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ABSTRACT. Coastal environments are characterized by their high dynamism, related to the interaction between
marine agents (winds, waves, currents, sea level changes) and continental forms and processes. The present article
summarizes the main morphodynamic characteristics of coasts and the resulting environments. Different
oscillations of the sea level are considered, depending on their amplitude and frequency: rapid eustatic fluctuations,
energetic tsunamis, storm waves and surges, tides and good weather wind waves. Coastal environments are
classified in low, sedimentary coasts, including beaches, dunes, barrier islands, lagoons, salt marshes and river
mouths, and high, rocky coasts. Management of coastal zones needs a deep knowledge of all the processes involved
at the littoral, especially at the local scale, since coastal processes vary rapidly alongshore. At present the integrated
coastal management intends to involve different socioeconomic sectors interested in the occupation and use of
coasts. Coastal management must include the adaptation of human activities to the natural processes and associated
coastal hazards and the protection of coastal values, both of natural and historical-cultural character. Public
administrations at different levels should consider the knowledge of the coastal processes at different scales and
their potential interaction with human activities in order to design laws and regulations accordingly.

La complejidad de estudiar las costas: de las formas y procesos a la gestion

RESUMEN. Los ambientes costeros se caracterizan por su gran dinamismo, relacionado con la interaccion entre
agentes marinos (viento, oleaje, corrientes, variaciones del nivel del mar) y formas y procesos continentales. El
presente articulo resume las principales caracteristicas morfodinamicas de las costas y los ambientes resultantes.
Se han considerado las diferentes oscilaciones del nivel del mar, dependiendo de su amplitud y frecuencia:
fluctuaciones eustaticas rapidas, tsunamis enérgicos, olas de temporal e inundaciones de marejada, mareas y oleaje
de viento de buen tiempo. Los ambientes costeros se han clasificado en costas bajas, sedimentarias, que incluyen
playas, dunas, islas-barrera, albuferas, marismas y desembocaduras fluviales, y costas altas, rocosas. La gestion
de zonas costeras necesita de un conocimiento profundo de todos los procesos involucrados en el litoral,
especialmente a escala local, ya que los procesos costeros varian rapidamente a lo largo de la linea de costa. En la
actualidad la gestion integrada de zonas costeras pretende involucrar a diferentes sectores socioecondémicos
interesados en la ocupacion y uso de la costa. La gestion costera debe incluir la adaptacion de las actividades
humanas a los procesos naturales y a los riesgos naturales asociados, asi como la proteccion de los valores de la
costa, tanto naturales como historico-culturales. Las administraciones publicas a distintos niveles deberian
considerar el conocimiento de los procesos costeros a diferentes escalas y su interaccion potencial con las
actividades humanas, de cara a disefar leyes y normativas de acuerdo con ellas.
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1. Introduction

As in any other natural morphogenetic system, the coast is the result of the action of a number
of processes acting on a given space, in this case of azonal nature, not strictly controlled by climate. The
main difference between coastal zones and other morphogenetic systems is the high energetic gradient
existing in a narrow band, where land and sea meet. Oceans spread out along all latitudes, climates and
geological situations, and this adds an additional level of complexity to coasts, since marine processes
can affect any kind of morphogenetic system reaching the coast. We can find rivers or glaciers arriving
to the coast, coastal karst, active oceanic volcanism, coastal deserts, etc. Any of all those systems, with
their specific processes, can interact with specific marine processes, a situation exclusive of coastal
environments. The result is a high casuistry, which produces great variability and multiplicity of coastal
types (Bird, 2010). Another typical characteristic of coasts is their high dynamism: different marine
agents (winds, waves, currents, sea level changes) interact with coastal materials to produce erosion,
transport and sedimentation of particles, dealing to rapid changes, perfectly perceptible by humans. A
corollary of this is the frequency of situations where natural coastal processes interact with human
occupations to produce damage (Morales, 2022).

All this complexity makes it difficult to classify coasts, especially when different spatial and
temporal scales are involved (Huggett, 2011; French ef al., 2016). Following Fairbridge (2004), a given
coast can be described by considering three main terms: coastal material exposed to marine agents,
coastal agents and their nature (erosive, constructive, physical, chemical, biological and their
geographical conditioning factors), and history (geological, climatic, eustatic, occupational evolution).
However, not always it is so simple, because sometimes it is very difficult to define where the continent
ends and where ocean begins. This is the case of low coasts and coastal wetlands periodically affected
by marine flooding, where sometimes they are clearly continental, while others they turn to be marine.
A number of classifications have been proposed to cope with this problem, but many of them are useless
when applied at a regional/local scale. Pérez Alberti (this issue) presents a new proposal of coastal
classification methodology, designed to be applied to any coastal type, based on the quantification of a
number of morphometric, topographic and morphodynamic variables. The method, applied to the
Galicia coast, results in a detailed inventory and mapping of that region, including different numeric
data, which allows grouping the high diversity of coasts into a number of types in a hierarchical manner.

An additional complication is the increasing concentration of human occupations and activities
at coastal zones. Only considering coastal zones of low elevation (< 10 m high), more than 600 million
people lived at the coast by 2000, and present trends indicate a growth of more than 50% in the following
30 years, to reach almost 900 million by 2030, especially on the less developed countries (Neumann et
al., 2015). This situation considerably increases the exposition of people, settlements and social and
economic activities to potentially dangerous marine processes, like flooding linked to the ongoing sea
level rise, storm surges, high energy waves, coastal erosion, etc. (Elko et al., 2014).
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The sustainability of coastal human occupations and activities is only possible with an adequate
adaptation to present natural processes acting on the coast and their future trends. This requires a deep
knowledge of the coastal environments, the natural agents and processes acting on them, their future
trends, the interaction between human activity and coastal processes, and the extreme potentially
dangerous events expected to occur in the future. All these complex topics constitute the aims of the
present research carried out in coasts, involving a high number of disciplines such as climate and weather
forecast, oceanography, coastal geology and geomorphology, coastal engineering, physical and human
geography at the coast, economy and population, urban and social sciences, among others.

The present contribution aims to present a succinct state-of-the-art of all those topics, mainly
under a morphodynamic scope applied to management. The exposition firstly presents the main agents
and processes acting on coasts, secondly the coastal environments and the most common techniques
used in their study, and finally a brief discussion about how all this information can strongly condition
future trends in coastal management.

2. Coastal processes

Coastal processes are mostly related to oscillations and changes of sea level, which fluctuates
on very different time scales. Fairbridge (1983) distinguished three-time scales of sea level change: 10°-
10° years (broad eustatic cycles), 10°-10° years (tectonoeustatic changes, Quaternary glaciations) and
short-term changes, from hours to 10° years, controlled by astronomical, meteorological, oceanographic
and climatic factors. The interest of sea level changes for coastal management is restricted to this third
set of scales (<1000 years of periodicity), and can be detailed into more specific processes, like those
presented in Figure 1. Obviously, there exist numerous superimpositions between different processes,
which produce interactions, counteractions and synergies. The following sections summarize the main
aspects of this set of processes.
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Figure 1. An example of relationships between sea level fluctuations and time scale of their actuation.
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2.1. Rapid eustatic fluctuations

They are commonly triggered by climate oscillations (like those related to the Little Ice Age;
Jevrejeva et al., 2014), or by rapid vertical movements mostly related to glacio-eustacy, isostacy and
tectonism in general (Morhange et al., 2012). Markers of past sea levels can be recognized both as
erosional forms on rocky coasts, or through sedimentary records (staircase marine terraces, sedimentary
infilling of coastal plains and salt marshes). The first case can be represented by terraced planation
surfaces, perched (Kelsey, 2015) or submerged tidal notches (Evelpidou ez al., 2012), or more complex
cliff profiles, with alternating bevelled and vertical stretches (Trenhaile, 1987), like those studied by
Rodriguez-Vidal et al. (2004) in the Gibraltar Rock and showed in Figure 2A; these authors sampled
and dated the different deposits associated with stepped erosive levels identified in the cliff, to obtain
the Late Quaternary relative sea level evolution of that coast; it consisted in a decreasing rate of sea level
fall as a consequence of the apparent reduction of tectonic rise of this portion of the Betic Orogen.
According to those authors, in recent times sea level trends seem to be lower than -0.005+0.01 mm/yr.
Figure 2B includes another example of cliff exhibiting a complex profile as a result of alternating
episodes of relative sea-level fall and cliff erosion/retreat in southern Spain.

Figure 2. Examples of past sea levels indicators. A and B: composite profiles in rocky cliffs including stepped
erosion elements due to relative sea level fluctuations; A, eastern side of the Gibraltar Rock; B, western side
of the Herradura Bay (Granada, South Spain). C: uplifted Holocene beach deposit (> 90 m above present sea
level, a.s.l.), due to glacio isostatic rebound, eastern Baltic coast of Sweden. D.: Molluscs accumulations as
indicators of former positions of relative sea level (+ 7 m a.s.l.) during historical times; Roman remains at
Pozzuoli, SW Italy.
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Tectonic uplifting trends during the Quaternary favoured the generation of terraced coastal
landscapes, including stepped erosion surfaces and raised beaches, often forming complex systems with
numerous staircase levels, like those of the southern Italian and Sicily coasts (Antonioli et al., 2006), or
the rasas and raised beaches developed along the northern Iberian coast (Flor and Flor-Blanco, 2014;
Lopez-Fernandez et al., 2020). In high-latitude regions, vertical movements are associated with isostatic
readjustments due to the retreat of the great ice caps after the last glaciation. Glacio-isostatic uplift in
such regions has produced numerous examples of Holocene raised beaches (Fig. 2C). The process is
still active and is responsible for the coastal progradation of sedimentary bodies (commonly beach
ridges) in many places of the northern regions (Hansen ef al., 2011; Nunn ef al., 2021).

In mid and low latitudes recent (Holocene and historical) sea level fluctuations are mostly
recorded in low, sedimentary coasts, where historical beach ridges, and boreholes excavated on
sedimentary aggradational plains and wetlands (lagoons, salt marshes), are used to reconstruct vertical
relative sea level changes. The ridge systems are studied by means of cartography, high-resolution
altimetry and dating (Hansen et al., 2011), while the latter are explored through boreholes where
different sources of palacoenvironmental information (pollen, foraminifera, geochemistry, mineralogy)
are combined to reconstruct palacogeographical coastal changes due to relative sea level oscillations.
Examples of combination of different sources of data for reconstructing recent sea level trends for the
western Mediterranean and the Gulf of Cadiz can be seen in Vacchi et al. (2016) and Caporizzo et al.
(2021).

Apart from erosional forms, like notches (Marriner et al., 2014), in recent, historical times, past
relative sea levels can be established through the analysis of markers on coastal archaeological remains
(Orru et al., 2014). Many examples exist along the Mediterranean coasts, due to the recent to present
tectonic vertical movements associated with the active collision between the Eurasian-African plates,
and also to a long history of coastal human occupation and urbanization all along the Mediterranean
shores, which produced an endless number of coastal archaeological sites. Perhaps the most famous and
spectacular markers of historical relative sea level oscillations are those of the coastal Roman ruins of
Pozzuoli, located in the Bay of Naples, Italy; the markers are represented by the accumulation of
Lithophaga burrows and marine organisms fixed on the Roman columns and other remains, presently
located several meters above mean sea level (Fig. 2D), and also by submerged Roman constructions
(Aucelli et al., 2019). The relative sea level rapid oscillations during Antiquity and Middle Ages are in
this case produced by the volcanic deformational activity of an underlying caldera (Morhange et al.,
2006).

If sea level fluctuations during the last millennia were usually lower than a few meters (Kemp
et al., 2011), at minor time scale climatic oscillations during the last centuries gave rise to subtle sea
level variations that can be reconstructed through geo-archaeological and historical techniques (Losada
et al., 2008), and quantified through the analysis of tide gauges, a method not exempt of uncertainties
(Marcos et al., 2003; Tsimplis et al., 2011). Historical tide gauge records are mainly available on the
northern hemisphere, due to the historical concentration and development of human settlements on the
coasts of Europe and North America. This situation gives valuable and detailed data about sea level
trends in that region of the Earth, but neglects other world regions, where existing data are very limited.
Tidal data are combined with geodetic data for the elaboration of sea level projections, usually by the
year 2100 (Vecchio et al., 2019). At a global scale, present rates of sea-level change are estimated after
applying different climate warming scenarios and geodetical models, always considering that sea level
trends are mostly controlled by ice sheet fluctuations (IPCC, 2013). However, this procedure introduces
important uncertainties and has been questioned by some researchers (Morner, 2019). Far for seeking
after a global sea level curve and trend, which is by no means non-representative, present research aims
to establish local/regional sea level trends (Cronin, 2012), in order to predict the associated coastal
changes and their consequences to human occupations and activities at the coast.
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Traditionally, it is considered that during a period of sea level rise, like the one presently
prevailing in most world coasts due to global warming, sandy beaches will erode and retreat: The
increase in the accommodation space prevents sediment return after storm erosion episodes, leading to
sedimentary deficit at the shoreface. This relation was expressed mathematically by the Danish civil
engineer P.M. Bruun, who proposed a quite simple rule to predict shoreline erosion due to sea level rise
(Bruun, 1962), although it received numerous criticism due to a number of arguments, like the absence
of geological or oceanographic basis (Cooper and Pilkey, 2004); however, it is still applied due to its
simplicity and the absence of an alternative approach.

Cooper (this issue) analyses the response of sandy beaches to sea-level rise, concluding the
necessity of enough space behind beaches in order to let them migrate inland. If this possibility exists,
then beaches can adapt and face sea level rise maintaining their natural properties. Obviously, human-
transformed and artificial beaches usually lack such characteristics, especially those landward limited
by rigid structures, which cannot migrate and are condemned to erosion and extinction.

Other coastal sedimentary environments, like salt marshes, can present a comparable behaviour,
although bearing a higher vulnerability. If they receive enough sediment supply and include sufficient
space inland to migrate, usually inside wide estuaries and bays, they can face a sea level rise if it occurs
at not very high rates (Sampath et al., 2011; Best et al., 2018). Other conditions, like accelerated sea
level rise, or decrease in the sedimentary supply to estuaries, however, may progressively submerge salt
marshes until their permanent flooding (Hofstede ef al., 2018; Aranda et al., 2020). These environments,
and coastal wetlands in general are highly vulnerable systems to rapid sea level rise (Fernandez-Nuiiez
et al., 2019). Nevertheless, projections of future sea level flooding should consider the possible inland
migration of beaches, barrier islands, sand spits, dunes, salt marshes and deltas. This vision requires a
dynamic analysis of coastal responses to sea level rise, avoiding any rigid consideration of the present
coastal topography; flooding projections uniquely based on a simple, passive, uprising of sea level
(Fraile et al., 2018) are mostly unreal.

2.2. Energetic tsunamis

The recent catastrophic tsunami events of 2004 in the Indian Ocean and 2011 in Japan have
encouraged the study of this type of phenomena that suddenly hit the coasts producing severe damage
and casualties. Tsunamis represent the most energetic natural process acting on coasts, capable of
producing intense destruction, deep erosion and transport inland huge rock boulders (Figs. 3A, B and
C). However, their study is not easy because, fortunately, this is not a frequent process. Prediction of
future events, based on a given recurrent period, needs enough historical records for establishing
believable trends.

Tsunamis are capable to generate a number of coastal landscapes, both of erosional and
sedimentary nature (Bryant, 2008). Historical sedimentary records of past tsunamis are scarce and often
difficult to interpret due to the numerous similitudes with coastal storm deposits (Dawson and Shi, 2000;
Morales et al., 2011; Shanmugam, 2012). In recent times attention is increasingly paid on the diagnostic
characteristics of the offshore deposits produced by tsunamis (Costa et al., 2021).

Regarding coastal forms and deposits, many places have been reported around the world with
outstanding records of historical tsunamis (Scheffers and Kelletat, 2003). Some of them are constituted
by boulder accumulations, at places never reached by sea storms; an example of this can be found at
Trafalgar Cape, South Spain, where more than 80 large boulders, many of them exceeding 10 tons, lie
upon a rocky shore platform; other set of more than 100 rounded cobbles, weighting several hundreds
of'kg, appear at heights between 8 and 16 m a.s.1. (Fig. 3A). The event responsible for their emplacement
is thought to be the tsunami generated by the Lisbon earthquake of 1755 (Whelan and Kelletat, 2005);
the presence of mill wheels imbricated within the boulders (Fig. 3B) and other indirect markers would
be arguments in favour of this ascription (Gracia et al., 2006). Usually big boulders located at high
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positions and distant from the very shoreline are interpreted as the most typical example of deposit
generated by a tsunami, like the case showed in Figure 3C; however, even in such cases, theoretical
studies and specific examples demonstrate that big storms can produce the same effect (Barbano et al.,
2010), like the case showed in Figure 3D, where, according to witnesses, a large boulder was suddenly
deposited by energetic storm waves inside the Bay of Sydney (Australia) in the early 20" century (W.
Stephenson, pers. com.). Very detailed morphometric determinations are then needed to discriminate
the origin of such type of high-energy deposits (Goto et al., 2010).

Figure 3. Examples of boulder accumulations due to high-energy events. A and B, boulders supposedly
accumulated by the 1755 tsunami at Trafalgar Cape, South Spain; A, Imbricated boulders at + 8 m a.s.l.; B,
historical mill wheel imbricated within the rest of the boulders; C, big boulder deposited by a historical
tsunami on a platform more than + 5 m a.s.l. at Bonaire Island (Netherland Antilles); D, the “Mermaid
Rock”, boulder deposited by a strong storm in the Bay of Sydney, Australia (photo: Wayne Stephenson,).

Much research is still needed for correctly interpreting palacotsunami markers, both erosional
and depositional, related or not to archaeological remains (Goff ez al., 2012; R6th et al., 2015). Although
some recent progress has been made in the reconstruction of historical tsunamis in the Atlantic coast,
especially along the western European coasts (Scardino et al., 2020; Costa et al., 2021, Alvarez and
Machuca, 2022), one of the best known in the world regarding this topic, the establishment of a credible
return period is difficult and proposals in this sense are still controversial (Lario et al., 2011; Ruiz et al.,
2013). The recent catastrophic events that occurred in the Indian and Pacific coasts served as reference
for analysing the coastal effects of such phenomenon (Lavigne et al., 2009; Tkehara et al., 2021), which
can be used as a model to a better interpretation of past, historical, events and also to understand how
coastal morphology controls the propagation of tsunami waves and the resulting maximum wave height
(Umitsu et al., 2007).

Taken all these considerations into account, and after combining data from records of historical events,
detailed coastal topography and mathematical models for wave propagation, interesting and useful
vulnerability analysis can be obtained, with maps of tsunami-flooding hazard that can be used for coastal
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management in areas exposed to this type of energetic phenomenon (Izquierdo et al., 2019).
Mathematical models can also be used for theoretically reconstructing the propagation and effects of
past tsunamis, in order to compare such results with the real markers and indicators identified in the
historical remains (Abril ef al., 2013). Recent efforts are being made by marine geologists on the specific
location and analysis of the submarine faults responsible for the generation of past, historical tsunamis,
with present potential activity, in order to refine the existing mathematical models and obtain better
flooding maps (Estrada et al., 2021; Martinez-Loriente ef al., 2021).

2.3. Storm surges

Storms are one of the most important natural coastal threats in terms of property damage and
lives lost; they produce coastal erosion, coastal flooding and damage to infrastructures (Fig. 4). They
are originated by low pressure cells on the ocean and typically produce strong winds; both factors make
sea level to rise up (storm surge or set-up). Waves associated with such perturbations are high, steep and
with short period. During energetic storms, increasing water level, in coincidence with spring tides,
produces coastal surges and flooding of areas which are usually sheltered from water (Vousdoukas et
al., 2016). Storm effects can vary considerably alongshore, depending on a number of factors (Guisado-
Pintado and Jackson, 2019), including both physical/energetic ones (direction of movement of the storm,
occurrence of storm-groups and clusters; Ferreira, 2006, Dissanayake et al., 2015), and
local/geomorphological ones (coastal outline, soil development, slope changes, beach and dune
development and elevation, presence of subaqueous sandbars, etc.). The highest storm surges occur in
shallow, gently sloping coastal areas and in semi-enclosed bays and estuaries (Davidson-Arnott, 2010).

Figure 4. Coastal effects of sea storms in beaches and dunes of SW Spain. A, outcropping of sewage
infrastructures after deep beach erosion during a coastal storm in 1996 at El Puerto de Santa Maria; B,
beach flooding and dune undermining at Camposoto Beach (San Fernando) during Emma storm, in 2018
(photo: L. Del Rio); C, dune front erosion at Point Candor Beach, Rota.
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Wave energy developed by storms is analysed through statistical approaches, commonly by
calculating energetic parameters like significant wave height, storm duration, wave storm direction and
energy flux probability of exceedance (Molina et al., 2019), which helps storms to be classified (Anfuso
et al., 2015). Wave hindcast can be achieved by applying mathematical models like SWAN (Booij ef
al., 1999).

All those data are very useful for establishing storm thresholds for a given coast, which represent
the minimum wave and tide conditions necessary to produce significant morphological changes and/or
damage on beaches, dunes and coastal human occupation (Del Rio ef al., 2012), which are fundamental
for an effective coastal management on exposed coasts. Coastal response to storm impact depends on
the natural resilience of the coast: if this can behave without exceeding its system’s thresholds, it will
maintain its natural dynamics and resist through time; this is quite difficult to be achieved on highly
occupied, “developed” coasts (Malvarez et al., 2021).

Storms and hurricanes show a typical seasonal periodicity, although their energy can vary
significantly through the years, and extreme wave episodes can hit a given coast unexpectedly
(Masselink et al., 2016). Changes in storm frequency and energy should be related to climate trends.
However, those relationships are far from simple. In Europe statistical assessment of storminess over
the last 30 years evidences an increase in energy variability, although recorded changes are not always
directly related to global climate changes (Ciavola and Jiménez, 2013). Only in some specific cases, like
the Gulf of Cadiz, a good correlation is obtained between large-scale atmospheric indices (such as the
North Atlantic Oscillation, NAO), with a certain increase in the frequency of storms along the 20™
century and during the last decades (Ribera et al., 2011). Other regions, like the NW Iberian coast, also
record an increased frequency in powerful storm events, and even an alteration in storm approaching
directions, which are enhancing erosion of beaches and dunes (Flor-Blanco et al., 2021). In the western
Mediterranean coasts, records of the last 40 years show an increase in wave storm durations and
direction of approach (Amarouche et al., 2022).

At present, prediction and management of the arrival of storms and their expected energy is
assessed through the development of storm early warning systems, an operational oceanography system
developed at several coastal sites in Europe (Plomaritis et al., 2012). Apart from hydrodynamic
considerations, it is important to evaluate damage and understand the processes responsible for the
coastal effects of storms. This can be assessed by post-storm field measurement of changes produced by
an energetic event, using high-resolution topographic methods (Almeida et al., 2012; Benavente et al.,
2013; Schubert et al., 2015).

More recently, the use of unmanned aerial vehicles (UAV), combined with Structure-From-
Motion algorithms, allows detecting and mapping coastal changes through digital elevation models. This
method can be used for analysing the response of beaches and dunes to different storm-induced
processes, like swash, collision, boulder movement, overwash, beach surface downwearing, dune front
retreat, etc. (Pérez-Alberti and Trenhaile, 2015; Talavera ef al., 2018; Nagle-McNaughton and Cox,
2020).

2.4. Tides

Tides are periodical metric fluctuations of the sea level mainly produced by the gravitational
force of the moon and the sun, with daily vertical sea level variations ranging between low/negligible
values (microtidal coasts, average range < 2 m), intermediate values (mesotidal, 2<range<4 m) and high
to very high ranges (macrotidal coasts, range> 4 m). In meso and macro tidal regimes tides translate
waves and associated currents up and down the nearshore zone, hence modelling their effects (Dey and
Shukla, 2019; Héquette et al., 2021).
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Tidal currents under macrotidal regimes are strong enough to control beach morphodynamics
(Bennett et al., 2019), especially around capes or inside straits, where bottom morphology is the main
factor controlling the speed and lateral variations in energy flux (Sanchez Romén et al., 2012).
Nevertheless, tides can also influence beach dynamics in microtidal coasts under specific morphological
circumstances (Chee et al., 2014). Beach and nearshore topography can be used to make computations
about direction and speed of tidal currents by applying mathematical models and simulations (Reeve et
al.,2019).

In macro and mesotidal environments tidal currents favour the transport and deposition of fine
sediments on sheltered coastal areas, commonly bays and estuaries, producing extensive salt marshes
(Davidson-Arnott, 2010). In macrotidal coasts human settlements are usually adapted to important sea
level fluctuations and are located on places high enough to face such risk. However, in many mesotidal
coasts cities, harbour facilities and infrastructures are often located slightly above the high tide level.
This situation makes such coasts especially vulnerable to sea level rise. Some approaches to the
quantification and mapping of vulnerable tidal coasts and salt marshes to sea level rise emphasize the
high exposition of ecosystems, human settlements and activities to the increasing sea level rise
(Martinez-Graia et al., 2016; Vazquez Pinillos and Marchena Gémez, 2021). In this sense, larger tidal
ranges seem to improve the capacity of coasts to balance sea level rise, due to the role of subtidal gullies
as sediment traps, and hence macrotidal coastal flats are considered to be resilient against high rates of
sea level rise (Hofstede et al., 2018).

2.5. Good weather wind waves

Determination of wave heights, both modal and energetic, is of prime interest in coastal
dynamics. Wave height is usually represented by the significant wave height (average value of the
highest third part of a population of data), and is very useful for many purposes related to coastal
processes: wave setup, wave-related coastal currents and sediment transport, wave forecasting,
atmospheric modelling, ocean circulation, etc.

Measurements of wave heights can be done through a number of methods, although at present
satellite radar altimetry is the most accurate source of information about sea surface height, significant
wave height and wind speed (Lopez-Garcia et al., 2019). More locally, topo-bathymetric surveys,
combined with remote-sensing imagery, can help to understand wave and current dynamics around
complex morphologies or bypass processes between adjacent beaches (Da Silva et al., 2021).

When approaching the coast, waves experience a number of processes related to the interaction
between the wave base and the sea bottom. From the moment at which the wave base contacts the bottom
until the final wave breaking, the wave passes through shoaling processes, which mainly include
reduction of wave velocity, increase in wave height, modification of the wave form, and refraction
processes that may lead to changes in the approaching direction. All these processes are strongly
controlled by the initial wave conditions before reaching the nearshore zone, and especially by the
submerged morphology of the sea bottom, mainly slope.

All these physical processes can be predicted with considerable precision through different
mathematical equations, which have promoted the generation of mathematic models of wave
propagation, very used in coastal studies, like SWAN (Simulating Waves Nearshore; Ris et al., 1999).
The accuracy of the results and their correct fitting with natural processes usually depends on the quality
of the data feeding the model.
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3. Coastal environments and their evolution

A quite common, initial and simple classification of coastal environments starts from the
division between low, sedimentary coasts and high, rocky coasts. The former ones are constituted by
coastal plains or with very low relief, characterized by the accumulation of sediments of varying nature:
pebbles, sands and clays, depending on the processes responsible for their sedimentation and their
associated energy. They are usually represented by beaches, dunes, lagoons and salt marshes, and also
include river mouth systems (estuaries, deltas). The latter are represented by rocky outcrops directly
entering the sea through rough relieves, high slopes and cliffs, and also include coastal rocks generated
by biochemical processes, like coral reefs. Of course, there exist intermediate cases, like low cliffs
modelled on soft rocks, or coastal plains formed by Quaternary deposits (like stepped marine terraces,
or beachrocks) that end to the sea through gentle slopes or microcliffs.

3.1. Low, sedimentary coasts: beaches and dunes

Waves and associated currents accumulate particles in favourable places, creating beaches.
These sedimentary units can be formed by elements of varied size depending on the average energy of
the incoming waves and their competence in the transport of debris. As a consequence, beaches can be
formed by boulders and pebbles (named coidos in Galicia), or sands, or even very fine sands and silts.
One common characteristic of beaches is their high dynamism: they usually respond very rapidly to any
change in the energy level of the incoming waves (Pilkey et al., 2011). If storm episodes prevail, boulder
and mixed beaches experience micro and mesoscale morphological changes due to the slight movement
of boulders and pebbles by energetic waves (Pérez-Alberti and Trenhaile, 2015; Nagle-McNaughton
and Cox, 2020; Casamayor ef al., 2022). Sandy beaches experience erosion through shoreline retreat,
dune front escarpment, overwashing, inland migration of barrier islands, or even erosive planation and
dismantling (Carter, 1990; Jiménez et al., 2007; Crowell ef al., 2018; Barrantes-Castillo et al., 2020;
Ruiz de Alegria-Arzaburu ef al., 2022).

In this sense, some recent proposals of mathematical models focus on the energy developed by
waves on sandy beaches, and calculate beach profile modifications associated with the different type of
waves approaching the coast. There is an interrelationship and feedback between wave type and energy
dissipated on the beach, and beach slope resulting from the sediment erosion/deposition by such waves.
Some modern mathematic models combine wave physical processes (including surf and breaking
processes, runup and overwashing) with continuous beach adaptation to the incoming wave types. One of
the most used models is X-BEACH, developed by the Dutch company Deltares (Roelvink ef al., 2009).
Recent, more advanced versions of this model include interaction between beaches and dunes (Roelvink
and Costas, 2019). In a later phase, understanding coastal processes responsible for the changes detected
in sandy shores is being recently assessed through the application of sophisticated theoretical models which
include multiple response pathways and outcomes (Van Rijn et al., 2007; Payo et al., 2016).

Although the high energy applied on coasts during storm episodes produces rapid changes in
beaches (Beckman et al., 2021), beach erosion also occurs at longer, slower rates. Beaches continuously
receive and lose sediments, and the volume of sand at a given moment is the result of the balance existing
between sediment supply and sediment loss. Sources of sediments to the coast are mainly represented
by rivers, and in a much lesser extent by submarine supply and erosion of soft cliffs. Once arrived to the
coastal system, fluvial sediments are then transported alongshore by wave-induced currents. Human
activities can alter this chain by retaining sediment within the river catchment through dams and
reservoirs, and by blocking longshore currents through groynes, jetties and piers (Rodriguez-Ramirez et
al., 2008; Hapke et al., 2013). The proliferation of reservoirs in river basins has produced a dramatic
reduction of sediment supplied to coastal areas producing a chronic sedimentary deficit in many coasts.
This is especially the case of deltas, where the subtle equilibrium between fluvial sediment supply and
coastal erosion due to wave action can be rapidly broken in favour of shoreline retreat. Several deltas
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along the Mediterranean shores exhibit a present trend toward destruction, due to anthropogenic
modification of the river catchments (Anthony et al., 2014). Historical trends of sandy beaches in river
deltas allow predicting the future of their shorelines with significant precision. This is the case of the
Ebro River delta (Aranda et al., this issue), where sediment retention on dams threatens the survival of
its most valuable ecosystems in the short term.

Urban growth has destroyed many coastal landforms and often has altered the cross-shore
sedimentary equilibrium of beaches by dismantling dune ridges, dredging, etc. According to data
obtained by Luijendijk ef al. (2918), about one third of the world coasts are eroding at rates exceeding
0.5 m/yr, and in many places this trend has been maintained for decades (Lira et al., 2016; Pérez-
Hernandez et al., 2020). The high vulnerability of sand beaches and the important economic income
related to their tourist exploitation has made the study of beaches the most important research topic in
coastal studies during the last decades. A historical summary of the main advances in this research line
during the last 50 years can be found in Jackson and Nordstrom (2020).

Beach processes and trends can be studied under very different spatial and temporal scales
(Gracia et al., 2005). At the short term (hours, days) the amount of daily sand erosion and renovation
can be assessed in the field by measuring the depth of disturbance (King, 1951) and determining the
thickness of the activation layer. This information is of prime interest before facing any artificial beach
nourishment work (Lopez et al., 2019). At a medium term (weeks, months), field work is required,
although the introduction of RTK-GPS devices (Schubert ef al., 2015) and the use of UAV’s have greatly
simplified procedures, introducing very high resolution outcomes in the topographic assessment of
beaches an dunes (Mancini et al., 2013).

Coastal studies on a longer term (years) are very common, since wave energy and storm
frequencies fluctuate around multi-monthly to pluri-annual scales. In this case coastal assessment mainly
consists on the comparison of vertical images taken at different moments. If the number of images is
high enough, projections of future shoreline trends can be established. Traditionally images used for
such purpose are vertical aerial photographs, which in some cases can be available for the last 70 years,
and allow a first quantification of coastal changes and trends during the last decades (Fig. 5). However,
the problem with this method lies in the correct definition of the shoreline, especially on tidal coasts
(Boak and Turner, 2005). Another question is the error inherent to the use of such photographs, all of
them including image deformations and several sources of uncertainties (Del Rio and Gracia, 2013).

Figure 5. Aerial photographs showing beach deficit and shoreline erosion at Sancti Petri Beach (Chiclana de
la Frontera, SW Spain).
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In recent years a regular monitoring of shoreline changes can be assessed through the high-
frequency/high-resolution satellite data displayed by Quickbird and Sentinel-2 imagery (Mitri et al.,
2020). The development of sophisticated tools for the pre-processing of images, like the SHOREX
system (Sanchez-Garcia et al., 2020) has allowed the improvement of satellite-derived shorelines and
the assessment of high-resolution spatial-temporal models. Pardo-Pascual et al. (this issue) apply such
technique to analyse the morphological changes experienced by a sector of the eastern Spanish coast,
between 1985 and 2020. Results, estimated at the sub-pixel scale, show a general erosional trend for all
the area, with a sequence of narrow portions with alternating high and low erosion rates. The comparison
of coastal trends with the record of wave energy along the last decades indicates a high influence of
strong storms on the recent evolution of this coast, although the grouping of minor storms also produces
severe damage and coastal retreat (a relation already analysed by Ferreira, 2006). Recent trends on the
increasing energy displayed by storms in the Valencia coast are also evidenced, which could be
interpreted as another consequence of the ongoing climate change.

Dunes constitute a buffer to coastal erosion since they represent an extra amount of sediment
that can be mobilized during energetic events. The erosion of coastal dunes and their vulnerability has
focused the attention of research in the last decades (Carter et al., 1990; Pena-Alonso et al., 2018).

Dune systems can grow significantly if sediment supply is maintained during decades. Strong
winds make the dunes active and mobile, producing a net transport inland. These systems, called
transgressive dunes, can present different modes of generation and behaviour (Hesp, 2013). Local
limiting factors, like the sediment available and its characteristics, control the development of active,
mobile dunes. Strong winds associated with storms can favour the generation of transgressive dune
systems, rapidly moving, which can interact with human occupation and infrastructures located near the
coast. An outstanding example of this situation is the Ria Formosa barrier island, in southern Portugal
(Costas et al., 2020), where dune invasion of houses and park places is common during wind storms
(Fig. 6A).

Coastal dunes are very valuable morphological units to be preserved, not only because of their
role in protecting beaches and coastal properties against storms and sea-level rise (Houser et al., 2018),
or their intrinsic morphological variety and dynamics, but especially because they constitute the base
for a number of ecosystems and habitats of great importance. Psammophytes are plants adapted to grow
upon a sandy substratum affected by wind action. Those plants, of high ecological value, are the main
responsible for the partial or total fixation of dunes on coastal environments (Fig. 6B). A subtle
equilibrium is established between shoreline progradation/retreat and dune growth, anastomosis of
embryo dunes and generation of continuous dune ridges or foredunes (Konlechner et al., 2019). Up to
11 different coastal dune habitats are included in the European Directive 92/43, by which states members
are committed to establish measures for their preservation (Garcia de Lomas et al., 2011).

Dune dynamics is complex due to their sensitivity to different natural and anthropogenic factors.
In highly occupied and transformed coasts, dunes develop on specific favourable sites characterized by
stability or coastal progradation. Usually coastal erosion produces dune retreat, fragmentation and
finally destruction. An outstanding example of the role of different factors in the preservation and trends
of beach-dune systems is the Mediterranean coast of Andalucia, studied by Molina ef al. (this issue).
These authors analyse five different photogrammetric flights to quantify recent shoreline trends, and
combine those results with the inherent importance of each dune system, taking into account the
development of dune habitats. Their results constitute an essential information before facing any
management plan on a given low coast.

Present trends in the study of coastal dunes include both field and indirect methods. The former
ones are mainly represented by topographic devices: theodolits, electronic levellers, GPS measurements,
terrestrial laser scanner, etc. (Labuz, 2016). Wind dynamics and sand transport processes are also
investigated through tracers (Wang ef al., 2017), anemometers and sand traps (Navarro ef al., 2015).
Indirect methods include remote sensed techniques for the acquisition of topographic data and images,
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and dune mapping (Gongalves et al., 2018; Grottoli ez al., 2021). Holocene and recent historical trends
of dune fields can be deduced from historical maps and the analysis of the inner structure through ground
penetrating radar surveys (Flor-Blanco et al., 2016).

The status of coastal foredunes is a good indicator of the morphosedimentary health of a given
coast. In fact, foredune degradation by sand trampling and urbanization is one of the most important
problems in coasts exploited for tourism. Protection and recuperation of dunes can be made through
different procedures, like peripheral closures (Fig. 6C) or sand fences (Fig. 6D). A synthesis of dune
regeneration methods can be found in Ley et al. (2007).

Figure 6. Coastal dune dynamics. A, dune migration upon coastal buildings and properties at Praia de Faro (South
Portugal); B, plant succession on embryo dunes (Bolonia Beach, South Spain); C, dune enclosure for preventing
trampling at El Puerto de Santa Maria (SW Spain); D, wooden dune fences at Tarifa Beach, South Spain.

3.2. Low, sedimentary coasts: barrier islands, lagoons, salt marshes and river mouths

Active sand sedimentation on low coasts produces accumulations that grow until generating
mesoscale sedimentary bodies, often reaching several kilometres long. Beach progradation normal to
the shoreline occurs when an abundance of sediment exists. In such a case, slight oscillations in the
sediment supply, storminess and sea level changes combine to produce parallel ridges advancing
seawards (Taylor and Stone, 1996; Otvos, 2000). Radiocarbon dating of beach ridges gives clues about
the Holocene and historical evolution of shorelines, and help to separate local from regional or even
global factors controlling coastal evolution (Rodriguez-Ramirez and Yafiez-Camacho, 2008; Rodriguez-
Polo et al., 2009).

On a different situation, if longshore currents prevail, they transport and accumulate sands
forming elongated systems. They can be anchored at one given point of the coast, typically a headland,
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and then the longitudinally growing sand body forms a littoral spit whose free limit is usually very
unstable and dynamic (Kraus, 1999; Randazzo et al., 2015). If the longitudinal body forms at a certain
distance from the shoreline, then a barrier island is generated. About 10% of the open-ocean shorelines
in the world are represented by barrier islands, especially abundant in the North America coasts. They
are very diverse in size, morphology, geological and geomorphological setting, and also in
morphodynamic behaviour (Pilkey, 2003). Such systems change in a temporal scale ranging between
10 to 10? years and are very sensitive to changes in external forcing, like sea level, storminess, or climate
changes (Cooper et al., 2018), and also to human interventions (Paris and Mitasova, 2018; Kombiadou
etal.,2019).

In microtidal environments the outer sandy barriers can grow enough to close former bays and
embayments. As a result, a coastal lake or lagoon is formed (albufera in Spanish), characterized by
sediment aggradation occasionally affected by storm waves and coastal flooding by sea storms (Adlam,
2014). Sedimentary records in lagoons represent very valuable archives of the recent climate and coastal
environmental evolution of the zone, including historical sea level fluctuations (Carrasco et al., 2016),
and are usually analysed through sedimentological and palynological methods in cores (Ruiz-Pérez and
Carmona, 2019). A complete information on the Holocene-historical evolution of a given low coast
would be obtained by combining beach ridge data and sedimentary record of coastal lagoons (Sander et
al., 2015).

In tidal environments, tidal currents usually prevent the closure of inlets and typical tidal deltas
form at both sides of the breachings. Tidal currents are usually low and can only transport medium to
fine sediments, except at local places where the oceanographic and coastal configurations (macrotidal
regime, gently sloping continental shelf, back-barrier plains, straits, channels, etc.) accelerate the tidal
flux. As a consequence, the normal result of the tidal dynamics is the accumulation of fine sands, silts
and clays at favourable, sheltered places inside bays, estuaries, etc., forming salt marshes (Rahman and
Plater, 2014; McLachlan ef al., 2020). Plants exert a determinant role in the tidal sedimentation process
through particle trampling and sediment compaction. The existing interdependences between plant
dynamics and morphological evolution of salt marshes are complex and depend on a number of
concurrent factors, not always easy to differentiate. As in the case of dune systems, salt marshes are
considered as typical cases of biogeomorphological systems, especially under tropical climates (Li ef
al., 2021). In fact, salt marsh reclamation or the removal of vegetation from marshes usually has the
same consequence as the effects of strong currents and waves: shoreline erosion and retreat (Brunier et
al., 2019; Zhang et al., 2021; Evans et al., 2022).

Sedimentary evolution of salt marshes usually consists in a progressive aggradation, coupled
with subsidence due to sediment compaction. The maintenance of this trend in certain areas since the
last Holocene eustatic maximum has produced tens of meters of sedimentary record, very useful as
geoarchives for palaecoenvironmental and sea-level reconstructions (Zazo et al., 2008; Brain et al., 2015;
Caporizzo et al., 2021). Holocene palacogeographical reconstructions of salt marshes can also be made
through detailed geomorphological mapping and dating of inactive elements, like supratidal sedimentary
plains, abandoned channels, etc. (Pierik et al., 2016). Historical tidal silting of bays and harbours,
sometimes favoured by vertical tectonic movements, can be reconstructed through geoarchaeological
techniques (Morhange et al., 2012).

The morphological and ecological evolution of salt marshes in the last decades can be analysed
through aerial photographs (Aranda et al., 2020). Monitoring of salt marsh dynamics and their bio-
geomorphological trends are analysed through satellite imagery, LIDAR and high-resolution mapping
(Haynes et al., 2017) combined with sediment sampling and textural analysis (Chen et al., 2018). At
present sediment starvation and sea level rise are the most important threats to salt marshes (Fernandez-
Nuiez et al., 2017). Most recent research on the topic focus on the resilience of these environments and
their role as a natural defence against marine flooding (Day et al., 2011; Hofstede et al., 2018; Reed et
al., 2018).
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Salt marshes and coastal lagoons are very often related to river mouths, totally or partially closed
by outer sand spits or barriers. The palacoenvironmental reconstruction of such coastal systems is then
complicated by the usually complex interaction between tidal and fluvial dynamics (Dabrio et al., 2000;
Ciavola and Collins, 2004). Tidal currents and fluvial fluctuations control the main paths of sediment
transport and accumulations, and the generation of beaches, beach ridges and spits inside these systems
(Fortunato et al., 2021). Multi-temporal maps and images help to understand the evolutionary trends of
the different environments forming the estuary (Ghosh, 2019; Aranda et al., 2020).

River deltas form when fluvial sediment supply is high enough to counteract the erosive action
of waves, and sedimentary balance inclines toward sedimentation and coastal progradation. Delta
growth usually includes channel migration and capture, closing of embayments by sandy barriers, and
rapid shoreline changes, very sensitive to any fluctuation of the energetic forcing (both fluvial and
marine). All these processes favour the formation of different fluvial, coastal and mixed environments,
including coastal lagoons and wetlands, often of high ecological value (Schmidt, 2011). Apart from
accelerated shoreline erosion due to sedimentary deficit, river deltas also present an important issue to
take into account: land-surface subsidence, due to sediment compaction and dewatering. This process,
active in most deltas during the last millennia, affects the uppermost 5-10 m of sediments, and despite
its low rate the associated deformation and faulting produces damage on coastal settlements and
increases the zones exposed to marine flooding due to sea level rise (Jankowski et al., 2017; Gomez et
al.,2021).

3.3. High, rocky coasts

Coastal cliffs are typical erosional forms, commonly associated with rocky escarpments subject
to different erosive processes, both continental and marine, and represent about 80% of the world coasts
(Emery and Kuhn, 1982). As in sedimentary coasts, most part of the marine cliffs in the world has
generated and evolved along the last 6000 years, moment at which sea level reached a height broadly
similar to the present one (Bird, 2016). Cliff evolution is controlled by a number of factors, like wave
energy, sea level trends, and especially their geological characteristics (Trenhaile, 1987; Sunamura,
1992). The geometry of rocky coasts is highly influenced by geological and tectonic processes. Although
such relationships are not always evident, mathematical approaches sometimes shed light on this
dependency (De Pippo et al., 2004).

A simple subdivision of cliff types could differentiate between those formed by hard or resistant
rocks and those constituted by soft rocks (Sunamura, 2005; Carpenter et al., 2014). The former ones are
affected mainly by erosive processes related to wave breaking at their toe, which produces vibrations
and fracturing, undercutting and notch excavation, and falling of unstable elements (Neves, 2008). Mass
movements, mostly intermittent due to the seasonality of storminess, affect most cliffs; the material
accumulated at the cliff toe is afterwards removed by waves and currents (Granger and Kalaugher, 1987,
Del Rio and Gracia, 2009; Montoya et al., 2012). Only 5% of the world cliffs modelled upon hard rocks
experience significant erosion. A common result of cliff retreat is the generation of rock platforms,
usually less than 100 m wide due to the rapid wave energy dissipation, that prevents the progression of
wave erosion and hence limits the extent of such erosional forms (Trenhaile, 1987). Rock weathering
and bio-erosive processes are the main mechanisms of rock downwearing (Trenhaile and Porter, 2007;
Moura et al., 2011); waves export the resulting products and flatten the surface to the medium sea level
through abrasion (Gémez-Pujol et al., 2006; Blanco-Chao et al., 2007).

In contrast, more than 30% of the cliffs on soft rocks are subject to different erosive processes,
and this situation affects to more than 50% of the European cliffs (EUROSION, 2004). As in any other
slope, erosive processes are related to gravity (rock falls) and fresh water processes (mainly sheetwash
erosion, rilling, gullying and piping). Rock weathering, especially salt weathering (Welman and Wilson,
1965), softens the rocks and make them more vulnerable to such processes. Waves can erode the possible
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beaches existing at the cliff toe, or directly attack the cliff base (Sallenger et al., 2002; Lee, 2008; Limber
and Murray, 2011). Winds can produce both erosion and sand deposition. All those processes present
variations along the year, with a typical seasonal behaviour (Fig. 7). At the end, cliffs erode both
vertically (downwearing) and horizontally (cliff retreat), the latter reaching very often values higher
than 1 m/year (Tsujimoto, 1987).
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Figure 7. Seasonality of the main processes dealing to the erosional evolution of coastal cliffs under
temperate climates.

All those processes generate a number of forms that control the final cliff profile morphology
and slope. Field indicators/markers of erosive processes on cliffs are numerous and include local gully
incisions and generation of small alluvial fans at the cliff toe (Fig. 8 A), cracking at the cliff top (Fig.
8B), notching at the cliff toe in the case of resistant rocks, etc. Markers of cliff instability are similar to
those recognizable on inland slopes. Such indicators can be used to identify problematic points and
subsequently decide to apply protective measures if appropriate (Brampton, 1998). Figures 8C and 8D
include examples of defence measures taken in active cliffs of south Spain, like persuasive fences and
sign posts of danger.

From a methodological point of view, since middle 20" century a wide variety of techniques
have been developed for assessing erosive processes on marine cliffs (Zively and Klein, 2004; Del Rio
and Gracia, 2009). They include aerial photogrammetry, analysis of historical maps, field measurement
and photography, etc. (Young et al., 2009). In the last decades the introduction of a group of advanced
techniques has allowed generating high resolution 3D models very rapidly (Wilkinson et al., 2016). One
of the most used is the LiDAR sensor (Laser Imaging Detection and Ranging), installed both terrestrial
(placed upon the ground) or airborne (on a plane or, preferably nowadays, on a UAV). The terrestrial

Cuadernos de Investigacion Geogridfica, 48 (2), 2022. pp. 219-255 235



Gracia Prieto

laser scanner (TLS) is frequently used for assessing rocky escarpments and other coastal forms (Rosser
etal.,2005; Sanjosé et al., 2016). A synthesis of the application of this technique to coastal environments
can be found in Fairley er al. (2016). An alternative technique is the Structure-from-Motion
Photogrammetry (SfM), much more economic and giving digital topographic models with a reasonable
resolution (Westoby et al., 2012; Del Rio et al., 2020). As with LiDAR, image acquisition can be made
on the ground or airborne (Gongalves and Henriques, 2015), and is especially useful in the assessment
of coastal cliffs (Warrick et al., 2017).

Figure 8. Examples of eroding cliffs. A, gully erosion and alluvial fan generation on compacted sands, El
Asperillo cliffs (Huelva, SW Spain); B, C and D, unstable cliffs at Conil de la Frontera, Cadiz, affected by mass
movements, B, development of fractures at the cliff top, C and D, danger sings and indications at the cliff foot.

4. Towards an efficient management of coastal zones

The growing concentration of human population at coasts and adjacent areas has made these
zones be populated with densities nearly 3 times higher than the global average density (Small and
Nicholls, 2003). Under this situation, human activities on coasts can directly modify coastal dynamics,
both directly and indirectly. Direct interaction with coastal processes includes the modification of the
coastal morphology by means of dredging, construction of jetties, docks, harbours, promenades, etc.
Those artificial structures modify wave refraction patterns and shoreline currents, block sediment
circulation producing sand accumulation at some places and sedimentary deficit in others especially
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during storm episodes, while changes in the geometry of tidal channels alter the tide dynamics
(Rodriguez-Ramirez et al., 2008; Manno et al., 2016).

Indirect effects include the modification of the quantities and qualities of sediments supplied to
the coast through rivers; fluvial basin deforestation increases soil exposure to water erosion processes,
increasing the amount of sediment yielded by rivers to the coastal systems; some historical cases of
rapid delta progradation are related to this kind of interventions (Anthony ef al., 2014). In the opposite
situation, regulation of river flows by dam construction, revegetation, irrigation practices, etc., produce
sediment trapping and a starvation of sediments to the coast, especially if the reservoir is sufficiently
close to the river mouth (less than 50 km). In such a case, sands and gravels are dramatically reduced in
the river solid flow, but the suspension fraction (silts, clays) can bypass the barriers and reach the coast,
finning the beach sediments and making coastal deposits more erodible (Donadio, 2017).

A common consequence of all these activities is coastal erosion, exacerbated by the ongoing
sea level rise. According to EUROSION (2004), 15% of the more than 100 000 km of the European
coasts are eroding. In some countries the negative beach sediment budget is being opposed through
artificial nourishment, mostly dredged from the nearshore zone, although other alternative methods have
been tested and adopted in several countries to protect beaches (Orombelli and Pranzini, 2020). Beach
nourishment introduces additional problems, like the burial of shallow reefs and other beach habitats, or
the reduction of densities of invertebrates, which represent essential preys for shorebirds, surf fishes,
and crabs (Peterson and Bishop, 2005). Additionally, if nourished profile is not strictly controlled,
artificial beaches become more susceptible to develop erosive scarps (Van Bemmelen et al., 2020). Very
specific and exigent requisites must be followed in order to achieve an ecologically sound result
(Speybroeck et al., 2006).

Dunes are often very active and vulnerable. A simple re-profiling of dunes can derive in a rapid
and unexpected change of the dune system, with non-desired results (Gangaiya et al., 2017). Dunes are
very sensitive to coastal occupation and their naturality is an indicator of the environmental health of
the coastal system. Besides, dunes can grow rapidly if the natural conditions are favourable.
Unfortunately, many urbanised areas do not allow the development of embryo dunes, due to the
seasonal, sometimes daily practices of beach cleaning by mechanical methods, which very often destroy
pioneer plants and small aeolian accumulations in the backshore (Fig. 9A). Dune restoration has been
addressed in many degraded coasts, by following different methods of sand trampling (Fig. 6C, D), dune
coring (Nordstrom, 2019) and replanting (Ley et al., 2007). However, as in beaches, dune recuperation
must be very carefully performed, always taking into account the subtle equilibrium between plant
ecology and sediment accumulation (Houston ef a/., 2001; Jenks, 2018). In this sense, Garcia-Lozano
et al. (this issue) make an analysis of the response of different types of dunes, both natural and restored,
along the Catalan and Valencian shores. These authors show how only sustainable management methods
ensure the effective recovering and maintenance of the system.

Another source of coastal degradation is the growing presence of waste materials and litter in
beaches and dunes (Fig. 9B). The study of the sources, distribution and consequences of beach debris is
a line only very recently addressed in coastal management research (Williams ef al., 2016), especially
due to its possible influence on tourism quality of beaches (Krelling et al., 2017; Asensio-Montesinos
etal.,2019). Regarding impacts on salt marshes and estuaries, urban and industrial settlements eliminate
valuable habitats (Fig. 9C), while salt harvesting modifies the geometry of natural tidal channels,
altering tide dynamics and sedimentation rates (Gracia et al., 2017; Brunetta ef al., 2019). Nevertheless,
the abandonment of traditional salinas maintaining sluice gates open allows the system to rapidly recover
its naturalness through plant colonization (Fig. 9D), which favours seabirds nesting (Aguilera and
Gracia, 2004).
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Figure 9. Coastal transformations and impacts by human activities. A, destruction of pioneer plants in the
upper beach by “beach cleaning” at La Atunara beach (La Linea de la Concepcion, South Spain); B, litter
accumulation at a stream mouth (Catania, Sicily); C, industrial complex installed upon former vegetated salt
marshes (Huelva, SW Spain); D, industrial facilities near abandoned salinas (Cadiz, SW Spain).

The high dynamism of coastal environments briefly described in previous sections, combined
with the dense human occupation and activities on coastal areas, produce numerous situations of
hazards. Sea level rise accelerates coastal erosion and increases the risk of flooding on low coasts, like
deltas (Fig. 10A), where sometimes drastic measures must be applied in order to protect properties and
activities that originally were not threatened by marine processes but at present they are (Fig. 10C). The
illogical urban occupation of unstable cliffs also increases the situation of imminent hazard (Fig. 10B).
Dense urbanization of low coasts and barrier islands (Fig. 10D) strongly increases the exposition to
potentially risky natural processes, like storm waves, overwashing and shoreline retreat.

Coastal hazards must be included in any coastal management plan, through vulnerability
analysis of exposed areas and activities and improvement of the coastal resilience. In the last decades
this approach is being assessed by means of Coastal Zone Integrated Management, which consists in the
articulation of different sectors, communities and agencies involved in the exploitation of spaces and
resources at the coast or its vicinity (Quevauviller et al., 2017; Puertas and Aparicio, 2020). This strategy
is being developed especially in European and South American countries (Barragan, 2005; Rodriguez-
Perea et al., 2013). Some Spanish regional administrations have included this scheme in their territorial
regulations (Oliveros et al., 2008; Mas-Pla and Zuppi, 2009).
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Figure 10. Human infrastructures threatened by erosional coastal processes. A, abandoned agricultural
facilities affected by shoreline retreat at the Ebro River delta (aerial photo: 2008, Institut Cartografic de
Catalunya); B, tourist urban complex on a cliff affected by gullying and mass movements at Santiago de Teide
(Tenerife, Canary Islands); C, protecting crops and houses from energetic waves by an artificial earth barrier
at the Ebro River delta; D, tourist urban settlement affected by severe beach erosion at Murcia coast (Manga
del Mar Menor).

Coastal protection by stakeholders and policy makers needs to assess the degree of vulnerability
and mitigation efforts must be focused in that sense (Wolters and Kuenzer, 2015). Coastal hazards have
become an essential element in any approach to coastal management (Rangel-Buitrago et al., 2020).
Coastal vulnerability is commonly assessed through the application of indices that combine different
variables involved in the degree of coastal exposition to risky processes, human impacts on coasts,
socioeconomic activities developed on them, etc. (Alberico et al., 2017; Bagdanaviciute et al., 2019;
Alcérreca-Huerta et al., 2020). Coastal vulnerability assessment is applied to both natural and historical-
cultural heritage elements (Pefia-Alonso et al., 2018; Mattei et al., 2019; Rodriguez-Rosales et al.,
2021).

As indicated in previous sections, sea level rise produces beach erosion and salt marsh
degradation, leading to the deterioration of valuable ecological spaces and the loss of economically
profitable beaches, an important source of money in tourist coasts. As a consequence, an important issue
in coastal planning must be adaptation to sea level trends and its consequences. Since the latter vary
laterally, an analysis of the hazards associated with this phenomenon and its trends is required through
the development of coastal response models and databases for assessing the multiple impacts to the
socio-economic systems, to the coastal settlements and uses (Wolff et al., 2018). In the case of beaches,
as Cooper (2022, this issue) points out, policies must prioritise the preservation of their natural features
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over urbanization and protection of coastal properties; otherwise, many beaches presently considered as
important economical sources for coastal communities may degrade severely or even disappear. In the
case of coastal wetlands, lagoons and salt marshes, local effects of sea level rise must be specified in
order to correctly predict future evolution of the system, including the dynamics and possible impacts
on ecosystems (Carrasco ef al., 2016).

Finally, coastal management must also include the especial protection of the main natural and
human values of the coasts. An important component of the coastal value is the historical-cultural
heritage, sometimes exposed to hazards like shoreline retreat (Fig. 11A) or erosion due to storm wave
impact (Fernandez-Montblanc et al., 2018; Pourkerman et al., 2018; Mattei et al., 2019). Another
essential aspect of coastal management is the protection of natural areas with environmental interest, a
practice that must be compatible with a rational exploitation of coastal resources (Barragan, 2005).
Protected habitats (Fig. 11B) must receive an especial attention in laws and coastal regulations
(Bartolomé et al., 2005). At the same time, coastal active processes can be used to illustrate visitors the
dynamism of the coast and the importance of its protection (Fig. 11C). In that sense, the geological and
geomorphological aspects of the coast should serve not only for a proper zonation of uses of coastal
zones (Flor, 2007), but also for disseminating the heritage value of the abiotic aspects of coasts and their
interest as living landscapes (Gracia, 2008). The scenic value of many coasts, combined with their
inherent natural values (Fig. 11D) also constitutes an additional task to be included within the integrated
coastal management (Mooser and Anfuso, 2018). Protection measures should include the preservation
of all these values (Hooke, 1998).

Figure 11. Four examples of different environmental values taken from the SW Spanish coast. A, historical-
archaeological value: remains of a Roman fishery at Cape Trafalgar; B, ecological value: natural salt marshes

at the Bay of Cadiz Natural Park; C, geomorphological value: dune ridge affected by a washover fan which lies
upon salt marshes, near the Guadiana River estuary; D, faunal and scenic value: a deer walking along the
beach in the Guadalquivir estuary, in front of Sanlucar de Barrameda village (Dofiana National Park).
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5. Concluding remarks

At a human scale, coastal processes act at very different time scales. The interaction among
continental and different marine phenomena produces a quite complex system, sometimes affected by
severe risky processes. The combination of dangerous agents (storms, tsunamis, coastal flooding, sea
level rise, aeolian sedimentation, accelerated shoreline erosion and retreat, mass movements and water
erosion on cliffs, etc.) with an increasing human occupation and transformation of coasts gives as a
result a complex casuistry of natural hazard situations. The main consequence of this interaction is the
great difficulty to correctly adapt and manage human settlements and activities on the coast and make
them compatible with its natural dynamics. This problem converges with the additional uncertainty
associated with the political and economic lines followed by governments and stakeholders, which can
strongly fluctuate through time.

As Malvarez et al. (2021) suggest, another important issue in a correct coastal management is
the perception of coastal safety once the administration has dealt with shoreline protection measures
against hazardous processes. The false sensation that no more problems will affect the coast once users
identify apparently strong and consistent protective structures can deal to encourage more occupation
and urban development, increasing exposition of users to future high-energy events.

Education and information seem to be a good tool for making people aware of the real
importance of observing and respecting the complex natural processes acting on coasts. Due to the
rapidly alongshore changing conditions of coastal processes, more local studies are needed for
identifying and understanding them in detail, and all the possible interactions with all types of
settlements and human activities at different scales. All the administrative levels (municipal, regional
and national governments, supranational associations) should include the study, prediction and
prevention of coastal hazards into their regulations, and also the protection and future preservation
measures of all valuable components existing at the coastal zone, both natural and historical-cultural.
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