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ABSTRACT. Various economic, social, and cultural factors have contributed to the proliferation of illegal dumps, 
causing urban image degradation, population health impacts, and soil, air, and water contamination. Scientists 
developed remote sensing techniques to identify these red spots and thus contribute to their mitigation and control. 
They recently used these techniques to detect large areas of illegal waste dumping instead of using expensive field 
monitoring. Artificial intelligence algorithms have been used to process satellite images due to the availability of 
satellite images and the increase in the processing capacity of computer systems. This work presents the results of 
a satellite remote-sensing procedure to detect illegal dumps in one hydrographic subbasin in Oaxaca, Mexico, 
through a supervised land cover classification using a Random Forest classifier. Two hundred and fifty-six control 
polygons were used to train the classifier. The classification criteria were the twelve bands of the Sentinel 2A 
satellite images with a spatial resolution of 10x10 meters, the spectral indices NDVI, MNDWI, SAVI, NDBI, BSI, 
and the surface slope. Google Earth Engine platform was used to process satellite images. There were 288,100 
hectares classified in this way: 65.4% classified as vegetation, 31.5% like bare soil, 2.7% was urban soil and the 
rest was classified as water or garbage. A confusion matrix calculated the accuracy of the model in 0.9517. The 
model was not able to accurately distinguish between urban soil, bare soil and garbage due to the similarity of their 
spectral fingerprints. NDVI and SAVI were the most important spectral indices for detecting litter, and those might 
contribute to building a spectral fingerprint of litter in the future. Poorly classified areas were discarded through 
photointerpretation work and post-processing. Finally, thirty-two probable illegal dumps were identified, twelve 
of which were confirmed on the territory. 

 

Teledetección de vertederos ilegales mediante clasificación supervisada de imágenes de 
satélite: aplicación en Oaxaca, México 
RESUMEN. Diversos factores económicos, sociales y culturales han contribuido a la proliferación de vertederos 
ilegales, ocasionando degradación de la imagen urbana, afectaciones a la salud de la población y contaminación 
del suelo, aire y agua. Diversas técnicas de percepción remota se han desarrollado para identificar estos focos rojos 
y así contribuir a su mitigación y control. La percepción remota de satélites ha sido utilizada en los últimos años 
para detectar amplias zonas de vertido ilegal de residuos, en lugar de los costosos monitoreos en campo. Se han 
utilizado algoritmos de inteligencia artificial para procesar imágenes de satélite gracias a su disponibilidad y al 
aumento en la capacidad de procesamiento de los sistemas informáticos. Este trabajo presenta los resultados de un 
procedimiento de teledetección por satélite para detectar vertederos clandestinos en una subcuenca hidrográfica 
en Oaxaca, México, a través de una clasificación supervisada de cobertura terrestre utilizando el clasificador 
Random Forest. Se utilizaron doscientos cincuenta y seis polígonos de control para entrenar al clasificador. Los 
criterios de clasificación fueron las doce bandas de las imágenes del Sentinel 2ª, con una resolución espacial de 
10x10 metros, los índices espectrales NDVI, MNDWI, SAVI, NDBI, BSI y la pendiente de la superficie. Para el 
procesamiento de las imágenes de satélites se utilizó la plataforma Google Earth Engine. Se obtuvieron 288.100 
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hectáreas clasificadas de esta manera: 65,4% clasificadas como vegetación, 31,5% como suelo desnudo, 2,7% 
como suelo urbano y el resto como agua o basura. Una matriz de confusión calculó la precisión del modelo en 
0,9517. El modelo no fue capaz de distinguir con precisión entre suelo urbano, suelo desnudo y basura debido a la 
similitud de sus huellas espectrales. Los índices espectrales más importantes para detectar basura fueron el NDVI 
y SAVI, los cuales podrían contribuir a construir una huella espectral de basura en el futuro. Las áreas mal 
clasificadas se descartaron mediante trabajos de fotointerpretación y posprocesamiento. Finalmente, se 
identificaron treinta y dos probables vertederos clandestinos, doce de los cuales fueron confirmados en el territorio. 
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1. Introduction 

In developing countries like Mexico, it is difficult to find cases in which urban solid waste 
(MSW) is adequately confined to avoid impacts on the natural and social environment. MSW Final 
Disposal Sites (FDS) have become one of the main sources of air, soil, and water pollution with strong 
health, economic, and legal impacts (Semarnat, 2020; Sedema, 2021). Instead, open-air landfills 
predominate without any type of control.  

The lack of space for the final deposit of waste generated in cities, the high costs of managing 
these sites (Kaza et al., 2018), and their poor operation (Gill et al., 2019) contribute to the formation of 
illegal dumps. An illegal dump is a place that, without environmental considerations, is chosen by a 
group of people to deposit their waste without obtaining permission from the competent authority 
(Karimi and Richter, 2022). Likewise, the deficiency of waste collection systems and the involvement 
of uncontrolled private agents cause the proliferation of illegal dumps on the outskirts of urban centers 
(Ferronato et al., 2021; Vu et al., 2019). Rapid industrial and urban growth during the last century has 
also contributed to the emergence of illegal dumps, making them a central environmental problem in all 
developed and developing countries (You et al., 2020; Karimi and Richter, 2022; Silvestri and Omri, 
2008). 

Mexico reports that 16% of the MSW generated is not collected (Semarnat, 2020), so a fraction 
of it could end up in illegal dumps. These illegal dumps increased by 10.8% between 2019 and 2021 in 
Mexico City (Sedema, 2021), and they are generally found on public roads, common areas, parks, vacant 
lots, ravines, and streams. The State of Mexico illegally deposes of more than 220 tons/day of waste in 
50 landfills and pours nearly 5 thousand tons on the metropolitan area's periphery (Rodríguez, 2023).  

Illegal dumps are a source of air, soil, and water pollution (Karimi and Richter, 2022). The 
pollutants generated in these sites are mobilized and dispersed in broad areas due to topographic 
conditions, drainage systems, and soil types (Angelino et al., 2018; Glanville and Chang, 2015). Illegal 
dumps pollute due to the emission of greenhouse gases generated by decomposing the organic fraction 
of the dumped waste (Cusworth et al., 2020). They also pollute by the dissolution of solid polluting 
materials, such as heavy metals, by meteoric water that falls on them and its subsequent integration into 
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surface or underground water currents (Padubidri et al., 2022; Mahmood et al., 2023). The spread of 
biological-infectious agents and the proliferation of harmful fauna directly affect the population living 
near illegal dumps (Mahmood et al., 2023; Cusworth et al., 2020).  

Dumps not only cause environmental damage but also impose significant financial burdens on 
managers: in Australia, the management of more than nine thousand tons of illegally dumped waste in 
2011-2012 cost more than 6 million dollars (Glanville and Chang, 2015); the Chartered Institution of 
Wastes Management estimated that the associated annual costs with the detection and remediation of 
illegal dumps in the United Kingdom were 100 to 150 million pounds in 2014 (Karimi and Richter, 
2022) and the costs associated with their remediation in the USA were estimated at over $10 million 
dollars in 2016 (Quesada-Ruiz et al., 2019). This underscores the urgent need for effective strategies to 
combat this issue.  

Illegal dumps are not easily detected and frequently are in hidden locations or areas with low 
vehicular or pedestrian traffic. The detection of these sites is not only costly but also ineffective (Karimi 
and Richter, 2022). Identifying them is the crucial first step for their control and remediation, but the 
lack of public data in this regard presents a significant challenge (You et al., 2020). Various methods 
exist to identify these dumps, with field surveys being the most effective but also the most expensive 
(Karimi and Richter, 2022; Angelino et al., 2018). This complexity underscores the need for 
interdisciplinary collaboration and innovative solutions. 

A relevant line of research consists of developing predictive models to identify probable areas 
of illegal dumps based on quantitative and qualitative information on the natural and social 
characteristics of the area (Matsumoto and Takeuchi, 2011). Glanville and Chang (2015) suggest a 
binary logistic regression model to identify explanatory variables, such as population density, land use, 
nearby waste facilities, and accessibility, that help predict the distribution of illegal dumps processed 
through geographic information systems (GIS). Additionally, methods that include social participation 
and the use of collective intelligence through social networks and applications, which provide 
georeferenced databases to influence authorities (Torres et al., 2021), are explored. However, these 
approaches may have biases and inaccuracies, and their effectiveness on a large scale may be limited 
because they do not always reflect recent changes in landfills and the environment. 

Satellite remote sensing, a precise and effective tool, is instrumental in detecting illegal dumps 
in large geographical areas (Shrivastava et al., 2015; Niu et al., 2023). It offers an alternative for 
analyzing relevant natural environmental features, which can be complemented with GIS (Ahmed et al., 
2006). This technology allows the spectral reflectance of topographic features to be recorded at visible 
and infrared wavelengths. The temperature difference at the earth's surface has been used to detect illegal 
waste dumping activities (Gill et al., 2019; Yan, 2014) since areas where organic waste decomposes 
tend to have higher temperatures due to exothermic chemical reactions (Mahmood et al., 2023). Gill et 
al. (2019) used Landsat images to identify regions most prone to waste discharge, with an overall 
accuracy of 72%. Mahmood et al. (2023) evaluated thermal energy release in FDSs through remote 
sensing, measuring thermal anomalies with Landsat 8 images.  

Silvestri and Omri (2008) and Karimi and Richter (2022) used remote sensing with Landsat-8 
and Suomi NPP satellite images to develop multi-criteria decision models to identify illegal dumps in 
large areas. Their model included spectral indices and surface temperatures as quantitative decision 
variables.  

A common way to identify illegal dumps and monitor areas impacted by waste is by using 
spectral indices, although mainly as another decision variable (Mahmood et al., 2023). One of the most 
useful indices is the Normalized Difference Vegetation Index (NDVI), which evaluates the health and 
vegetation cover, revealing areas affected by waste. Although effective, NDVI may be less reliable over 
large areas where diversified environmental factors influence the index (Niu et al., 2023). The 
Normalized Difference Water Index (NDWI) and its modified variant (MNDWI) are crucial for 
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identifying water accumulations and wet areas impacted by dumps, which is critical to understanding 
environmental damage. However, these indices face challenges in urbanized areas where they can be 
confused with built infrastructure (Papale et al., 2023; Xu, 2006).  

The Normalized Difference Urbanized Index (NDBI) distinguishes urbanized areas with high-
resolution data from the Sentinel-2A satellite, highlighting the need to carefully select indices and bands 
for accurate identifications (Vigneshwaran and Kumar, 2018; Xi et al., 2019). The Bare Soil Index (BSI) 
is essential for detecting areas without vegetation cover using near-infrared and shortwave wavelengths, 
which can indicate the presence of dumps (Nguyen et al., 2021). Finally, the Soil Adjusted Vegetation 
Index (SAVI) adjusts soil brightness, improving the accuracy of vegetation measurement. Its use 
together with NDWI and MNDWI has proven effective in assessing erosion and deposition in places 
such as the Ping River in Thailand, highlighting its ability to improve environmental monitoring 
strategies (Laonamsai et al., 2023). The studies reviewed have shown the usefulness of spectral indices 
to detect illegal dumps; however, they have been used as another variable in decision models, which 
constitutes a limited application of them. 

Artificial intelligence, a cutting-edge technology, has been effectively used to analyze satellite 
images of the earth's surface; one of its potential uses is the identification of illegal dumps. Niu et al. 
(2023) proposed a deep learning model for FDS mapping based on remote sensing of high spatial 
resolution images (0.5 meters) and a dual-stream deep neural network. Their model achieved high 
performance with an average accuracy of 90.62% and could be used to recognize landfills in large-scale 
regions. Dabholkar et al. (2017) also applied artificial intelligence, particularly neural networks, to 
analyze high-resolution satellite images to detect illegal dumps.  

In addition to the neural networks used by Niu et al. (2023) and Dabholkar et al. (2017), 
supervised classification algorithms can be used for remote sensing of illegal dumping sites, as done by 
Perumal and Bhaskaran (2010) and Wang et al. (2024). Random forests is an artificial intelligence 
algorithm used for classifying remotely sensed images and outperforms individual decision tree 
classifiers (Zhou et al., 2021). Also, it performs identically or better than several advanced pattern 
recognizers, such as artificial neural networks, support vector machines, and bagging and boosting 
methods (Shi and Yang, 2016; Zhou et al., 2021).  

Remote sensing can provide crucial information for identifying contaminated sites, but there are 
few rigorously validated approaches (Silvestri and Omri, 2008). This work addresses the use of remote 
sensing with multispectral images taken from the Sentinel-2 satellite to analyze the earth's surface and, 
using a supervised classification algorithm, identify probable illegal dumps of solid waste in 
hydrographic subbasins surrounding the metropolitan area of Oaxaca, Mexico. A classifier model was 
trained with random forests from a set of control polygons on known surfaces with waste in the open. 
The study area's image collection, processing, and supervised classification were done on the Google 
Earth Engine platform. The results were verified in the office using geographic information systems 
and, in the field, taking a sample of the probable illegal dumps identified in the office. 

 

2. Materials and methods 

This section describes the five stages used to identify probable illegal dumps in hydrographic 
subbasins bordering the Metropolitan Area of Oaxaca, Mexico. The diagram in Figure 1 shows the 
research process used in this work.  
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Figure 1. Research process to identify potential illegal dumps. 

 

2.1. Stage I. Delimit study area 

This research analyzed the metropolitan area of Oaxaca, which is one of the priority regions to 
address the problem of MSW since it represents the problem faced throughout Mexico. The area is one 
of the distributed MSW management systems studied by the National Research and Advocacy Project 
(Pronaii, by its acronym in Spanish) called "Transdisciplinary Strategy for Research and Resolution of 
the National Problem of Urban Solid Waste" in Mexico. This project aims to contribute to the 
transformation of solid waste management systems with a supportive, social, inclusive and circular 
economy approach. 

The limit of the study area was carried out considering geohydrological and not administrative 
criteria. A delimitation of hydrographic micro-basins bordering the metropolitan area of Oaxaca was 
used. The hydrographic basin as a basic planning unit allows for the quantification of some natural and 
anthropic processes, such as the hydrological cycle, soil erosion processes, and dispersion of pollutants 
and nutrients, among others.  

Figure 2 shows the three micro-basins surrounding the metropolitan area of Oaxaca that were 
analyzed to identify illegal dumps. The polygonal product of hydrographic basins used in this study is 
HydroBASINS (Lehner and Grill, 2013) on a global scale. This product was developed on behalf of the 
United States World Wildlife Fund with the support of international organizations and is part of the 
HydroSHEDS database (Hydrographic data and maps based on Shuttle Elevation Derivatives). 
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Figure 2. Microbasins of the metropolitan area of Oaxaca. 

 

2.2. Stage II. Establish control polygons and timing of the analysis 

The determination of official FDS that could contain surfaces covered by MSW deposited in the 
open was derived from the census of municipal governments and territorial demarcations of Mexico 
City in 2021 (INEGI, 2022). Thirty-nine FDS were identified, located, and analyzed using ArcGIS Pro 
to create the vector layer with the geolocation of the official FDS.  

Photo interpretation work of the satellite images in the Google Earth Pro software identified 
surfaces covered with MSW deposited in the open between December 15, 2022, and January 15, 2023. 
These surfaces served as initial control polygons to train the supervised classification model and 
consisted of fifty-six control polygons for MSW coverage. This stage resulted in a vector layer of 
polygons covered by open-air MSW and a period of analysis. 

 

2.3. Stage III. Program the model in Google Earth Engine 

The supervised classification model of the multispectral images of the study area was 
programmed using Google Earth Engine. This online platform offers unparalleled access to an extensive 
catalog hosting millions of satellite images such as Sentinel-1, -2, -3, and -5P. This tool can also process 
large volumes of data efficiently and quickly in the cloud, which is of enormous value considering the 
size of the study area.  

Figure 3 shows the process flow diagram of the model based on the methodologies presented in 
the End-to-End Google Earth Engine course (Gandhi, 2021) to identify probable illegal dumps used to 
process the images acquired from the Sentinel-2 MSI sensor, calculate spectral indices, and perform 
supervised classification. The first part of the model allows access to vector resources on the location of 
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control polygons and delimitation of the study area. Next, multispectral images from the 
COPERNICUS_S2_SR collection of the Sentinel-2 sensor were acquired and preprocessed. Image 
preprocessing includes corrections to remove atmospheric effects, geometric and radiometric correction, 
and image harmonization to ensure consistency between images from different dates and paths. The 
choice of these images and their proper processing are essential to obtain reliable data. 

 

 
Figure 3. Flowchart of the supervised classification model in Google Earth Engine. Source: Own elaboration 

based on the supervised classification model proposed by Gandhi (2021). 
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The next block of the model uses spectral indices for the identification and differentiation of land 
cover. Land cover is a biophysical indicator that describes the materials that cover the territory, although 
it is understood differently depending on the discipline, the joint use of the concepts of land use and land 
cover is very common (Torres et al., 2023). This study established five categories of land cover:  

1) built structures or urban coverage; 2) bare soil or soil devoid of vegetation; 3) bodies of water; 
4) surfaces with vegetation cover; and 5) surfaces covered with MSW.  

In this part, the spectral indices NDVI, MNDWI, SAVI, NDBI, and BSI are calculated, with 
which the control polygons were precisely defined. Figure 4 shows the spectral image of the study area. 
Each of these indices provides critical information for the analysis, such as the amount and health of 
vegetation, the detection of the presence of water, the identification of areas with vegetation, and the 
characterization of areas without vegetation cover. The analysis of spectral indices is presented as an 
essential component of the procedure since it allows the precise delineation of specific characteristics 
on the Earth's surface, which is essential for the subsequent identification of probable illegal dumps. 

The random forest classifier was the supervised machine learning algorithm used for 
classification and regression tasks in this work. This classifier integrated fifty decision trees into the 
forest. This classifier used 70% of the polygons for training and the remaining 30% for validation tests. 
The decision criteria were the values of the 13 bands of the optical images, the spectral indices NDVI, 
MNDWI, SAVI, NDBI, and BSI, and the slope and altitude of the surface. 

 

 

Figure 4. Images of the spectral indices in the study area: a) NDVI, b) MNDWI, c) SAVI, d) BSI and e) NBI. 

 

2.4. Stage IV. Tune the model to improve its accuracy 

After classification, model accuracy was evaluated using a confusion matrix, and the 
misclassified polygons were determined. The validation of supervised classification accuracy was 
executed through a Confusion Matrix, like an overall accuracy metric. Depending on the results 
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obtained, the polygons were reclassified, eliminated, or others were included, using information from 
the spectral indices and satellite images available in Google Earth Engine. This run, fix, tune, and test 
loop consumed considerable research time. Due to this iterative process of improving accuracy, it was 
not considered necessary to use other metrics, such as ROC or the McNemar test, to validate the 
cartographic products. 

 

2.5. Stage V. Validate results in cabinet and in field 

The classification results were subjected to a rigorous validation process that included both cabinet 
photo interpretation techniques and field validation. The main objective of this validation was to ensure 
the accuracy of the classification. The validation in the cabinet was based on photo interpretation 
techniques to make a visual and detailed evaluation of the areas classified as illegal dumps. Figure 5a 
shows the supervised classification results on a property in the study area. Pixels classified as waste are 
shown in black color. Figure 5b shows the Google Earth Pro satellite image in which characteristic features 
of a surface covered with irregularly deposited waste are detected. Finally, Figure 5c shows a street-view 
photograph that seems to confirm the accumulation of waste in the area. The polygons with the greatest 
remote evidence were presented to the municipal authority of Oaxaca de Juárez for field validation. 

From this stage, a map was obtained with the location of probable illegal dumps, with which the 
field visit was planned with the endorsement of the corresponding municipal and state authorities. The 
field validation consisted of visiting the polygons with the highest probability of being illegal dumps at 
the end of October 2023. To carry out this visit, an approach was made with the competent authorities, 
to whom the information obtained was presented and accompaniment was requested to tour their 
territory. 

 

 

Figure 5. Validation process by photointerpretation. 

 

3. Results and discussion 

From a 5x5 confusion matrix shown in Table 1, it was possible to determine the performance of 
the supervised classification model. The matrix took the coverage established at the checkpoints and 
compared it to the classification assigned by Random Forests. The overall accuracy for the study area 
of Oaxaca was 0.9517, which indicates that the classifier's performance is good. Although the results in 
Table 1 show that the model is not capable of accurately distinguishing between urban soil, bare soil, 
and garbage, it does not mean that the classifier selected was the wrong one. Future works may use other 
classifiers to discriminate the classes, for example, Maximum Likelihood Estimation or Support Vector 
Machines, which were already used by Torres et al. (2023) in land cover classification. These classifiers 
could improve the performance of the current model. However, as Perumal and Bhaskaran (2010) point 
out, it is impossible to state only one classifier for all situations since the characteristics of each image 
and the circumstances of each study vary significantly (Table 1). 
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Table 1. Confusion matrix of the classification model. 

 Urban Bare ground Water Vegetal Waste 
Urban 354 8 0 6 0 
Bare ground 73 950 0 1 8 
Water 8 0 250 0 0 
Vegetal 2 3 0 1320 0 
Waste 10 20 0 2 68 

 

The classifier's confusion between bare soil and vegetation can be explained by the seasonal 
changes in vegetation cover during the analysis period. The model's confusion in classifying urban 
coverage as water confirms what Xu (2006) points out: that the MNDWI works poorly in urbanized 
areas, confusing constructions with bodies of water.  

More relevant to the objective of this work is the model's confusion when predicting the surfaces 
covered with waste. Waste is a mixture of various materials, so obtaining a spectral fingerprint of it is 
difficult. The spectral fingerprint depends on the composition of the waste at the selected control points. 
The most significant confusion in the model is between waste cover and bare ground. Despite the use of 
the BSI index as proposed by Nguyen et al. (2021), this classification error was not possible to avoid. 
Therefore, more research is necessary on the spectral fingerprint of urban solid waste. 

The graph in Figure 6 shows the relative importance of the nineteen decision criteria for 
classifying land cover. As can be seen, the value of the NDVI and SAVI spectral indices, as well as the 
B1 spectral band of aerosols, is the most important characteristic when making the classification. The 
importance that the model gives to the spectral indices is consistent with what Mahmood et al. (2023) 
stated regarding their usefulness in detecting illegal dumps. The NDVI and SAVI indices had already 
been identified by Karimi and Richter (2022) as relevant metrics for remote sensing of these dumpsites.  

 

 

Figure 6. Importance of criteria in supervised classification. 

 

Understandably, NDVI is a vital criterion for vegetal cover, bare ground, and even water bodies. 
Being a simple indicator of photosynthetically active biomass, the NDVI helps soil classification with 
high degrees of certainty, as Silvestri and Omri (2008) found. The SAVI helps mitigate the impact of 
ground shine, so its importance in classification is also consistent with the literature review. The SAVI 
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index improves the precision of identifying areas affected by erosive processes, as Laonamsai et al. 
(2023) suggested.  

The B1 band of aerosols stands out as a significant characteristic in the classification, and this 
result invites us to investigate the spectral fingerprint of solid waste further. Bands B4, B5, B6, and B7 
were the least important in classifying. These bands are associated with red, infrared, and near-infrared, 
an optical characteristic of little relevance among the five coverages analyzed in this work. Future 
models could remove these bands. 

The graph in Figure 7 shows the mean, maximum, and minimum values of the pixels classified 
based on the criteria in Figure 6. The graph 7a shows the spectral fingerprint of the urban coverage for 
363 data points. The adjustment of the NDBI index for this type of coverage is confirmed, as is the 
usefulness of the NDVI and the SAVI, whose values show a dispersion of less than 5%. Graph 7b shows 
the spectral fingerprint for 1187 bare ground data points. The adjustment of the BSI, NDBI, NDVI, and 
SAVI indices for this coverage stands out.  

Graph 7c shows the spectral footprint of residues for 94 data points. For this cover, the NDVI, 
NDBI and SAVI indices present more significant adjustments, along with the bands B03, B11 and B12. 
The adjustment of the NDVI and SAVI spectral indices shown in the figure confirms what Karimi and 
Richter (2022) point out regarding the reduction of vegetation cover due to large-scale soil disturbances 
caused by residues. As shown in Figure 7c, the values of these indices are lower. 

The similarity between the spectral fingerprints of urban cover, bare ground, and waste should be 
appreciated, which partially explains the classifier's confusion and the difficulty of finding illegal dumps. 

The graphs 7d and 7e show the spectral fingerprint of the vegetation cover and water bodies, 
respectively. The 1030 vegetative cover data points analysis permitted to represent the spectral 
fingerprint that fits well to the first six bands. In general, the model distinguished wellvegetation and 
bodies of water cover. The analysis of 258 data points predicted by the model built the clear spectral 
fingerprint of the water.  

Graph 7c is an example of how remote sensing can be used as a discrimination tool to recognize 
the unique spectral reflectance of clandestine dumpsites. This graph is the first approximation of the 
spectral fingerprint that, according to Karimi and Richter (2022), is of capital importance to delve deeper 
into the topic of detection and control of illegal dumpsites. Graph 7c is the first approximation of the 
spectral fingerprint of waste, but future work should delve into the topic, as well as the construction of 
a spectral index of waste.  

Figure 8 shows the supervised classification results in the study area: urban cover represents 2.7%, 
31.5% is bare ground, and 65.4% is vegetal cover. Only 200 hectares in the territory could correspond to 
bodies of water, which is consistent with the climate of the study area. Around 288 thousand 100 hectares 
of land surface were analyzed, supporting what Shrivastava et al. (2015) and Niu et al. (2023) pointed out, 
that satellite remote sensing is a powerful tool for analyzing large geographic areas. 

Regarding the surface classified as covered with waste, the model produced a result of 400 
hectares, which represents only 0.14% of the surface. This area is equivalent to fifteen times the size of 
the Zaachila Landfill, which served the municipality of Oaxaca de Juárez. This area was explored in the 
cabinet through photo interpretation to discard those areas with low potential to be illegal dumps. 

The photo interpretation work after supervised classification was arduous because the model 
yields a large surface with probable waste coverage. Of the total area classified with waste coverage, only 
4% had sufficient evidence in satellite images to establish probable illegal dumps. At this stage, using 
predictive models could further reduce the areas to be explored, such as the one proposed in Glanville and 
Chang (2015), which considers variables such as population density, land use, nearby waste facilities, and 
access roads; this improvement would make the process of detecting illegal dumps more efficient. 
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Figure 7. Spectral footprint of the types of coverage: a) urban, b) bare ground, c) waste, d) vegetal and e) 

water. 
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Figure 8. Results of supervised classification in the study area and location of probable illegal dumping sites. 

 

In the end, 32 probable illegal dumps were detected, which cover approximately seventeen 
hectares (Fig. 8). Fifteen of these sites are in the municipality of Oaxaca de Juárez or its surroundings. 
This number is understandable, given that Oaxaca de Juárez has the largest population of the twenty-
four municipalities that comprise the Metropolitan Zone of Oaxaca. Figures 9, 10, 11, and 12 show the 
result of supervised classification and the five land cover categories with the color indicated on the 
legend of each image. As a background, the available satellite image does not correspond to the model's 
analysis period. So, this produced several discrepancies between the coverage predicted by the model 
and the background image. Also, these figures illustrate the model confusion discussed in previous 
paragraphs. 

The thirty-two probable illegal dumps could not be corroborated in the field since it was 
impossible to obtain the support of the municipal or state authorities of the region. Only the city council 
of Oaxaca de Juárez provided the conditions to tour its territory and carry out the field validation of 
seventeen sites. In this tour, the team discarded some probable illegal dumps; for example, sites 29 and 
32 were banks of stone materials instead of waste, and their reflectance was like that of MSW. Site 30 
contained construction and demolition waste, but this waste was on private property, so it cannot be 
considered a dump itself. At site 31, there was no trace of a waste deposit, and at site 28, only remains 
of burned waste were found.  

The rocks identified at sites 29 and 32 showed hydrothermal alteration. During 
hydrothermalism, water reacts with the original rock-forming minerals, such as feldspars, pyroxenes, 
and amphiboles, to form micas and clays (Frost and Frost, 2019). Rocks display characteristic spectral 
signatures in multispectral and hyperspectral RS systems based on their mineralogy and texture (Girijaa 
and Mayappana, 2019). Girijaa and Mayappana (2019) report that it is possible to identify minerals 
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formed by hydrothermal alteration from band ratios (BR) and Principal component analysis (PCA). For 
the same purpose, Abdel-Rahman (2023) used selective band ratios (BR), directed principal component 
analysis (DPCA), feature-oriented false color composites (FFCC), and constrained Energy 
Minimization (CEM) using ASTER and Sentinel 2 data. Using BR and PCA can reduce the confusion 
model between residues and altered rocks in future studies. 

 

 
Figure 9. Probable illegal dumps 1-8. 
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Figure 10. Probable illegal dumps 9-16. 
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Figure 11. Probable illegal dumps 17-24. 
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Figure 12. Probable illegal dumps 25-32. 
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In twelve properties identified as probable illegal dumps, there was evidence of irregular solid 
waste deposits. Fieldwork confirmed the possible illegal dumps 15, 16, 17, 18, 19, 20, 21, 22,23, 25, 26, 
and 27. Some of the background images of these sites correspond to an orthophoto obtained with a drone 
flight during the field validation carried out between October 24 and 26, 2023. The area of validation 
was the bank of the Atoyac River was poses a high risk of contamination for this body of water. People 
regularly and clandestinely dump urban solids and special handling waste in this area. 

Future research should review the impacts of irregular discharge on the banks of the Atoyac 
River in depth. Unfortunately, the lack of resources allocated to monitoring and controlling waste 
dumping causes clandestine practices with strong environmental impacts. The results of this work 
required arduous validation work in the office but less than traditional classification methods, which 
require expensive and time-consuming field studies, as Perumal and Bhaskaran (2010) pointed out. 
Using collective intelligence and social participation can improve the validation process in the field 
(Torres et al., 2021).  

This work improved classification models by using spectral indices as relevant characteristics. 
Although Niu et al. (2023) pointed out that the effectiveness of these indices decreases in large 
territories, the results of this work show that the post-processing techniques can correct the effectiveness 
of discarding poorly classified areas.  

The model presented in this investigation does not reach the level of precision of other models 
such as those developed by Gill et al. (2019) and Niu et al. (2023). However, one of its benefits is the 
possibility of exploring large geographical areas, and that in combination with photointerpretation and 
GIS techniques, it can successfully detect illegal dumps. 

It is important to mention that other artificial intelligence algorithms, such as artificial neural 
networks, have been used, obtaining greater precision (Gill et al., 2019; Niu et al., 2023; Dabholkar et 
al., 2017; Zhou et al., 2021; Wang et al. (2024)). However, these models require high-resolution images, 
which limits their large-scale applicability.  

An important line of research is to develop predictive models to identify probable areas of illegal 
dumping sites. Although this work provides relevant information for this, a model of this type usually 
ignores spatial heterogeneity and local contamination characteristics, so this work did not follow this 
line. 

 

4. Conclusions 

The traditional approach to garbage management in Mexico is inefficient and fails to fully 
protect the environment and the health of the population. Proof of this are the dozens of illegal dumps 
found in the study area. Technological tools such as the presented in this work can help managers and 
decision makers develop actions to control and mitigate pollution in these sites. The development of 
these models requires technical skills that could be beyond the reach of local authorities; however, 
collaboration between the academic sector and the authorities, as exemplified by the Pronaii in Mexico, 
can bridge this gap. 

This work has shown how artificial intelligence, satellite remote sensing, and geographic 
information systems constitute powerful tools for identifying illegal dumps. The availability of satellite 
images over increasingly shorter periods and tools to process them, such as Google Earth Engine, can 
contribute to the development of remote sensing in solid waste management. This study is the one first 
approach to regional studies for detecting illegal dumps, through of the solid methodology that could 
replicated in other regions in Mexico. 

Although the model presented does not achieve the level of precision of other models, such as 
those developed by Gill et al. (2019) and Niu et al. (2023), one of the benefits is that it can be expanded 
to explore large geographical areas and, combined with photointerpretation and GIS techniques, it can 
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be successful in detecting illegal dumps. It should also be noted that other artificial intelligence 
algorithms such as artificial neural networks have been used, obtaining greater precision (Gill et al., 
2019; Niu et al., 2023; Dabholkar et al., 2017); however, these models require high-resolution images, 
which limits their large-scale applicability.  

The surfaces covered with solid waste occupied as control polygons allowed us to explore the 
spectral fingerprint of the solid waste and identify the bands and indices that are characteristic of it. 
This is a contribution to the remote sensing of illegal dumps. Future work will be able to specify the 
spectral fingerprint of the waste, and even construct a spectral index for the detection of solid waste 
on a large scale. 

Others research should focus on improving spectral techniques for waste and integrating social 
participation mechanisms to enhance the detection and management of illegal dumps. 
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