumulation period) with a marked 
snow accumulation (SCA of 93% and average snow depth of 2.16 m), showed that the 
simulated snow depth distribution was overestimated in areas of high snow accumulation. 
Similar results were observed on scanning dates with equivalent characteristics (high and 
low snow accumulation during accumulation and melting periods, respectively). These 
findings show that, despite the ability of the methodology to reproduce snow depth 
distribution, deviations occur in areas of high and low snow accumulation.

5. Discussion

The methodology described in this work relies on the control of snowpack 
distribution by topography (Anderton et al., 2004; Erickson et al., 2005; Mott et al., 
2013). Based on the inter-annual consistency of snow topographic control (Sturm and 
Wagner, 2010; Revuelto et al., 2014a), we developed a simple simulation procedure 
enabling the generation of small scale snow depth distribution maps from observations 
automatically obtained in remote mountain areas. This method requires knowledge of 
snow depth distribution on particular dates during different snow seasons. The snow 
depth distribution within the study area on any date can be derived from information 
on snow cover disposition obtained from georectified time-lapse photographs, in-situ 
observations of changes in snow depth and P(x,y) ratios derived from TLS observations 
at peak annual snow accumulation. Although the simulation procedure is quite simple, 
it is based on two important premises: (i) when the study area is entirely covered, ratios 
remain constant and (ii) when the study area is partially snow covered, P(x,y) ratio can 
be rescaled to the original interval (0,1] for the snow covered area, and forced to zero for 
pixels not snow covered (PSCA=0(x,y)=0).

One major limitation of the method described here is that it requires that snow be present 
at the location of the AWS when some areas of the catchment are snow covered. Thus, a 
quotidian in-situ observation of snow depth within the study area is needed to generate 
daily snow depth distributions. This approach has important constraints if snow is absent 
for long periods of time from the location of the in-situ snow depth observations. This was 
the case for seven of the 25 evaluation scanning dates during the study period. In light of 
this important limitation for testing simulation results, a method generating synthetic snow 
depth observations was introduced. Synthetic observations were defined as the average 
snow depths observed on grid cells belonging to an interval of P ratios on TLS acquisition 
dates. These synthetic observations enabled the generation of snow depth distributions for 
dates that otherwise would not have been possible. Moreover, simulated values obtained 
with synthetic observations showed similar performances with values obtained from snow 
depth observations at the AWS. Taken together, these findings emphasize the importance of 
selecting an appropriate location for the AWS. If in-situ snow depth at the Izas Experimental 
Catchment had been measured in an area with other topographic characteristics (location 
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favoring snow accumulation), reconstruction for a longer period would have been possible. 
Moreover choosing one or several locations for in-situ snow depth observations opens new 
possibilities for the methodology presented in this study. For example, different weights 
may be assigned depending on the time of the snow season or the snow covered area of the 
catchment to different in-situ snow depth observations. This opens new insights into the 
methodology because designing an experimental site with in-situ snow depth observations 
at particular locations based on preexisting knowledge of topographic control may enhance 
the ability to determine snow distribution within a study area.

Four different combinations of TLS seasonal snow peak observations were tested to 
obtain P(x,y) ratios (designated “All”, “Max”, “Average” and “Min”). On most of the TLS 
scanning dates, results were similar for the “All”, “Max”, and “Average” combinations, 
with only minor differences in R2 and RMSE values. The “Min” ratios showed the 
poorest performance during high and average snow seasons and were not improved 
when compared with the other ratios during seasons of low snow accumulation (2011-
12 and 2016-17). These findings indicate that the topographic control of snow depth 
distribution is reduced during years of low snow accumulation and is not transferable 
to years with average or high snow accumulation. Although results on some particular 
dates were poorer for the “All” than for the “Average” and “Max” combinations, P ratios 
calculated using all TLS yearly snow peaks showed a superior average performance. 
Thus, average snow depth distributions generated by all TLS peak snow observations 
have the highest transferability among snow seasons.

On particular dates and during snow seasons with high and low snow accumulation, 
respectively the “Max” and “Min” TLS peak combinations yielded lower RMSE and 
higher R2 values. These findings indicate that snowpack distributions during years of high 
and low snow accumulation have particular characteristics that allow the establishment 
of different spatial patterns that are well reproduced on dates with similar snowpack 
accumulations. In contrast, these spatial patterns are not well reproduced when P ratios 
are calculated from TLS yearly peak combinations with different snow conditions. 
Nevertheless, the average of yearly TLS snow peaks enabled the reproduction of small 
scale snow distributions for snow seasons with marked differences in snow accumulation, 
supporting the applicability of the simple methodology developed in the present work

Regardless of the capability of the proposed methodology to determine snow 
depth distribution from in-situ snow depth observations and georectified time-lapse 
photography for snowpacks with non-negligible depth and/or extent, the methods 
introduced completely failed to reproduce the snow depth distribution for dates with very 
low snow accumulation. This was mainly observed following scans early in the snow 
season (i.e. 06/11/2014) and late in the snow season after long periods of melting (i.e. 
24/05/2012). At these times, the simulation approach is unable to generate the snowpack 
distribution observed. Moreover the methodology is unable to reproduce areas of high 
snow accumulation, underestimating snow accumulation during peak snow periods and 
overestimating snow depth during melting periods.

The results presented here are encouraging when compared with other simulation 
approaches (detailed snowpack models) with higher computational costs, methods that 
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must be combined with TLS observations to obtain similar or superior performance 
(Revuelto et al., 2016a) than the methodology presented here. Nevertheless, the 
simulation procedure presented here is applicable only to simulating small-scale 
snowpack dynamics (from 1 m to ~500 m), in study areas with a pre-existent database of 
snow distribution dynamics. In contrast, detailed snowpack models (Vionnet et al., 2012) 
have a broader applicability over large areas and only require meteorological forecasting. 
The application to heterogeneous mountain areas of numerical meteorological models 
may result in large deviations, especially when considering simulations with high spatial 
resolution (Vionnet et al., 2016), which could introduce large deviations in numerical 
snowpack simulation (Raleigh et al., 2015). One potential future line of research is to 
combine the methods described here with detailed snowpack models that do not take into 
account the small-scale topographic control of snow depth distribution. In this regard, 
ensemble data assimilation techniques as particle filter and kalman filter have produced 
encouraging results simulating the snow evolution (Slater and Clark, 2006; Charrois et 
al., 2016). Similarly, novel approaches are accurately reproducing snowpack dynamics 
incorporating point snow observations in fully distributed snow models (Winstral et al., 
2019). Linking these techniques with the approach described here, may overcome other 
limitations still present when simulating snow dynamics in heterogeneous mountain 
areas, as nowadays is topographic control on snow distribution (Revuelto et al., 2018).

The methodology we have introduced can be applied to any study area for which 
equivalent daily information is available, as long as the snow depth distribution around 
peak snow accumulation times is known for two snow seasons, along with average 
snow accumulation climatic characteristics. This method has great potential in remote 
mountain areas, in which snow distribution has been or could be acquired with UAVs 
and high spatial resolution satellite sensors (De Michele et al., 2016; Marti et al., 2016), 
along with AWS daily snow depth data, as satellite imagery can provide almost daily 
observations of snow presence or absence (Dumont and Gascoin, 2016). The systematic 
application of methods described here to remote mountain areas opens new insight on 
automatic monitoring systems of the snowpack not only for research objectives but also 
for protecting the society and infrastructures from mountain hazards as snow avalanches 
or floods. Thus future work is expected to implement and test methods described here in 
extended areas of the Pyrenees using UAV and satellites observations.

6. Conclusions

The present study was driven by the need to provide simple tools to the snow 
science community and researchers from other disciplines (e.g. plant ecologists, 
geomorphologists) that can be used to generate daily snow depth distribution maps from 
automatically acquired assessments of snow. Moreover, future work will amplify the 
monitoring area, combining TLS observations with UAV and satellite image acquisitions. 
The methodology developed in this study was tested in the Izas Experimental Catchment 
over six snow seasons. The simulation combines daily information on in-situ snow 
depth observations, snow covered extents from georectified time-lapse photography 
and snow depth distributions observed with a TLS on yearly snow peak accumulation. 
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Four different combinations of yearly peaks to generate the snow ratio among snow map 
grid cells were tested. Simulation results have been tested against 25 TLS observations 
available at the study site. The method is supported by the strong topographic control that 
terrain exerts on snowpack distribution in mountainous areas. The major findings of this 
research can be summarized as follows:

Combining time-lapse photographs with in-situ snow depth observations and a pre-
existent database of snow depth maps, following the methodology proposed here; allows 
simulating snow depth distribution on almost a daily basis in remote mountain areas.

1. Superior results are obtained when using information from a long lasting 
database of TLS observations (averaging all annual TLS peak observations). 
However, almost same results are obtained when data from average snow 
accumulation seasons are used in the algorithm.

2. Determining the snow depth distribution at peak accumulation times over two 
snow seasons with average snow climatic characteristics may be sufficient to 
generate daily snow depth maps with the methodology described here.

This method may be transferable to other study areas with similar experimental set-
ups and for which similar snowpack observations are available (daily snow distribution, 
AWS observations and 2-3 peak snow depth distribution maps). Use of this method can 
avoid the recursive application of time consuming techniques using expensive acquisition 
devices to generate detailed snow depth distribution maps in remote mountain areas that 
are difficult to access.
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