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ABSTRACT. Land use and land cover (LULC) mapping is essential for land-based climate change adaptation 
and mitigation strategies. This study presents the development of 10-meter high-resolution (HR) land use maps 
within the RethinkAction H2020 project, aimed at enhancing spatial planning for climate mitigation and 
adaptation. The methodology integrates multi-source remote sensing data, machine learning classification 
techniques, and auxiliary datasets to generate accurate and transferable land use classifications across six European 
bioclimatic regions. The study employs Sentinel-2 and Landsat-8 imagery, using supervised classification with 
Random Forest (RF) and Geographic Object-Based Image Analysis (GEOBIA) to enhance accuracy and minimize 
spectral confusion. This approach resulted in the creation of twelve HR land use maps at two classification levels, 
covering six case study (CS) areas. A key contribution of this research is the generation of suitability maps, which 
assess the potential for implementing land-based mitigation and adaptation solutions (LAMS) such as 
reforestation, water harvesting, and photovoltaic energy development. This study highlights the importance of 
integrating remote sensing, machine learning, and spatial analysis to support evidence-based decision-making in 
land use planning, offering a scalable and replicable methodology for detailed LULC classification. 

 

Avances en la cartografía de alta resolución de usos del suelo: metodologías y aprendizajes 
del proyecto H2020 RethinkAction 
RESUMEN. La cartografía de uso y cobertura del suelo (LULC, por sus siglas en inglés) es fundamental para las 
estrategias de adaptación y mitigación del cambio climático basadas en el territorio. Este estudio presenta el 
desarrollo de mapas de uso del suelo de alta resolución (HR) a 10 metros en el marco del proyecto RethinkAction 
H2020, con el objetivo de mejorar la planificación espacial orientada a la mitigación y adaptación climática. La 
metodología integra datos de teledetección, técnicas de clasificación mediante aprendizaje automático y conjuntos 
de datos auxiliares para generar clasificaciones precisas y transferibles del uso del suelo en seis regiones 
bioclimáticas europeas. El estudio emplea imágenes de Sentinel-2 y Landsat-8, utilizando clasificación 
supervisada con Random Forest (RF) y análisis geográfico basado en objetos (GEOBIA) para mejorar la precisión 
y reducir la confusión espectral. Este enfoque dio lugar a la creación de doce mapas HR de uso del suelo en dos 
niveles de clasificación, abarcando seis áreas de estudio de caso (CS). Una contribución clave de esta investigación 
es la generación de mapas de idoneidad, que evalúan el potencial para implementar soluciones de mitigación y 
adaptación basadas en el suelo (LAMS), como la reforestación, la captación de agua y el desarrollo de energía 
fotovoltaica. Este estudio subraya la importancia de integrar teledetección, aprendizaje automático y análisis 
espacial para respaldar la toma de decisiones fundamentadas en la planificación del uso del suelo, ofreciendo una 
metodología escalable y replicable para la clasificación detallada de LULC. 
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1. Introduction 

Land use mapping is an invaluable tool in the realm of climate change mitigation, serving as a 
foundational element for greenhouse gas inventories (ESA, 2024). It enables the identification of regions 
rich in carbon stocks, such as forests, peatlands, and wetlands. These areas are critical for devising 
strategies aimed at curtailing deforestation and degradation, thereby making significant contributions to 
climate change mitigation efforts. The precise delineation of land use through mapping is essential for 
pinpointing these carbon-dense areas, facilitating targeted conservation and management practices that 
help in reducing atmospheric carbon levels. 

Furthermore, land use maps are essential tools in the siting of renewable energy projects, such 
as solar and wind farms, as they help identify suitable locations while considering environmental, social, 
and economic factors. Scientific studies have emphasized the importance of integrating land use 
considerations into renewable energy planning to minimize conflicts and promote sustainable 
development (Patankar, 2022). The selection of appropriate locations for these projects is crucial to 
ensure that they have minimal ecological impacts while maximizing energy production. Detailed land 
use information provided by mapping enables stakeholders to identify sites that are not only suitable for 
renewable energy generation but also are in harmony with the surrounding environment, thus balancing 
energy needs with ecological conservation. 

LULC mapping is essential for environmental monitoring, urban planning, agriculture, and 
climate change mitigation. Advances in remote sensing and machine learning have significantly 
improved classification accuracy, enabling large-scale high-resolution mapping (Gong et al., 2020). 
Studies have demonstrated its effectiveness in deforestation monitoring (Hansen et al., 2013), urban 
expansion tracking (Zhao et al., 2022), and land-use planning for renewable energy (Patankar et al., 
2022). The use of multi-temporal Sentinel-2 and Landsat-8 imagery has further enhanced spatial and 
temporal change detection (Holtgrave et al., 2020). 

LULC maps are widely used in agriculture and resource management to monitor crop 
phenology, irrigation, and soil degradation. Remote sensing has been applied to detect irrigated 
croplands (Wu et al., 2011) and analyze crop phenology in China (You et al., 2013), highlighting the 
value of HR land classification for precision agriculture and sustainable land-use planning. Additionally, 
spectral indices like NDVI, NDMI, and NDWI effectively distinguish vegetation types and water bodies 
in complex landscapes (Costa et al., 2022). 

Advancements in machine learning have improved LULC classification accuracy. Random 
Forest (RF), introduced by Breiman (Breiman, 2001), is widely used for its robust performance with 
large datasets and ability to reduce overfitting. Studies have shown its effectiveness in multi-temporal 
and multi-spectral land cover classification (Ramezan et al., 2021; Tang et al., 2021). The integration 
of GEOBIA with RF further enhances accuracy by reducing salt-and-pepper noise and improving object-
based classification, making it a preferred method for HR land cover studies. 

The aim of this paper is to detail the process followed in Rethink Action H2020 Project to 
develop 10-meter high resolution (HR) land use maps for six case study (CS) areas and highlights the 
significance of developing land use maps and spatial analyses for the strategic allocation of land uses in 
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different geographical areas. The objective of the selected methodology was to provide detailed land 
use maps which are aligned with the needs expressed by other project tasks (mainly regarding land use 
classes), are replicable in other potential CSs, and ensures the use of common inputs wherever feasible, 
considering the resources allocated for this activity within the project. 

 

2. The RethinkAction project 

The RethinkAction project is a European initiative aimed at addressing climate change through 
innovative land use strategies. Funded by the Horizon 2020 program, it brings together thirteen partners 
from nine countries, integrating expertise from diverse fields such as social sciences, environmental 
sciences, and information technology. 

Launched in October 2021, RethinkAction is developing a decision-making platform designed 
for policymakers, stakeholders, and citizens. This platform provides clear, actionable insights on climate 
change, emphasizing the crucial role of land use in sustaining life and achieving climate objectives. It 
also raises awareness about how individual and collective behavioral changes can shape land use 
patterns, thereby encouraging active participation in climate action. 

A key component of the project is the creation of HR land use maps, which serve as the 
backbone for further analysis and decision-making. These HR land use maps are used in the project to 
create suitability maps through a multi-criteria spatial analysis. These maps support land use allocation 
modeling within the local System Dynamics (SD) models, whose goal is to define the adaptation and 
mitigation potential of each selected Land-based Adaptation and Mitigation Solution (LAMS). 

 

2.1. Case Studies (CS) 

The HR land use maps have been created for the 6 CSs defined by RethinkAction (Figure 1). 
The CSs comprise relevant and representative examples of EU based territories with a variety of climate 
change impacts and land system pressures. The variety and representativeness of the CSs selected ensure 
a broad replicability of RethinkAction solutions across Europe. The spatial boundaries of the CSs have 
been defined following the Nomenclature of territorial units for statistics (NUTS) which is a 
geographical system, according to which the territory of the European Union is divided into hierarchical 
levels. The three hierarchical levels are known as NUTS -1, NUTS -2 and NUTS -3. RethinkAction uses 
NUTS-2 and NUTS-3 to define the CSs:  

- Boreal CS (CS1): Gotland Region, Sweden (NUTS-3), 3142 km2.  

- Atlantic CS (CS2): Tarn-et-Garonne, France (NUTS-3), 3730 km2.  

- Continental CS (CS3): Southern Great Plain, Hungary (NUTS-2), 18332 km2.  

- Alpine CS (CS4): Valle d’Aosta Region, Italy (NUTS-2), 3261 km2.  

- Mediterranean CS (CS5): Almería province, Spain (NUTS 3), 8776 km2.  

- Macaronesia CS (CS6): Azores archipelago, Portugal (NUTS 2), 2302 km2.  
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Figure 1. 

 

3. Data and methodology 

3.1. Land use classes  

The land use maps constitute the baseline for RethinkAction to study and assess relevant actions 
and solutions that are related to land use. The land use maps are the baseline for other RethinkAction 
tasks, mainly for the development of the local SD models. The design of the land use maps has taken 
into consideration the requirements provided by the SD models developers and other related project 
tasks. One of the main requirements was the request of specific land use classes which has resulted in 
the development of two different levels of land use maps: Level 1 (L1) and Level 2 (L2). 

Land use maps L1 is the basic version of the land use maps which includes 12 land use classes. 
The definition of the L1 of the HR land use maps was based on the requirements mainly provided by 
the RethinkAction modellers that need the defined land use classes as inputs of the local SD models. 
Land use maps L2 is an extended version of the L1 land use maps including additional classes requested 
by the project that were considered for the development of the suitability maps generated for the project 
as well and based on the HR land use maps too. L2 provides 21 different classes: the ones included in 
L1 plus the disaggregation of Urban Land, Water and Other Land classes. The list of the classes of the 
HR land use maps L1 and L2 is included in Table 1. 

 

Table 1. Land use classes of the HR land use maps L1 and L2. 

Land use maps L1 Land use maps L2 
Rainfed Cropland Rainfed Cropland 
Irrigated Cropland Irrigated Cropland 
Forest Managed Forest Managed 
Forest Primary Forest Primary 
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Forest Plantation Forest Plantation 
Shrubland Shrubland 
Grassland Grassland 
Wetland Wetland 

Urban Land 

Continuous Urban Land 
Discontinuous Urban Land 
Industrial/Commercial Units 
Roads 
Mining 

Solar Land Solar Land 

Water 
Water 
Water bodies 
Permanent Snow 

Other Land 
Bare Rock/Soil 
Sparsely Vegetated 
Beaches/Dunes/Sand 

 

3.2. Input data 

The input data for obtaining the required land use classifications consist of a combination of 
freely available satellite imagery and auxiliary data for automatic training site extraction. Specifically: 

1. Sentinel-2 and Landsat-8 satellite imagery serve as the primary classification features. 

2. A multi-temporal approach was adopted, using four trimestral Sentinel-2 composites (10 bands 
each) from 2021 and 2022 to represent an agricultural year. 

In five of the six CS areas (excluding the Azores archipelago), the four trimestral 10-band 
Sentinel-2 composites (with 10 m spatial resolution) were processed in Google Earth Engine (GEE). 
Image compositing was applied to reduce outliers, shadows, and cloud cover, ensuring more accurate 
land cover classification (Beshir et al., 2023).  

Table 2 presents the technical specifications of the satellite data used. 

 

Table 2. Satellite data specifications. 

CS Sensor Bands Central 
Wavelengt
h (µm) 

Spatial 
resolution 
(m) 

Composite 
spatial 
resolution 
(m) 

Time frame  

CS1 
CS2 
CS3 
CS4 
CS5 

Sentinel 2 Band 2 - Blue  0.49 10 10 1st trimester - 
01/01/2022 - 
31/03/2022 2nd 
trimester - 
01/04/2022 - 
30/06/2022 
3rd trimester - 
01/07/2021 - 
31/08/2021 
4th trimester - 
01/09/2021 - 
12/12/2021  

Band 3 - Green 0.56 10 
Band 4 - Red 0.665 10 
Band 5 - Vegetation 
Red Edge 

0.705 20 

Band 6 - Vegetation 
Red Edge 

0.74 20 

Band 7 - Vegetation 
Red Edge 

0.783 20 

Band 8 - NIR 0.842 10 
Band 8A - Narrow 
NIR 

0.865 20 

Band 11 - SWIR I 1.61 20 
Band 12 - SEIW II 2.19 20 
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CS6o Sentinel 2 Band 2 - Blue  0.49 10 1st trimester - 
01/01/2022 - 
31/03/2022 2nd 
trimester - 
01/04/2022 - 
30/06/2022  
3rd trimester - 
01/07/2021 - 
31/08/2021  
4th trimester - 
01/09/2021 - 
12/12/2021  

Band 3 - Green 0.56 10 
Band 4 - Red 0.665 10 
Band 8 - NIR 0.842 10 
Band 11 - SWIR I 1.61 20 
Band 12 - SEIW II 2.19 20 

Landsat 8 Band 2 - Blue  0.482 30 
Band 3 - Green 0.561 30 
Band 4 - Red 0.655 30 
Band 5 - NIR 0.865 30 
Band 6 - SWIR I 1.609 30 
Band 7 - SWIR II 2.2 30 

 

In the Azores islands persistent cloud cover avoided cloud-free Sentinel-2 image composites. 
Therefore, Landsat 8 was also used in the Azores archipelago CS to cover this lack of cloud-free images. 
Sentinel 2 and Landsat 8 surface reflectance data were merged and downscaled to 10 meters. This 
resulted into four cloud-free median composites, one per trimester (2021 – 2022), each with 6 bands: 
Blue, Green, Red, Near InfraRed (NIR), Short-Wave InfraRed1 (SWIR1) and Short-Wave InfraRed2 
(SWIR2). 

To complete the set of classification features, the following spectral indices composites (using 
maximum values) were computed in GEE for each CS and each trimester: Normalized Difference 
Vegetation Index (NDVI), Bare Soil Index (BSI), Moisture Stress Index (MSI), Normalized Difference 
Moisture Index (NDMI), Normalized Difference Snow Index (NDSI), and Normalized Difference Water 
Index (NDWI). 

For the extraction of training sites several datasets from the Copernicus Land Monitoring 
Service (CLMS) were used. The most recent datasets of the products were used, which are dated from 
2018. To complement these datasets and to guarantee efficient training site extraction (see section 
Training site extraction), local land use/land cover data and different thematic land masks were 
requested and provided by the CS leaders. Other additional datasets such as the Solar Land feature from 
OpenStreetMap (OSM) as well as the 2015 Global Forest Management data (GFMD) were also used 
for training site extraction. Table 3 shows a summary of ancillary data used for this purpose. 

 

Table 3. Ancillary data. 

Data provider Dataset Date CS Source 
CLMS Corine Land Cover (CLC) 2018 All https://land.copernicus.eu/

pan-european/high-
resolution-layers  

Imperviousness Density (IMD) 2018 All 
Impervious Built-up (IBU) 2018 All 
Dominant Leaf Type (DLT) 2018 All 
Tree Cover Density (TCD) 2018 All 
Grassland (GRA) 2018 All 
Water and Wetness (WAW) 2018 All 
Urban Atlas (UAtlas) 2018 CS3 

CS4 
CS5 
CS6 

https://land.copernicus.eu/
local  

Natura 2000 (NK200) 2018 All 
National Geographic 
Information Center (CNIG) 
[Centro Nacional de 
Información Geográfica] 

Sistema de Información sobre 
Ocupación del Suelo de España 
(SIOSE) 

2018 CS5 http://centrodedescargas.c
nig.es/CentroDescargas/ca
talogo.do?Serie=SIOSE  

Superficies de Secano (Rainfed) 2013 

https://land.copernicus.eu/pan-european/high-resolution-layers
https://land.copernicus.eu/pan-european/high-resolution-layers
https://land.copernicus.eu/pan-european/high-resolution-layers
https://land.copernicus.eu/local
https://land.copernicus.eu/local
http://centrodedescargas.cnig.es/CentroDescargas/catalogo.do?Serie=SIOSE
http://centrodedescargas.cnig.es/CentroDescargas/catalogo.do?Serie=SIOSE
http://centrodedescargas.cnig.es/CentroDescargas/catalogo.do?Serie=SIOSE
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Ministry of Agriculture of 
Hungary (AM) 
[Agrárminisztérium] 

Ökoszisztéma-alaptérkép/ 
Ecosystem Map of Hungary 
(OSZ) 

2015-
2017 

CS3 http://alapterkep.termeszet
em.hu/  

Swedish Environmental 
Protection Agency 
[Naturvårdsverket] 

Naturvårdsverket/National Land 
Cover Database (NMD) 

2018 CS1 https://www.naturvardsver
ket.se/en/services-and-
permits/maps-and-map-
services/national-land-
cover-database/  

National Institute of 
Geographic and Forest 
Information (IGN-F) 
[Institut national de 
l'information géographique 
et forestière]   

Occupation du sol/Land cover 
map (LUF) 

2013 CS2 https://www.data.gouv.fr/fr
/datasets/occupation-du-
sol-2013-tarn-et-garonne/  

National Geographic 
Information System (SNIG) 
[Sistema Nacional de 
Informação Geográfica] 

Carta de Ocupação do Solo 
Açores/Land Cover Map Azores 
(COS) 

2018 CS6 http://ot.azores.gov.pt/CO
SA-2018.aspx  

Institute for the Financing of 
Agriculture and Fisheries 
(IFAP) [Instituto de 
Financiamento da 
Agricultura e Pesca] 

Sistemas de Identificação 
Parcelar/Agriculture Parcels 
Cultures (Parcels) 

2015 https://publico-
isip.ifap.pt/web/Index.aspx  

Copernicus Emergency 
Management Service (EMS) 

Land use maps built under the 
framework of EMSN018 (EMS) 

2015 https://emergency.copernic
us.eu/mapping/list-of-
components/EMSN018  

Department of Public 
Works, Territory and 
Environment. Autonomous 
Region of Aosta Valley 
[Assessorato opere 
pubbliche, territorio e 
ambiente. Région Autonome 
Vallée d'Aoste] 

Copertura del Suolo della Valle 
d’Aosta/Land use VdA (VdA) 

2020 CS4 https://mappe.partout.it/pu
b/GeoNavSCT/?repertorio
=copertura_suolo  

Lesiv, M., Schepaschenko, 
D., Buchhorn, M. et al. 

GFMD 2015 All https://zenodo.org/record/
4541513#.Y6BDCXbMKU
m  

OpenStreetMap (OSM) Solar Plants Unkn
own 

All https://www.openstreetma
p.org/  

 

3.3. Approach and Methods 

LULC classification using Sentinel-2 and Landsat-8 imagery is a widely used remote sensing 
method. Sentinel-2’s high spatial resolution enhances differentiation between vegetation, urban areas, 
and water bodies (Zhang et al., 2022), while Landsat-8’s long-term data supports time-series land cover 
analysis (Huang et al., 2021). 

Multi-temporal analysis improves LULC classification accuracy by capturing seasonal 
vegetation changes. Trimestral Sentinel-2 composites enhance crop and forest classification (García et 
al., 2023). Additionally, spectral indices like NDVI and NDWI refine classification; NDVI quantifies 
vegetation health (Jones et al., 2020), while NDWI enhances water detection by suppressing soil and 
vegetation reflectance (Gao, 1996). 

These indices, when integrated into classification models, significantly improve the 
differentiation between various land cover types. As highlighted by other authors (Liu et al., 2022), 
"combining NDVI and NDWI with Sentinel-2 and Landsat-8 imagery enhances the accuracy of LULC 
classifications by reducing spectral confusion among similar classes”. 

http://alapterkep.termeszetem.hu/
http://alapterkep.termeszetem.hu/
https://www.naturvardsverket.se/en/services-and-permits/maps-and-map-services/national-land-cover-database/
https://www.naturvardsverket.se/en/services-and-permits/maps-and-map-services/national-land-cover-database/
https://www.naturvardsverket.se/en/services-and-permits/maps-and-map-services/national-land-cover-database/
https://www.naturvardsverket.se/en/services-and-permits/maps-and-map-services/national-land-cover-database/
https://www.naturvardsverket.se/en/services-and-permits/maps-and-map-services/national-land-cover-database/
https://www.data.gouv.fr/fr/datasets/occupation-du-sol-2013-tarn-et-garonne/
https://www.data.gouv.fr/fr/datasets/occupation-du-sol-2013-tarn-et-garonne/
https://www.data.gouv.fr/fr/datasets/occupation-du-sol-2013-tarn-et-garonne/
http://ot.azores.gov.pt/COSA-2018.aspx
http://ot.azores.gov.pt/COSA-2018.aspx
https://publico-isip.ifap.pt/web/Index.aspx
https://publico-isip.ifap.pt/web/Index.aspx
https://emergency.copernicus.eu/mapping/list-of-components/EMSN018
https://emergency.copernicus.eu/mapping/list-of-components/EMSN018
https://emergency.copernicus.eu/mapping/list-of-components/EMSN018
https://mappe.partout.it/pub/GeoNavSCT/?repertorio=copertura_suolo
https://mappe.partout.it/pub/GeoNavSCT/?repertorio=copertura_suolo
https://mappe.partout.it/pub/GeoNavSCT/?repertorio=copertura_suolo
https://zenodo.org/record/4541513#.Y6BDCXbMKUm
https://zenodo.org/record/4541513#.Y6BDCXbMKUm
https://zenodo.org/record/4541513#.Y6BDCXbMKUm
https://www.openstreetmap.org/
https://www.openstreetmap.org/


Correia et al. 

152 Cuadernos de Investigación Geográfica, 51 (1), 2025. pp. 145-169 

The HR land use maps were produced using a Geographic Object-Based Image Analysis 
(GEOBIA) approach, which simulates human visual perception by grouping pixels into 
objects/segments based on context and neighbourhood characteristics. Unlike pixel-based methods, 
where classification units are uniform pixels, GEOBIA uses image-objects, incorporating statistical, 
geometrical, and textural data for improved accuracy (Costa et al., 2022). This method is particularly 
effective for high-resolution image classification and reduces the salt-and-pepper effect, minimizing 
classification noise. Figure 2 illustrates the workflow applied in the case studies. Figure 2 illustrates the 
workflow applied in the case studies. Figure 2 shows the workflow applied in the CSs. 

 

 
Figure 1. Classification process workflow. 

 

As shown in the figure above, the processes were conducted using Google Earth Engine (GEE), 
PCI Catalyst Professional (PCI), and ArcMap. GEE was used for satellite imagery compositing 
(trimestral median values) and indices computation (trimestral maximum values), while PCI handled 
the GEOBIA process, including data merging, segmentation, attribute calculation, and Random Forest 
classification. Training sets were extracted and labelled using ArcMap. 

Several studies confirm the effectiveness of Sentinel-2 and Landsat-8 for LULC classification. 
Sentinel-2 excels in urban mapping, while Landsat-8 is better suited for large-scale land cover 
assessments (Huang et al., 2021). Combining both datasets enhances classification accuracy compared 
to using either alone (García et al., 2023). The RethinkAction project’s methodology, integrating 
Sentinel-2, Landsat-8, spectral indices, and multi-temporal compositing, aligns with these findings, 
ensuring high accuracy, particularly for vegetation and water body differentiation, which is essential for 
suitability mapping in land-based mitigation and adaptation solutions. 

 

3.3.1. Segmentation and Attribute Calculation 

The classification process incorporated a 64-layer raster dataset combining auxiliary data and 
spectral indices to enhance accuracy by capturing spectral, spatial, and temporal characteristics. 
However, this multi-layered approach introduces redundancy and correlation among variables, 
potentially causing computational inefficiencies and overfitting (Huang et al., 2021). 

To mitigate redundancy, dimensionality reduction techniques like Principal Component 
Analysis (PCA), Independent Component Analysis (ICA), and Feature Selection Algorithms are 
commonly used in remote sensing (Duro et al., 2012). While no explicit reduction was applied, these 
methods were considered in structuring the workflow. Retaining all indices ensures no critical data loss, 



Land Use Mapping Insights from RethinkAction H2020 Project 

Cuadernos de Investigación Geográfica, 51 (1), 2025. pp. 145-169 153 

though future iterations may explore automated feature selection to enhance efficiency and reduce 
correlation. 

After computing median image composites and indices, they were merged into a 64-channel 
raster file and used for segmentation. The multiresolution segmentation algorithm in PCI (Ramezan et 
al., 2021) was applied to generate a vector layer of statistically homogeneous objects, distinguishing 
them based on spectral and spatial characteristics. The segmentation parameters included: 

- Scale: Controls object size; smaller values create more homogeneous, detailed segments, while 
larger values generate fewer, more heterogeneous objects. 

- Shape (0.1–1.0): Adjusts the weight of spectral values, with lower values emphasizing pixel 
intensity. 

- Compactness (0.1–1.0): Defines boundary smoothness, where higher values produce compact 
objects like crop fields or buildings. 

The scale parameter, often the most critical, is typically selected through trial and error 
(Ramezan et al., 2021). The goal was to create homogeneous segments, minimizing mixed objects to 
ensure accurate automatic training site extraction based on segment centroids. The chosen parameters 
were scale: 35, shape: 0.1, and compactness: 0.9. 

GEOBIA's advantage over pixel-based classification is its ability to incorporate additional 
predictors beyond spectral data. PCI computes various spatial and statistical variables, allowing the 
classification model to determine their relevance. A total of 26 classification features were used: 

- Spectral Parameters: Min, max, mean, and standard deviation (STD) were calculated for each 
band, totaling 256 spectral variables. 

- Textural Features: Three co-occurrence-based metrics (mean, entropy, and contrast) were 
computed using VISIR bands (Red, Green, Blue, Infrared) across all trimesters, resulting in 48 
variables. Due to high computational costs, only these key textural features were selected. 

- Geometrical Attributes: Nine features (compactness, elongation, circularity, rectangularity, 
convexity, solidity, form factor, and major/minor axis length) were processed. These are shape-
based and require less computational power than spectral or textural measures. 

- Vegetation Indices: Ten indices, including NDVI, SAVI, GEMI, and LAI, were computed for 
the driest trimester, as PCI allowed only one trimester selection. 

This approach optimizes classification accuracy while balancing computational efficiency. 
Overall, a high number of classification features were considered to provide enough information and 
allow the classification model to decide the relevance of each feature.  

 

3.3.2. Training site extraction 

After segmentation, the next step in GEOBIA is training sample collection. Unlike pixel-based 
approaches, where training areas are polygons delineating individual pixels, object-based image analysis 
(OBIA) assigns labels to image segments (Khan et al., 2021). This method leverages segment 
homogeneity, reducing noise and enhancing classification accuracy compared to traditional pixel-based 
classification (Miranda et al., 2018). 

However, the manual extraction of training sites through photointerpretation was deemed 
unsuitable for this study due to the high number of segments and the large size of the CSs. As highlighted 
(Hussain et al., 2013), "while manual interpretation remains a valuable tool for high-accuracy training 
data collection, it is often impractical for large-scale applications due to the high labor and time 
requirements". Similarly, Blaschke (Blaschke, 2010) emphasized that automated or semi-automated 
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training sample selection methods are increasingly necessary in large-scale GEOBIA studies to ensure 
feasibility and consistency in classification. 

Given these constraints, alternative automated training site extraction methods have been 
explored in recent studies, such as machine learning-driven feature selection and rule-based 
classification strategies, which improve both efficiency and accuracy in LULC classification (Duro et 
al., 2012). 

This is mainly because manual training site extraction is very time consuming and human 
resource dependent. In addition, there is a lack of local terrain samples and a low spatial resolution of 
the input data which could not guarantee the quality of the training samples. Therefore, an automatic 
training site extraction methodology based on previous work of Costa was used (Costa et al. 2022). 

The computed segments for each CS were converted into centroids and imported into ArcMap. 
Using the Extract Multi Values to Point tool, these points were assigned attributes from ancillary data 
for SQL-based labeling. This method requires homogeneous segments to ensure each point represents a 
single land use class. Labeling was performed through specific queries, e.g., points overlapping CLC 
Continuous Urban areas, matching local land use maps, and having >80% Imperviousness were 
classified as Continuous Urban Land. Table 4 illustrates an example of the ArcGIS queries build for the 
Southern Great Plain CS.  

The Solar Land class from OSM was used as an input for training the Solar Land class of the 
RethinkAction land use maps. The polygons imported from the OSM data were subjected to a visual 
inspection for refinement before integrating them into the process 

 

Table 4. Queries in ArcGIS applied to the Southern Great Plain CS for point labelling. 

Ás 
que 

Nomenclature
_Level1 

Code_
Level2 

Nomenclature_Level
2 

Labelling rules 

1; 2 Cropland 
(Rainfed and 

Irrigated) 

1.1; 
2.1 

Annual "CLC" in (12) and "OSZ" in(2100,2230) and 
"IMD" =0 and "WAW"=0 and "TCD" =0 and 

"GRASS" = 0 or "UAtlas" = 2 and "OSZ"  
in(2100,2230) and "IMD" =0 and "WAW"=0 and 

"TCD" =0 and "GRASS" = 0 
1.2; 
2.2 

Permanent "CLC" in (15,16) and "OSZ" in (2210,2220) 
"IMD" =0 and "WAW"=0 and "IBU"=0 and 

"GRASS"=0 and "WAW"=0  or "UAtlas" = 18 
and "OSZ" in (2210,2220) "IMD" =0 and 

"WAW"=0 and "IBU"=0 and "GRASS"=0 and 
"WAW"=0 

1.3; 
2.3 

Pastures "CLC"=18 and "OSZ" in (3110,3120,3200) and 
"IBU"=0 and "TCD"=0 and "WAW"=0 and 
"GRASS"=1 or "UAtlas" =3 and "OSZ" in 

(3110,3120,3200) and "IBU"=0 and "TCD"=0 
and "WAW"=0 and "GRASS"=1 

3 Forest 3 Forest "CLC" in (23,24,25) and "OSZ" in 
(4301,4302,4303,4304,4305,4306,4307,4308,430
9,4401,4402,4403,4403) and "DLT" in (1,2) and 
"TCD" > 50 and "IMD"=0 and "WAW" = 0 or 

"UAtlas" =8 and "OSZ" in 
(4301,4302,4303,4304,4305,4306,4307,4308,430
9,4401,4402,4403,4403) and "DLT" in (1,2) and 

"TCD" > 50 and "IMD"=0 and "WAW" = 0 
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6 Shrubland 6 Shrubland "CLC"=29 and "OSZ" in (4502,4600,3500) and 
"TCD" < 30 and "WAW" =0 and "IMD"=0 or 
"UAtlas" = 19 and "OSZ" in (4502,4600,3500) 

and "GRASS"=0 and "TCD"> 30 and "WAW" =0 
and "IMD"=0 

7 Grassland 7 Grassland "CLC" = 26 and "OSZ" in 
(3110,3120,3200,3400,3500) and "GRASS"=1 

and "WAW"=0 and "TCD"<15 and "IMD"=0 or 
"UAtlas"= 19 and "OSZ" in 

(3110,3120,3200,3400,3500) and "GRASS"=1 
and "WAW"=0 and "TCD"<15 and "IMD"=0  

8 Wetland 8 Wetlands "CLC" in (36,35) and "OSZ" in (5110,510,5200) 
and "WAW" in (3,4) and "IMD"=0 or "UAtlas" 
=21 and "OSZ" in (5110,510,5200) and "WAW" 

in (3,4) and "IMD"=0 
9 Urban Land 9.1 Continuous  "CLC"=2 and "OSZ" in (1110,1120,1310) and 

"IMD" > 80 and "IBU"=1 and "TCD"=0 and 
"GRASS" =0 and "WAW" = 0 or "UAtlas" =1 

and "OSZ" in (1110,1120,1310) and "IMD" > 80 
and "IBU"=1 and "TCD"=0 and "GRASS" =0 and 

"WAW" = 0 
9.2 Discontinuous  "CLC"=2 and "OSZ" in (1110,1120,1310) and 

"IMD" < 80 and "IBU"=1  and "TCD"=0 and 
"GRASS" =0 and "WAW" = 0 or "UAtlas" in 

(5,9,11,14) and "OSZ" in (1110,1120,1310) and 
"IMD" < 80 and "IBU"=1 and "TCD"=0 and 

"GRASS" =0 and "WAW" = 0 
9.3 Industrial/commercia

l 
"CLC"=3 and "OSZ" in (1110,1120,1310) and 

"IMD" >60 and "TCD"=0 and "GRASS" =0 and 
"WAW" = 0  or "UAtlas" = 4 and "OSZ" in 

(1110,1120,1310) and "IMD" >60 and "TCD"=0 
and "GRASS" =0 and "WAW" = 0 

9.4 Mining "CLC"=7 and "TCD"=0 and "GRASS"=0 and 
"WAW"=0 or "UAtlas" = 6  and "TCD"=0 and 

"GRASS"=0 and "WAW"=0 
9.5 Roads/Railways "OSZ"= 1210 and "IMD">60 and "GRASS"=0 

and "TCD" = 0 and "WAW"=0 or "UAtlas" =13 
and "IMD">60 and "GRASS"=0 and "TCD" = 0 

and "WAW"=0 
10 Solar land 10 Solar Spatial Selection based on OSM data 
11 Snow, ice, 

waterbodies 
11 Water "CLC" in (40,41) and "OSZ" in (6100,6200) and 

"WAW" in (3,4) and "IMD"=0 and "TCD"=0 and 
"GRASS"=0 or "UAtlas" = 10 and "OSZ" in 

(6100,6200) and "WAW" in (3,4) and "IMD"=0 
and "TCD"=0 and "GRASS"=0 

12 Other land 12 Bare 
rock/soil/Sparsely 

vegetated  

"CLC" = 32 and "TCD">15 and "GRASS"=1 and 
"WAW"=0 and "IMD"= 0 or "OSZ" = 4501 and 

"TCD">15 and "WAW"=0 and "IMD"= 0 
 

The training points are imported as “Ground truth” to PCI. The underlying segments of each 
labelled point were assigned as training segments and used to train the Random Forest model as 
explained in the next section. 
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3.3.3. Random Forest training and Object classification 

The Random Forest algorithm is a supervised ensemble machine-learning classifier that 
constructs multiple decision trees (Breiman, 2001). Each decision tree is generated by randomly 
selecting a subset of the training data and variables. The effectiveness of the Random Forest approach 
has been demonstrated in various remote sensing applications, such as land surface temperature 
downscaling (Tang et al., 2021), highlighting its robustness and supporting its suitability for LULC 
classification in this study. By introducing randomization into the learning process, the classifier 
generates multiple models from the same dataset and aggregates their predictions, improving accuracy 
and reducing overfitting. In other words, after training, each unknown sample is classified based on a 
majority vote from the ensemble of decision trees, enhancing classification reliability. 

Random Forest has gained increasing popularity in remote sensed image classification due to 
very high accuracies compared to other commonly used classifiers, ease of parametrization, robustness 
in the presence of noise and its ability to handle high-dimensional datasets (important consideration for 
multi-spectral object-based analysis) (Costa et al., 2022). The Random Forest classifier was chosen 
because of two main reasons: the high number of training areas (in theory, the higher the training set, 
the higher the randomness level, and thus a more efficient learning process is accomplished) and due to 
the less intensive computation of the classifier compared to other machine-learning classifiers (i.e., 
Support Vector Machine). Figure 3 shows a simplified schematization of the Random Forest algorithm.  

 

 
Figure 2: Simplified scheme of the Random Forest algorithm (image extracted from PCI Catalyst Help 

platform, 2021) 

 

In PCI, the Random Forest classifier uses the OpenCV implementation and uses the following 
parameters: 

- Maximum tree depth: maximum number of levels leaf nodes below the root node. 

- Minimum number of samples: minimum number of samples at a leaf node to allow it to be 
further split into child nodes. 

- Active variables: number of randomly selected subset of prediction variables (attributes). 
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- Tree accuracy (based on the Gini Impurity index): accuracy value used to stop a tree from 
growing. 

- Maximum number of trees: number of trees to generate during the classification process. 

The first three parameters determine the split point for a node on each decision tree, while the 
last two are used as stopping criteria in the Forest growth (both parameters can be used as stopping 
criteria individually or in a combination of both). The active variable parameter is, by default, set to 0 
allowing the classifier to use the square root of the total number of input attributes. The tree accuracy 
and the maximum number of trees parameters can be used together as stopping criteria (when one is 
reached the forest stops growing) or can be used individually. Table 5 shows the values for each Random 
Forest parameter used in the classification of all CSs.  

 

Table 5. Random Forest parameter used in this study. 

Random Forest parameter Parameter value 
Max tree depth 20 
Min samples count 35 
Active variables 0 
Max number of trees 500 
Trees accuracy 0.05 

 

Max number of trees was set as the stopping criteria and therefore the Trees accuracy was left 
by default and was not used as a stopping criterion in the Random Forest generation. 

 

3.3.4. Post classification – Forest and Cropland classes 

The previous classification method only enables the extraction of the forest class as one single 
class. Same applicable for cropland class. The lack of ancillary information, the low spatial resolution 
of the input data and limited resources disable the extraction of sub-classes during the classification 
process. For the differentiation of the forest area into the three requested forest classes (Forest Managed, 
Forest Primary, and Forest Plantation) and the cropland classes (Rainfed Cropland and Irrigated 
Cropland) a post-processing approach was implemented.  

For the forest classes, the segments classified as Forest were intersected with the GFMD (see 
Table 3). In those segments where the auxiliary forest layer (GFMD) did not overlap with the forest 
mask from the classification, Copernicus Natura 2000 layer (see Table 3) was used to complement the 
information. Table 6 shows the correspondences between the classes of the global forest management 
layer, Natura 2000 forest classes and the RethinkAction HR land use classes. Most of the forest mask 
has been classified using the two referred ancillary datasets, but in some cases small and isolated 
segments could not be classified. For those segments, a spatial join operation was performed using the 
closest feature to guide the joining process.  

 

Table 6. Correspondence between ancillary forest layers and RethinkAction HR land use classes. 
Global Forest Management Data (GFMD)  

Global Forest 
Management 

Code 

Global Forest Management classes RethinkAction HR Land 
Use classes 

11 Naturally, regenerating forest without any signs of human 
activities, e.g., primary forests 

4 - Forest Primary 

20 Naturally, regenerating forest with signs of human activities, 
e.g., logging, clear cuts etc. 

3 - Forest Managed 
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31 Planted forest 3 - Forest Managed 
32 Short rotation plantation for timber 5 - Forest Plantation 
40 Oil palm plantations Cropland (not considered) 
53 Agroforestry Cropland (not considered) 

Natura 2000 (N2K 2018) 
Natura 2000 

Code 
Natura 2000 classes Rethink HR Land Use 

Classes 
4230 Agroforestry Cropland (not considered) 
3110 Natural, semi-natural broadleaved forest  4 - Forest Primary 
3120 Highly artificial broadleaved plantations 5 - Forest Plantation 
3210 Natural, semi-natural coniferous forest  4 - Forest Primary 
3220 Highly artificial Coniferous plantations 5 - Forest Plantation 
3310 Natural, semi-natural mixed forest 4 - Forest Primary 
3320 Highly artificial mixed plantations 5 - Forest Plantation 
3400 Transitional woodland and scrub 4 - Forest Primary 
3500 Line of trees and scrub  4 - Forest Primary 
3600 Damaged forest 4 - Forest Primary 
 

Regarding cropland classes, the differentiation between rainfed and irrigated croplands was 
requested for the modelling needs. Several approaches were explored but finally it was decided to use a 
thresholding of vegetation indices. The selected vegetation indices are: NDVI, NDWI and NDMI. The 
NDVI is an index that indicates the greenness, density, and health of vegetation in each pixel. Thus, it 
is suitable for estimating the vegetation vigour throughout the crop cycle. The NDWI reflects moisture 
in plants and soil and therefore relates strongly with water content, while the NDMI detects moisture 
levels in vegetation. These indices are commonly used to assess the water stress of vegetation (Haralick, 
1979; Wu et al., 2011). The chosen approach is based on thresholding of the vegetation indices during 
the third trimester of the year as this is a period where the separation between irrigated and rainfed if 
possible, because of the crop’s phenology cycle. Thresholding for rainfed and irrigated cropland 
differentiation is a well-documented process (Holtgrave et al., 2020). In the Azores archipelago CS, no 
differentiation was possible due to high values of the indices in analysis and the assumption that no 
relevant irrigated cropland is present (based on the reference land cover and land use maps as well as 
the rainfall regime of the region) (You et al., 2013; SNIG, 2018). 

Thresholds were defined by trial and error to be adapted to the agroecological conditions of each 
CS, and the outputs were analysed and validated through visual inspection. Table 7 shows the final 
thresholds applied on the segments classified as Cropland. Segments with lower values than the indices 
thresholds shown in Table 7 were classified as rainfed and higher values as irrigated. NDVI was the 
main driver of the assignation supported by NDWI and NDMI. 

 

Table 7. Thresholds used for Cropland differentiation. 

CS NDVI NDWI NDMI 
CS1 0.5 0.5 0.3 
CS2 0.6 0.55 0.3 
CS3 0.45 0.35 0.25 
CS4 0.6 0.64 0.2 
CS5 0.2 0.25 1.7 
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3.4. Thematic accuracy assessment 

A thematic accuracy assessment of all HR land use maps was conducted using a stratified 
random sampling approach to ensure an unbiased and representative validation process. The 
methodology followed these key steps: 

- Stratified random sampling was applied to ensure that the sample was randomly distributed, 
reducing human bias. 

- The sample was stratified per class to guarantee that all land use categories had a nonzero 
probability of inclusion. 

- Validation points were generated randomly without classification information and labeled 
through visual photointerpretation by independent experts following a “four-eyes” review 
process. 

- One hundred validation points per class were initially used, with a minimum of 20 points for 
smaller land cover classes to ensure statistical significance. 

- Sample stratification was based on class area, meaning larger land cover types were assigned 
proportionally more validation points. 

- Due to limited validation data, the three forest classes (Forest Managed, Forest Primary, and 
Forest Plantation) were validated as a single forest class to improve classification reliability. 

 

3.4.1. Accuracy Metrics and Confusion Matrix Analysis 

The classification accuracy was assessed by comparing the mapped features against a reference 
database (ground truth), obtained through visual interpretation of satellite imagery. A confusion matrix 
was produced to calculate:  

- Overall Accuracy (OA) – The proportion of correctly classified points across all land use 
classes. 

- Producer Accuracy (PA) – The likelihood that a reference land cover type is correctly classified 
in the final map (indicating omission errors). 

- User Accuracy (UA) – The probability that a classified land cover type matches the real-world 
category (indicating commission errors). 

 

Table 8 presents the OA, PA, and UA values extracted from the confusion matrices for each CS 
at both classification levels L1 and L2. 

 

Table 8. OA, PA, UA confusion matrices summary table. 

Case Study (CS) L1 OA 
(%) 

L2 OA 
(%) 

L1 PA 
Range 

(%) 

L1 UA 
Range 

(%) 

L2 PA 
Range 

(%) 

L2 UA 
Range 

(%) 
CS1 85 83 67 - 95 72 - 98 65 - 93 70 - 96 
CS2 86 86 23 - 97 57 - 100 20 - 95 55 - 98 
CS3 94 91 71 - 99 74 - 99 68 - 97 72 - 98 
CS4 95 90 69 - 100 60 - 100 65 - 98 58 - 99 
CS5 84 82 59 - 96 60 - 100 55 - 95 57 - 98 
CS6 93 91 70 - 98 73 - 99 68 - 96 70 - 98 

 



Correia et al. 

160 Cuadernos de Investigación Geográfica, 51 (1), 2025. pp. 145-169 

The accuracy results demonstrate strong classification performance, with Overall Accuracy 
(OA) ranging from 82% to 95% across different CSs. 

- The highest accuracy was observed in CS4 at L1 (95%) and CS3 at L2 (91%), reflecting well-
differentiated land cover types in these regions. 

- Producer Accuracy (PA) indicates that certain land cover classes had higher omission errors, 
particularly in CS2 where PA values ranged from 23% to 97%. 

- User Accuracy (UA) remained consistently high, with values exceeding 99% in some 
categories, particularly in CS6 and CS3, indicating strong classification reliability. 

 

4. Results and discussion 

The created HR land use maps are in line with the requirements defined by the project in terms 
of spatial resolution, land use classes, spatial coverage and overall accuracy. The input data are as recent 
as possible to provide a full temporal and spatial coverage of the Areas of Interest (AOIs) dealing with 
unavailability of free cloud composites in part of the areas. 

Figure 4 to 15 present the High Resolution (HR) land use maps for levels L1 and L2 across the 
six RethinkAction case studies (CS1–CS6). These case studies span diverse biogeographical regions in 
Europe and represent a wide range of land use dynamics and environmental conditions. The maps 
provide a detailed baseline for spatial analysis and scenario modelling. 

 

 

Figure 4: L1 HR land use map of CS1–Gotland Region. 
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Figure 5: L2 HR land use map of CS1–Gotland Region. 

 

 
Figure 6: L1 HR land use map of CS2–Tarn-et-Garonne. 
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Figure 7: L2 HR land use map of CS2–Tarn-et-Garonne. 

 

 

Figure 8: L1 HR land use map of CS3–Southern Great Plain. 
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Figure 9: L2 HR land use map of CS3–Southern Great Plain. 

 

 

Figure 10: L1 HR land use map of CS4–Valle d’Aosta Region. 
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Figure 11: L2 HR land use map of CS4–Valle d’Aosta Region. 

 

 
Figure 12: L1 HR land use map of CS5–Almería Province. 
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Figure 13: L2 HR land use map of CS5–Almería Province. 

 

 
Figure 14: L1 HR land use map of CS6–Azores Archipelago. 
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Figure 15: L2 HR land use map of CS6–Azores Archipelago. 

 

All high-resolution land use maps are available in geospatial format for download from the 
project's Zenodo repository (RethinkAction Project, 2024) 

Although relatively simple, the methodology seems robust and scientifically solid. However, 
the following improvements can be considered:  

- Data used, especially in multitemporal approaches, are usually very large. A potential reduction 
of the number of bands could be explored to lighten the data size, making the process more 
efficient and avoiding data redundancy. 

- For enhance computing and modelling efficiency, dimensionality reduction/classification 
feature selection techniques could be applied to feed the Random Forest model (a step that could 
be explored is exploratory data analysis (EDA) and Feature Engineering).  

- An alternative classification based in a hierarchical logic could be considered to improve the 
results. Binary masks can be generated starting from water and non-water, then from non-water 
to extract vegetation and non-vegetation areas and so on. 

- Training criteria could be reviewed and consequently refined as needed. To guarantee the 
quality of the training data, a random selection (10%) could be chosen and visually inspected. 

- The possibility to distinguish additional classes such as pastures could be considered for future 
work if needed. 

 

5. Conclusions 

This study has detailed the creation and application of HR land use maps developed within the 
RethinkAction H2020 project. These maps serve as a fundamental baseline for analyzing land-based 
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adaptation and mitigation capacities, providing essential inputs for the project’s scenario modeling and 
spatial assessments.  

A key advancement in this study is the use of the RF machine-learning classifier, which has 
demonstrated its robustness, reliability, and superior accuracy in remote sensing applications (Breiman, 
2001; Liu et al., 2022). The ensemble learning nature of RF ensures better handling of high-dimensional 
datasets, a critical factor in object-based classification (Duro et al., 2012). As highlighted by Costa et 
al. (2022), the integration of Random Forest with GEOBIA significantly reduces classification errors 
and salt-and-pepper noise, enhancing thematic accuracy and replicability of land use classifications. 

The replicability of the proposed methodology is a notable outcome, as it allows for adaptation 
to different geographical areas with minimal modifications. The study demonstrates that the use of 
auxiliary data covering all or most CSs facilitates scalability and broader applicability. However, as 
identified in previous studies, local datasets with higher spatial resolution may be required in specific 
contexts to refine classification results (Duro et al., 2012). Future applications of this methodology will 
need to identify and incorporate region-specific datasets to further enhance classification accuracy. 

The RethinkAction HR land use maps provide a valuable resource for multiple applications. 
Beyond their immediate use in the project’s scenario modeling, these maps are the cornerstone for the 
generation of suitability maps, which guide decision-making in land-based climate change adaptation 
and mitigation strategies. These suitability maps will enable stakeholders to assess which regions are 
most suitable for specific land use transitions, ensuring efficient resource allocation and sustainable 
development (ESA, 2024). Additional future analyses should focus on further refining the suitability 
mapping process by integrating multi-criteria decision analysis (MCDA) and machine learning-based 
spatial modeling approaches. 

Further research should explore the integration of dimensionality reduction techniques, such as 
Principal Component Analysis (PCA) or Feature Selection Algorithms, to optimize the classification 
workflow and reduce redundancy in multi-layered datasets (Huang et al., 2021). Additionally, future 
studies could investigate hierarchical classification approaches and alternative machine-learning models 
to further refine classification accuracy and processing efficiency. 

In conclusion, the study provides the required HR land use maps, supporting the production of 
suitability maps and ensuring that the RethinkAction decision-making platform can provide data-driven 
insights for sustainable land management and climate adaptation. The established method provides a 
robust and replicable land use classification approach that can be implemented for further work. These 
findings contribute to the broader goal of sustainable land use planning and provide actionable insights 
for policymakers, researchers, and practitioners in the field of climate change mitigation and adaptation. 
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