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ABSTRACT. Given the substantial variability of snow in complex mountainous terrain, a considerable challenge 
of coarse scale modeling applications is accurately representing the subgrid variability of snowpack properties. 
The snow depth coefficient of variation (CVds) is a useful metric for characterizing subgrid snow distributions but 
has not been well defined by a parameterization for mountainous environments. This study utilizes lidar-derived 
snow depth datasets spanning alpine to sub-alpine mountainous terrain in Colorado, USA to evaluate the variability 
of subgrid snow distributions within a grid size comparable to a 1000 m resolution common for hydrologic and 
land surface models. The subgrid CVds exhibited a wide range of variability across the 321 km2 study area (0.15 
to 2.74) and was significantly greater in alpine areas compared to subalpine areas. Mean snow depth was the 
dominant driver of CVds variability in both alpine and subalpine areas, as CVds decreased nonlinearly with 
increasing snow depths. This negative correlation is attributed to the static size of roughness elements (topography 
and canopy) that strongly influence seasonal snow variability. Subgrid CVds was also strongly related to 
topography and forest variables; important drivers of CVds included the subgrid variability of terrain exposure to 
wind in alpine areas and the mean and variability of forest metrics in subalpine areas. Two statistical models were 
developed (alpine and subalpine) for predicting subgrid CVds that show reasonable performance statistics. The 
methodology presented here can be used for characterizing the variability of CVds in snow-dominated mountainous 
regions, and highlights the utility of using lidar-derived snow datasets for improving model representations of 
snow processes. 

 

Coeficiente de variación del espesor de la nieve a escala de subcuadrícula en áreas 
montañosas alpinas y subalpinas 
 

RESUMEN. Dada la variabilidad de la nieve en áreas de montaña complejas, un reto importante de las 
aplicaciones de modelado a gran escala es representar con precisión la variabilidad de las propiedades de la capa 
de nieve a escala de subcuadrícula. El coeficiente de variación (CVds) del espesor de la nieve es una medida útil 
para caracterizar la distribución de la nieve en subcuadrículas, pero no ha sido bien definido mediante una 
parametrización para entornos montañosos. Este estudio utiliza datos de espesor de la nieve derivados de LIDAR 
en áreas montañosas alpinas y subalpinas de Colorado, EE. UU. La finalidad es evaluar la variabilidad de la 
distribución de la nieve a escala de subcuadrícula dentro de un tamaño de cuadrícula de una resolución de 1000 m 
habitual para modelos hidrológicos y de superficie del terreno. Los CVds de la subcuadrícula mostraron un amplio 
rango de variabilidad en el área de estudio de 321 km2 (0,15 a 2,74) y fueron significativamente mayores en las 
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áreas alpinas en comparación con las áreas subalpinas. El espesor medio de la nieve fue el factor determinante de 
la variabilidad del CVds tanto en áreas alpinas como subalpinas, ya que el CVds disminuyó de forma no lineal con 
el incremento del espesor de la nieve. Esta correlación negativa se atribuye al tamaño estático de los elementos 
rugosos (topografía y dosel) que influyen fuertemente en la variabilidad estacional de la nieve. El CVds de la 
subcuadrícula también estuvo muy relacionado con la topografía y las variables forestales. Los controladores 
determinantes del CVds fueron la variabilidad a escala de subcuadrícula de la exposición del terreno al viento en 
áreas alpinas y la media y variabilidad de las métricas forestales en áreas subalpinas. Se desarrollaron dos modelos 
estadísticos (alpino y subalpino) para predecir el CVds a escala de subcuadrícula que muestran estadísticamente 
rendimientos razonables. La metodología presentada aquí puede ser utilizada para caracterizar la variabilidad de 
CVds en regiones montañosas dominadas por la nieve, y subraya la utilidad de usar conjuntos de datos de nieve 
derivados de LIDAR para mejorar las representaciones de modelos de procesos de nieve. 

 

Key words: Snow distribution, subgrid variability, coefficient of variation, lidar, modeling. 

Palabras clave: Distribución de la nieve, variabilidad de la subcuadrícula, coeficiente de variación, lidar, modelos. 

 

Received: 9 December 2020 

Accepted: 19 April 2021 

 

Corresponding author: Steven R. Fassnacht. ESS-Watershed Science, Colorado State University. E-mail address: 
steven.fassnacht@colostate.edu 

 

 

1. Introduction 

Snow plays an important role in hydrological, ecological, and atmospheric processes within 
much of the Earth System, and for this reason, considerable research has focused on understanding the 
spatial and temporal distribution of snow depth (ds) and snow water equivalent (SWE) across the 
landscape (Clark et al., 2011). Snowpacks tend to exhibit substantial spatiotemporal variability (López-
Moreno et al., 2015) that is shaped by processes at varying spatial scales (Blöschl, 1999). The variability 
of the snowpack through space and time at a given scale of interest is often driven by meteorology and 
its interactions with topography and forest features as well as land-cover changes from forest disturbance 
and deforestation (Berris and Harr, 1987). Mountainous areas, which often accumulate large seasonal 
snowpacks, generally exhibit a high range of snow variability because of these effects (Sturm et al., 
1995). Given that this variability occurs over relatively short distances (Fassnacht and Deems, 2006; 
López-Moreno et al., 2011), accurately modeling the distribution of snow in mountainous areas requires 
a detailed understanding of the characteristics of snow variability at the model scale of interest (Trujillo 
and Lehning, 2015). 

An important challenge of physically-based modeling is often the ability to represent subgrid 
processes, or the spatial variability of critical input parameters (Seyfried and Wilcox, 1995). Accurate 
representation of subgrid snow distribution is critical for reliably simulating energy and mass exchanges 
between the land and atmosphere in snow-covered regions (Liston, 1999), yet various studies have 
highlighted a deficiency with this representation in hydrologic and land-surface models (Pomeroy et al., 
1998; Slater et al., 2001; Liston, 2004; Clark et al., 2011; Liston and Hiemstra, 2011). Liston (2004) 
presented an approach of effectively representing subgrid snow distributions in coarse-scale models by 
using a lognormal probability density function and an assigned coefficient of variation (CV). This 
approach only requires an estimation of the CV parameter (i.e. standard deviation divided by the mean), 
which has generally been estimated from field data and is a measure of snow variability that allows for 
comparisons that are independent of the amount of snow accumulation. Representative values of the CV 
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of snow water equivalent (CVSWE) and snow depth (CVds) have been published by many field studies 
(refer to Table 1 and Figure 2 from Clark et al., 2011) and have been summarized based on vegetation 
and landform type (Pomeroy et al., 1998) and classified globally, based on air temperature, topography, 
and wind speed regimes (Liston, 2004). However, the range of published CVSWE and CVds in complex 
mountainous terrain (i.e. the mountain snow class from Sturm et al., 1995) is quite variable and a 
parameterization has not been well defined.   

The recent developments of snow depth mapping capabilities from ground-based and airborne 
lidar (Deems et al., 2013) as well as digital photogrammetry (Bühler et al., 2015; Nolan et al., 2015] 
have provided a high definition view of snow depth distributions, albeit at fixed locations in space and 
time, that have not been historically available by traditional field measurements. These detailed snow 
depth datasets have aided in an improved understanding of the scaling properties of snow distributions 
(Deems et al., 2006; Trujillo et al., 2007), the temporal evolution of snow distributions (Grünewald et 
al., 2010; López-Moreno et al., 2015), the relation of snow depth with topography (Grünewald et al., 
2013; Kirchner et al., 2014; Revuelto et al., 2014) and canopy (Broxton et al., 2015; Revuelto et al., 
2015; Zheng et al., 2016) characteristics, as well as the nature of fine scale subgrid variability of snow 
depth (López-Moreno et al., 2015). Grünewald et al. (2013) present a novel study in which lidar-derived 
snow depth datasets are aggregated to coarse scale grids to evaluate the drivers of snow distribution at 
the catchment scale. Evaluations of lidar snow depth datasets within coarser scale grid resolutions can 
be analogous to the grid resolution of many modeling applications, thus lidar-derived snow datasets 
have potential to serve as an important tool for evaluating the representation of subgrid snow 
distributions within physically-based models.   

In this study, we evaluate the snow depth coefficient of variation (CVds) as a metric of subgrid 
snow variability within complex mountainous terrain spanning alpine to sub-alpine land covers in north-
central Colorado, U.S.A. We evaluate CVds at a grid resolution comparable to 1000 m resolution of 
hydrologic and land surface models. The objectives of this research were to (1) determine the range of 
CVds values that are observed within varying grid resolutions throughout the study area, (2) evaluate the 
effects of mean snow depth, forest, and terrain characteristics on subgrid CVds, and (3) develop a 
methodology for characterizing CVds within complex mountainous terrain. This research aims to help 
advance understanding of the variability of subgrid snow distributions, and inform more accurate 
representations of subgrid snow variability that can be used within physically-based models.  

 

2. Methods 

2.1. Site description 

This research was conducted in the Front Range Mountains of north-central Colorado, located 
in the western United States (Fig. 1). Spatial lidar datasets collected by the Boulder Creek Critical Zone 
Observatory (CZO) (http://criticalzone.org/boulder/, accessed 17 April 2016) were investigated in this 
study. The study area ranges in elevation from 2190 m to 4117 m and is dominated by of ponderosa pine 
(Pinus ponderosa) and lodgepole pine (Pinus contorta) forests at lower elevations; Engelmann spruce 
(Picea engelmannii) and subalpine fir (Abies lasiocarpa) forests at higher elevations, and alpine tundra 
at the highest elevations (Fig. 1). The mean winter (1 October to 1 May) precipitation and temperature 
for water years 2006-2010 at the Niwot SNOTEL site (3021 m; Fig. 1) is 452 mm and 2.7°C (Harpold 
et al., 2014). The mountainous terrain in this region is complex, varying from gentle topography at lower 
elevations to steep and rugged slopes closer to the Continental Divide. The majority of the study area 
has a southeastern aspect and is located on the eastern side of the Continental Divide (Fig. 1). The Front 
Range Mountains are characterized by a continental seasonal snowpack (Trujillo and Molotch, 2014), 
with the persistent snow zone at elevations greater than 3050 m (Richer et al., 2013), generally 
exhibiting peak snow accumulation during the springtime months of April and May each year. 
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Figure 1. Map of the Boulder Creek CZO study area located within the Front Range Mountains of northern 
Colorado, USA. NRCS SNOTEL sites in the region are shown in blue (sites greater than 3000 m elevation) 
and red (sites less than 3000 m elevation). The extent of the snow-covered lidar collection on 05 May 2010 
(20 May 2010) is shown in orange (red). The 500 m resolution study grids (n = 642) are shown in gray. The 

blue rectangle highlights the area of close up shown in Figure 5. 

 

2.2. Spatial datasets  

This study uses the publicly available lidar-derived snow depth (ds), elevation (z), and vegetation 
height (VH) raster datasets (1 m resolution) from the Boulder Creek CZO 
(ftp://snowserver.colorado.edu/pub/WesternCZO_LiDAR_data, accessed 27 August 2015) that are 
described in detail by Harpold et al. (2014). Airborne lidar campaigns were completed during snow-
covered (May 2010) and snow free (August 2010) periods across the study area and lidar surfaces were 
differenced to derive ds (Harpold et al., 2014). The snow-covered lidar returns were collected on two 
dates, 05 May 2010 and 20 May 2010, and the combined snow-covered lidar extent is 321 km2 (Fig. 1). 
A comparison of the lidar ds dataset to in situ ds sensors within research catchments in the Boulder Creek 
CZO showed a Root Mean Squared Error (RMSE) of 27 cm (44% relative to lidar catchment mean) and 
7 cm (117% relative to lidar catchment mean) at the Como Creek catchment (16 sensors) and Gordon 
Gulch catchment (5 sensors), respectively (Harpold et al., 2014). 

The lidar-derived digital elevation model (DEM) was resampled from a 1 m to a 10 m resolution 
for representation of the resolution of commonly available DEMs (USGS National Elevation Dataset, 
http://ned.usgs.gov) and was subsequently used to derive terrain variables for each 10 m cell that have 
been shown to influence ds distributions (Elder et al., 1998; Winstral et al., 2002; Erickson et al., 2005; 
Kerr et al., 2013; Revuelto et al., 2014) using a Geographic Information System (GIS). Surface slope 
(S) was calculated by fitting a plane to a 3 x 3 cell window around each DEM cell. Winter clear-sky 
incoming solar radiation (Qsw↓) was determined using the Area Solar Radiation tool in ArcGIS, which 
calculates mean incoming solar radiation for clear-sky conditions across a DEM surface for a specified 
time interval based on solar zenith angle and terrain shading. The time interval used for the calculation 
of Qsw↓ was 01 October through 01 May. Aspect was not considered because it was highly correlated 
with Qsw↓. Maximum upwind slope (Sx) (Winstral et al., 2002), which can be used as a measure of the 
exposure to or sheltering from wind, was calculated for each cell as: 
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where α is the azimuth of the search direction, dmax is the maximum distance for the search direction, 
z is elevation, and (xv, yv) are all cells along the vector defined by α and dmax. Given the prevailing 
westerly winds within the study area (Winstral et al., 2002; Erickson et al., 2005], an average Sx was 
calculated for a dmax of 200 m and a range of α from 240° to 300° at 5° increments (Molotch et al., 
2005). Topographic position index (TPI) (Weiss, 2001), which is a measure of the relative position of 
the cell to surrounding terrain, was calculated for each cell as: 

zzTPI −= 0  (2) 
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where z0 is the elevation of the cell and z  is the average elevation of the surrounding cells within a 
specified cell window (R). TPI was calculated for 3 x 3 (i.e. 30 m resolution), 11 x 11, and 21 x 21 
windows around each cell.  Additionally, a 30 m resolution 2011 canopy density (CD) dataset was 
downloaded for the study area (http://www.mrlc.gov/nlcd2011.php, accessed 04 December 2015). 

 

2.3. Aggregation of study grids 

Operational snow models (Carroll et al., 2006] often have a 1000 m horizontal grid resolution 
and snow representations within land surface models (Slater et al., 2001) have generally been designed 
for a coarser resolution (Yang et al., 1997) but are being developed to operate at finer scales (Kumar et 
al., 2006; Wood et al., 2011; Bierkens et al., 2015). This study attempts to evaluate the subgrid 
variability of ds at a comparable grid resolution to this 1000 m model grid size. Therefore, the subgrid 
variability of ds within study grids of 100 m, 200 m, 300 m, 400 m, 500 m, 750 m, and 1000 m resolutions 
was evaluated. For example, subgrid statistics for each 500 m study grid (with 100% ds coverage) were 
calculated based on 250000 lidar-derived ds cells. The goal of this was to identify an appropriate grid 
size for evaluation that exhibited similar characteristics of snow variability to the 1000 m resolution 
grids, but maximized the number of grids available for analysis within the study area. At least 80% 
coverage of each study grid by the lidar ds datasets was required, and the ds dataset with the greatest 
coverage was utilized for cases of the overlapping snow-covered lidar datasets (Fig. 1). When the 05 
May 2010 and 20 May 2010 lidar ds datasets were overlapping and both datasets had 100% study grid 
coverage, the 05 May 2010 dataset was used. 

For each study grid, the mean and standard deviation (σ) of ds were determined and used to 
calculate CVds. The mean and standard deviation of each of the terrain and canopy variables outlined 
above were also calculated for each study grid. A categorical variable representing ecosystem type was 
also determined for each study grid. The alpine ecosystem type was assigned to study grids that had a 
mean elevation greater than 3300 m and a mean VH less than 0.5 m, while the remaining study grids 
were assigned to the subalpine ecosystem type; treeline elevation in this area generally varies between 
3400 m and 3700 m (Suding et al., 2015). Lastly, only study grids with a mean elevation greater than 
3000 m (i.e. the persistent snow zone) were evaluated in this study. Table 1 provides a list of all variables 
used in this study.  

 

Table 1. Symbols of variables and metrics used in this study. 

Symbol Variable 
CVds  snow depth coefficient of variation  
ds snow depth 
σds standard deviation of snow depth 
VH vegetation height  



Sexstone et al. 

84 Cuadernos de Investigación Geográfica, 48 (1), 2022. pp. 79-96 

σVH standard deviation of vegetation height  
CD canopy density 
σCD standard deviation of canopy density 
z elevation 
σz standard deviation of elevation 
S surface slope  
σS standard deviation of surface slope 
Qsw↓ winter clear-sky incoming solar radiation  
σQsw↓ standard deviation of winter clear-sky incoming solar radiation  
Sx maximum upwind slope 
σSx standard deviation of maximum upwind slope  
TPI topographic position index 
σTPI standard deviation of topographic position index  

 

2.4. Statistical analysis 

Pairwise relations between CVds and ds, terrain variables and vegetation variables were explored 
for both alpine and subalpine study grids to evaluate drivers of subgrid ds variability. CVds was expected 
to have a strong nonlinear relation with ds (Fassnacht and Hultstrand, 2015); therefore, this relation was 
detrended for both the alpine and subalpine study grids, and residuals were used to evaluate further 
terrain and vegetation effects on CVds using Pearson’s r coefficient. Additionally, multiple linear 
regression models (refer to Table 3 for general model equation) were developed to predict CVds for both 
alpine and subalpine study grids based on the variables presented in Table 1. Variables included in the 
models were selected by an all-subsets regression procedure in which both Mallows’ Cp (Mallows, 1973) 
and Akaike information criterion (AIC) (Akaike, 1974) were used as a measure of relative goodness of 
fit of the models (Sexstone and Fassnacht, 2014). Final independent variables within the models were 
required to be statistically significant (p value < 0.05) and not exhibit multicollinearity. Multicollinearity 
was defined as model parameters exhibiting a variance inflation factor greater than 2. Given that a non-
normal distribution of snow depth (Liston, 2004) and other terrain and vegetation variables was 
expected, natural log and square root transformations of model variables (Table 1) were explored. Model 
diagnostics of residuals were used to ensure the model assumptions of normality, linearity, and 
homoscedasticity. Model performance was evaluated using the Nash-Sutcliffe efficiency (NSE) and 
RMSE. Additionally, model verification was assessed using a 10-fold cross-verification procedure 
which runs 10 iterations of removing a randomly-selected 10 percent of the dataset, fitting the regression 
to the remainder of the data, and subsequently comparing modeled values to the independent 
observations that were removed. 

 

3. Results 

3.1. Snowpack conditions 

In a hypothetical uniform snowmelt scenario (Egli and Jonas, 2009), the subgrid mean ds is 
expected to decrease faster than the σds, thus the CVds will increase without a corresponding increase in 
subgrid snow variability (Winstral and Marks, 2014). Therefore, in this study, an evaluation of the 
snowpack conditions was important for assessing if the subgrid CVds may have been influenced by a 
melting snowpack. SWE data from nine Natural Resources Conservation Service (NRCS) SNOTEL 
stations located in the Front Range Mountains of northern Colorado (Fig. 1) were evaluated to assess 
snowpack conditions. A snowmelt event occurred across the study area on 10 April 2010 (Fig. 2a) that 
caused considerable snowmelt at stations below an elevation of 3000 m and a loss of 10% of peak SWE 
on average at stations above 3000 m. Following this snowmelt event, substantial snow accumulation 
continued at SNOTEL stations above 3000 m until 17 May 2010, when the onset of snowmelt began 



Subgrid snow depth coefficient of variation spanning alpine to sub-alpine mountainous terrain 

Cuadernos de Investigación Geográfica, 48 (1), 2022. pp. 79-96 85 

(Fig. 2a). A plot of σds versus mean ds among the SNOTEL stations highlights the hysteretic dynamics 
of accumulation and melt across the region (Egli and Jonas, 2009), and confirms that the lidar data were 
collected prior to and at the beginning of snowmelt across the study area (Fig. 2b). Given that the lidar-
derived snow depth was collected before substantial snowmelt had occurred within the persistent snow 
zone, we are confident that the subgrid CVds evaluated in this study is representative of snow variability 
at peak snow accumulation in this region. 

 

 

Figure 2. Snow water equivalent (SWE) data from nine NRCS SNOTEL sites within the region of the study 
area displayed as (a) niveographs showing snow accumulation and snowmelt throughout water year 2010 

with the timing of 05 May 2010 and 20 May 2010 lidar flights plotted as vertical dashed lines and (b) a 
scatter plot of the standard deviation of SWE versus mean SWE from the SNOTEL sites highlighting the 

hysteretic dynamics of snow accumulation and snowmelt across the region based on nine SNOTEL stations 
(Egli and Jonas, 2009). 

 

3.2. Subgrid snow depth variability 

Snow depth CV (CVds) and σds were consistently greater in the alpine versus subalpine at each 
of the varying grid resolutions (Fig. 3). The mean CVds across the study grids was generally consistent 
with changes in grid resolution; however, the standard deviation of CVds decreased with increasing grid 
resolution and stabilized around a 500 m grid size. The mean σds across the study grids tended to increase 
with increasing grid size for all study grids, but stabilized around 400 m for subalpine study grids only. 
The 500 m resolution study grids (n = 642) were chosen for analysis in this study (Fig. 1) and is believed 
to be representative of the subgrid snow variability at the 1000 m resolution. 

The median ds, σds, and CVds across all study grids (500 m resolution) was equal to 1.27 m, 
0.88 m, and 0.74, respectively, and subgrid CVds ranged from 0.15 to 2.74 across the study area. The 
variability of CVds collected on 05 May 2010 (n = 219 study grids) and 20 May 2010 (n = 423 study 
grids) (Fig. 1) was similar, with the 05 May grids exhibiting a slightly smaller CVds (median = 0.64) than 
the 20 May grids (median = 0.81). Statistically significant differences (p value < 0.001) between the 
alpine and subalpine study grids were observed for ds, σds, and CVds by the nonparametric Mann-Whitney 
test (Fig. 4). The alpine study grids exhibited a greater mean and range of snow accumulation and 
variability than the subalpine study grids. The range of CVds from the 10th to the 90th percentiles within 
the alpine and subalpine study grids was equal to 0.61 to 1.57 and 0.30 to 0.98, respectively. Figure 5 
highlights the abrupt change of subgrid snow depth variability characteristics observed in a transition 
from the subalpine to alpine ecosystem; the forest structure and terrain characteristics appears to exert a 
strong influence on subgrid CVds and these relations were investigated further. 

 



Sexstone et al. 

86 Cuadernos de Investigación Geográfica, 48 (1), 2022. pp. 79-96 

 

Figure 3. Mean subgrid (a) CVds and (b) σds across the study area plotted versus study grid resolution for 
alpine (red) and subalpine (blue) study grids. Error bars represent the standard deviation of CVds and σds 

across the study area. 

 

 
Figure 4. Boxplots showing the outliers (black circles), 10th and 90th percentiles (whiskers), 25th and 75th 

percentiles (box) and median (black horizontal line) for the (a) ds, (b) σds, and (c) CVds of the alpine and 
subalpine study grids (500 m resolution). 
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Figure 5. Close up map of selected study grids showing the distribution of (a) vegetation height and 
ecosystem type, (b) snow depth, and (c) subgrid CVds value. Area of close up is highlighted in Figure 1. 

 

3.3. Relation of subgrid snow depth variability with terrain and forest characteristics 

A statistically significant linear correlation (Pearson’s r coefficient; p value < 0.05) between 
CVds and ds was observed to be -0.60 and -0.45 for the alpine and subalpine study grids, respectively 
(Table 2). However, further evaluation showed this relation to be nonlinear and best described by a 
power function (Fig. 6). This function suggests that CVds exhibits a systematic decrease with increasing 
ds and suggests that relative subgrid snow variability is importantly related to the total snow 
accumulation of a given year. The power relation between CVds and ds was greatly improved when split 
between alpine and subalpine study grids, as a CVds for a corresponding ds tended to be greater for alpine 
versus subalpine study grids (Fig. 6). The power functions (CVds versus ds) were detrended (i.e. removing 
the influence of ds on CVds) and the residuals of the functions were compared to terrain and forest 
characteristics (Table 2). The alpine study grids were most positively correlated with σSx suggesting that 
the variability of wind exposure and sheltering and thus wind redistribution within a study grid is a 
strong control on CVds. The subalpine study grids were most negatively correlated with the VH and CD 
variables suggesting that forest structure is important driver of subalpine subgrid variability with 
increases in forest canopy coverage generally reducing CVds. 
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Table 2. Bivariate correlations (Pearson’s r coefficient) between snow depth coefficient of variation (CVds) and 
the mean and standard deviation (σ) of snow depth (ds), vegetation height (VH), canopy density (CD), elevation 
(z), slope (S), winter clear-sky incoming solar radiation (Qsw↓), maximum upwind slope (Sx), and topographic 
position index (TPI) for both alpine and subalpine study grids. Correlations are also shown for the residuals 

from the detrended nonlinear relation of CVds and ds. Bold values represent statistical significance (p value < 
0.05) 

 
CVds (alpine) CVds (subalpine) 

CVds (alpine) CVds (subalpine) 
 ds residuals ds residuals 

ds -0.60 -0.45 --- --- 
σds -0.06 0.25 --- --- 
VH -0.38 -0.48 -0.28 -0.71 
σVH -0.38 -0.57 -0.24 -0.59 
CD -0.06 -0.32 -0.21 -0.64 
σCD -0.06 0.30 -0.26 0.50 

z 0.17 -0.22 0.32 0.18 
σz -0.07 0.09 0.16 0.29 
S -0.03 0.06 0.25 0.28 
σS -0.06 0.13 0.37 0.38 

Qsw↓ 0.10 -0.02 -0.07 -0.17 
σQsw↓ -0.07 -0.03 0.21 0.21 

Sx 0.02 0.08 0.29 0.09 
σSx 0.07 0.10 0.43 0.28 
TPI 0.28 0.11 0.15 0.04 
σTPI -0.09 0.09 0.29 0.33 

 

 
Figure 6. Nonlinear relation of CVds and ds for alpine (red) and subalpine (blue) study grids (500 m 

resolution). 

 

3.4. Statistical models 

We evaluated a range of independent variables to be included within the multiple linear 
regression models (refer to variables in Table 1). However, to make the model analysis most transferable 
to other mountainous environments, some of the variables were deemed unsuitable and excluded from 
model testing. For example, mean z was not included in model testing as it was believed to be a site-
specific variable that may not have been transferable to independent data. Additionally, VH and σVH 
were not tested despite their strong correlation with subalpine CVds as these variables are not commonly 
available as spatial datasets, such as the USGS National Land Cover Database 
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(http://www.mrlc.gov/index.php) land cover type and canopy density products. Variables that were 
shown to significantly improve model diagnostics and performance and suggested relations with CVds 
that make physical sense were included in the final models. The multiple linear regression models 
developed for predicting CVds in both alpine and subalpine seasonal snowpacks are presented in Table 
3. Variable transformations were necessary to CVds and ds in both models and to σSx in the alpine model 
and CD in the subalpine model to account for the nonlinearity of these datasets (Table 3). Snow depth 
exhibited the greatest explanatory ability within both the alpine and subalpine models, with standardized 
regression coefficients equal to -0.92 and -0.95, respectively (not shown). Standardized regression 
coefficients of σSx and CD were equal to 0.50 and -0.72 for the alpine and subalpine models, respectively, 
and both showed the second strongest explanatory power in their respective models. For the model 
calibration dataset (10-fold cross-verification dataset), the alpine model had a NSE of 0.66 (0.65) and 
RMSE of 0.24 (0.24) while the subalpine model had an NSE of 0.79 (0.78) and RMSE of 0.12 (0.13) 
(Fig. 7). A total NSE of 0.81 was calculated for the entire dataset based on predictions from both models. 
These performance statistics suggest that the models perform reasonably well predicting CVds and cross-
verification suggests the model may be transferable to independent data within the bounds of the original 
dataset. 

 

Table 3. Multiple linear regression equation variables and coefficients of the alpine and subalpine CVds models. 
The multiple linear regression is of the form: y=β0 + β1X1 + β2x2 +… + β nxn where y is the dependent variable, 

x1 through xn are n independent variables, β0 is the regression intercept, and β1 through βn are n regression 
coefficients. 

  Alpine model Subalpine model 
Y log(CVds) CVds

0.5 
β0 9.00E-03 8.45E-01 
β1 -1.02E+00 -2.84E-01 
x1 ds

0.5 log(ds) 
β2 1.00E-02 -9.79E-05 
x2 Sx CD2 
β3 3.42E-01 1.12E-02 
x3 log(σSx) σS 
β4 1.84E-03 --- 
x4 QSW↓ --- 

 

 
Figure 7. Modeled versus observed CVds for the alpine (red) and subalpine (blue) multiple linear regression 

models. 
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4. Discussion 

Based on an evaluation of CVds at a 500 m grid resolution, subgrid snow variability across a 
mountainous subalpine and alpine study area is shown to exhibit a wide range of spatial variation and 
be well correlated with ecosystem type, snow amount, as well as terrain characteristics and forest 
structure. Alpine CVds was most correlated with mean snow depth and the variability of exposure to 
wind while mean snow depth and canopy height and density were most correlated with CVds in subalpine 
areas. A statistical model for both alpine and subalpine ecosystems was able to reasonably predict 
subgrid CVds based on these relations and could be used to support improving model parameterizations 
of subgrid snow variability in mountainous terrain. 

The range of CVds observed over relatively small distances in this study (Fig. 5) highlights the 
importance of further characterizing the spatial variability of this parameter within mountainous terrain. 
The global classification of CVSWE defined by Liston (2004) performed well predicting the average 
conditions observed in this study. Liston (2004) define the CVSWE of mid-latitude mountainous forest 
(i.e. subalpine) as 0.60 and of mid-latitude treeless mountains (i.e. alpine) as 0.85, whereas this study 
found a median CVds of 0.55 for subalpine study grids and 1.05 for alpine study grids. However, the 
global classification was unable to adequately represent the range and variability of CVds across the 
study area (Fig. 4c), and the results presented herein further characterize the distribution and variability 
of CVds in mountainous terrain.   

Mean snow depth was the main driver of CVds variability across alpine and subalpine areas 
within the study area. As subgrid ds increased, the CVds decreased, which is a result that is consistent 
with previous studies at various spatial scales (Fassnacht and Deems, 2006; Fassnacht and Hultstrand, 
2015; López-Moreno et al., 2015). A positive correlation was observed between σds and ds in alpine and 
subalpine areas, which had a dampening effect on this overall negative correlation between the relative 
subgrid variability (CVds) with ds. The relative subgrid variability of ds likely decreases with increasing 
snow accumulation because of the consistent size of the roughness elements of terrain and canopy that 
drive snow variability; as ds increases, the relative influence of these terrain and canopy features tends 
to decrease (Fassnacht and Deems, 2006; López-Moreno et al., 2011; López-Moreno et al., 2015]. The 
range of CVds observed in this study (Fig. 4) is similar to previous studies conducted in mountainous 
mid-latitude forested and alpine areas [refer to Figure 2 from Clark et al., 2011 and references therein]. 
Future research could further investigate CVds and ds across different geographic regions and snow 
regimes as well as across multiple snow seasons and compare results to the functions presented in Figure 
6 to better understand the dynamics and consistency of this relation. An understanding of how the 
subgrid variability of snow depth for a given set of terrain and canopy elements scales between low and 
high snow years could be particularly important. 

Within the alpine study grids, the variability of the exposure/sheltering from wind (σSx) was an 
important driver of CVds. Study grids with the greatest σSx were generally positioned over large breaks 
in terrain. For example, a given study grid with a large σSx likely contained areas with both wind exposure 
(Sx < 0°) where snow accumulation is scoured by wind and sheltering from wind (Sx > 0°) where 
preferential deposition of wind transported snow occurs. Study grids with a consistent Sx showed a lower 
CVds with greater variability observed in sheltered grids than in exposed grids. Winstral et al. (2002) 
and many subsequent studies (Erickson et al., 2005; Molotch et al., 2005; Revuelto et al., 2014; McGrath 
et al., 2015) have highlighted this control of wind exposure on snow depth distribution in tree-less areas. 
The degree of importance of σSx for describing CVds is likely variable from year-to-year, and would be 
expected to be well correlated with observed wind speeds [Winstral and Marks, 2014]. However, in 
alpine areas where high wind speeds are ubiquitous, σSx is expected to be a consistently important driver 
of subgrid snow variability.  

Subgrid snow variability within subalpine study grids was well correlated with VH and CD. As 
mean study grid VH and CD increased, CVds tended to decrease. Forest structure has been shown by 
various studies to have a strong influence on snow variability because of a variety of physical process 
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interactions. Interception of snow (Hedstrom and Pomeroy, 1998; Suzuki and Nakai, 2008] and 
subsequent canopy sublimation (Montesi et al., 2004; Molotch et al., 2007), influences of trees on 
shortwave (Ellis and Pomeroy, 2007; Musselman et al., 2012) and longwave (Pomeroy et al., 2009; 
Yamazaki and Kondo, 1992) radiation dynamics, and the effect of trees on wind redistribution of snow 
(Hiemstra et al., 2006) can each drive snow accumulation and evolution in forested areas. Broxton et al. 
(2015) utilized lidar-derived snow depth datasets and showed that the variability of snow depth in 
subalpine forests tended to be greatest beneath the forest canopy and near the forest canopy edge and 
the least snow depth variability occurred in forested openings that were distant from the forest edge, 
relating to fetch and area contributing to snow deposition. Also, substantial differences in accumulated 
ds were observed between subcanopy areas and forest openings.  The increased CVds with decreasing VH 
and CD observed in this study can be explained by a greater occurrence of transitional areas between 
subcanopy areas and forest openings (i.e., forest edges) occurring in study grids with smaller mean VH 
and CD. Across the study area, subalpine forest openings that spanned an entire study grid were not 
present; therefore, study grids with consistent forest cover tended to exhibit the least subgrid snow 
variability.   

This study was limited by the spatial and temporal coverage of the lidar-derived snow datasets 
that were used (Fig. 1). Although the alpine and subalpine areas evaluated are representative of 
mountainous terrain in the region and snowpacks in this area are representative of the continental snow 
regime (Trujillo and Molotch, 2014), further analysis of subgrid snow variability across a greater 
geographic area and across other regions with differing snow regimes could improve the applicability 
of a CVds parameterization for snow distributions in mountains areas in general. Additionally, spatial 
patterns of snow variability have been shown to be temporally consistent from year-to-year (Erickson 
et al., 2005; Deems et al., 2008; Sturm and Wagner, 2010], but future studies with multiple years of 
lidar collection could help understand the inter-annual variability of CVds and the consistency of its 
driving variables (Fassnacht et al., 2012]. Of particular interest would be the temporal consistency of 
the relation between CVds and ds.   

This study evaluates the subgrid variability of ds, but SWE is the most fundamental snowpack 
variable of interest in land surface processes (Sturm et al., 2010). Snow depth and SWE have been shown 
by many studies to be well correlated (Jonas et al., 2009; Sturm et al., 2010; Sexstone and Fassnacht, 
2014), and the subgrid CV of these variables is expected to exhibit similar characteristics (Fassnacht and 
Hultstrand, 2015). We suggest that a parameterization of CVds could be sufficient for representing 
subgrid SWE variability, but further investigation into this hypothesis is needed. In order to directly 
investigate CVSWE from lidar-derived snow data in future studies, an estimation of snow density would 
be needed. Statistically-derived snow density models have been successfully developed over varying 
domain sizes for estimating SWE from ds (Jonas et al., 2009; Sturm et al., 2010; Sexstone and Fassnacht, 
2014), and these models make use of the fact that SWE and ds variability is much greater than the 
variability of snow density (Mizukami and Perica, 2008; Lopez-Moreno et al., 2013). 

The snow distributions and variability characteristics evaluated in this study were likely 
influenced by the occurrence of snowmelt conditions within the study area. Although substantial 
snowmelt had not occurred prior to data collection within the study grids (Figure 2), the mid-season 
melt events and onset of snowmelt may have caused an increase in CVds and this effect may have differed 
between the two dates of lidar-derived ds. López-Moreno et al. (2015) observed a sharp increase in CVds 
just following the onset of snowmelt yet a fairly consistent CVds for the remainder of snowmelt season. 
Future studies evaluating subgrid snow variability should investigate the intra-annual variability CVds to 
further understand the seasonal evolution of this parameter.  

The development of high-resolution snow depth mapping from lidar has provided a unique 
ability for detailed snapshot views of the spatial distribution of snow in complex mountains areas. 
Although some key advantages of these datasets are related to validating satellite-based remote sensing 
products and direct use within water resources forecasting, this study also suggests that lidar-derived 
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snow datasets can be an important tool for the improvement of snow representations within modeling 
applications. Future research should utilize lidar-derived snow datasets to directly evaluate the ability 
of physically-based models to represent snow distributions as well as to continue to improve the 
representation of subgrid variability of snow. Additionally, other key snow modeling questions such as 
how representative snow monitoring stations are of surrounding areas (Molotch and Bales, 2005; 
Meromy et al., 2013) could also be investigated further by lidar-derived snow datasets. Lastly, the 
analysis methods that have been developed in this study may also be useful in future studies for 
characterizing the subgrid variability of other variables that can be measured remotely at a fine scale 
through lidar or other measurement techniques. 

 

5. Conclusions 

This study outlines a methodology for utilizing lidar-derived snow datasets for investigating 
subgrid snow depth (ds) variability and potentially improving its representation within physically-based 
modeling applications. At fine grid resolutions, subgrid snow depth coefficient of variation (CVds) 
generally increased and its variability decreased with increasing grid resolution, while study grid CVds 
characteristics were similar among a range of coarser resolutions (from 500 m to 1000 m). Study grids 
(500 m resolution) exhibited a wide range of CVds across the study area (0.15 to 2.74) and subgrid ds 
variability was found to be greater in alpine areas than subalpine areas. Snow depth was the most 
important driver of CVds variability in both alpine and subalpine areas and a systematic nonlinear 
decrease in CVds with increasing ds was observed; the negative correlation between CVds and ds is 
attributed to the static size of roughness elements (terrain and canopy) that strongly influence seasonal 
snow variability. The variability of wind exposure in alpine areas as well as mean vegetation height and 
canopy density in subalpine areas were also found to be important drivers of study grid CVds. Two 
statistical models were developed (alpine and subalpine) for predicting subgrid CVds from mean ds and 
terrain/canopy features. They show reasonably good performance statistics and suggest this 
methodology can be used for characterizing CVds in snow-dominated mountainous areas. This research 
highlights the utility of using lidar-derived snow datasets for improving model representations of subgrid 
snow variability.    
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