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ABSTRACT. Wildfires pose a major environmental and societal challenge, due to their link with anthropogenic 
activities and changing climatic conditions. This study aimed to enhance our understanding of the drivers of 
wildfire occurrence across continental Chile by developing robust predictive models incorporating climatic, land 
cover, and anthropogenic variables. We leveraged geospatial data on historical fire events, infrastructure, fuels and 
weather, coupled with historical fire records through Random Forest binary models to ascertain the key drivers of 
ignition across four distinct ecological zones: North, Central Chile, South, and the Andes. Our analysis explored 
potential differences between arson and unintended fires within these regions. Model validation, assessed using 
the Area Under the Curve (AUC), revealed significant regional variations in predictive performance. The southern 
and northern zones exhibited higher predictive capacity, potentially due to less complex landscapes and fewer 
ignition sources compared to the densely populated and infrastructure- prone central zone, which showed the 
lowest AUC. The Andes region displayed intermediate performance. Our results indicated that anthropogenic 
factors, particularly the distance to power lines, roads, and the wildland-urban interface (WUI), were consistently 
among the most important predictors of wildfire ignition across the majority of the studied regions. This highlights 
the significant impact of human accessibility and infrastructure on fire incidence in Chile. In contrast, fuel-related 
and climatic variables, such as Dry Fuel Moisture Content (DFMC) and its anomaly, showed generally lower 
importance, although their influence increased notably in the southern zone. Partial dependence plots further 
elucidated the distinct ways in which these key variables influenced ignition probability across different regions 
and between arson and unintended fires. The findings emphasize the necessity of adopting region-specific 
approaches in wildfire modeling and prevention strategies, acknowledging the different interactions between 
natural and anthropogenic factors across Chile. This research provides a fundamental understanding for future 
advanced modeling and targeted risk management efforts. Future research should aim to incorporate more detailed 
socioeconomic data to further refine predictive models and inform effective risk mitigation strategies. 
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Ocurrencia de incendios forestales en Chile: modelización regional e implicaciones para la 
gestión del riesgo 
RESUMEN. Los incendios forestales representan un importante desafío ambiental y social debido a su vínculo 
con las actividades antropogénicas y las condiciones climáticas cambiantes. Este estudio tuvo como objetivo 
mejorar nuestra comprensión de los factores que impulsan la ocurrencia de incendios forestales a lo largo del 
territorio continental de Chile, mediante el desarrollo de modelos predictivos robustos que incorporan variables 
climáticas, de cobertura del suelo y antropogénicas. Se utilizaron datos geoespaciales sobre eventos históricos de 
incendios, infraestructura, combustibles y condiciones meteorológicas, junto con registros históricos de incendios, 
para construir modelos binarios de Random Forest que permitieran determinar los principales factores de ignición 
en cuatro zonas ecológicas distintas: Norte, Chile Central, Sur y Cordillera de los Andes. Nuestro análisis exploró 
posibles diferencias entre incendios provocados y no intencionados dentro de estas regiones. La validación de los 
modelos, evaluada mediante el área bajo la curva (AUC, por sus siglas en inglés), reveló variaciones regionales 
significativas en el desempeño predictivo. Las zonas sur y norte mostraron una mayor capacidad predictiva, 
posiblemente debido a paisajes menos complejos y a una menor cantidad de fuentes de ignición, en comparación 
con la zona central, densamente poblada y con alta presencia de infraestructuras, que presentó el valor de AUC 
más bajo. La región andina mostró un ajuste intermedio. Nuestros resultados indicaron que los factores 
antropogénicos —particularmente la distancia a las líneas eléctricas, carreteras y la interfaz urbano-forestal (WUI, 
por sus siglas en inglés)— se ubicaron de manera consistente entre los predictores más importantes de la ignición 
de incendios forestales en la mayoría de las regiones estudiadas. Esto resalta el impacto significativo de la 
accesibilidad humana y la infraestructura sobre la incidencia de incendios en Chile. En contraste, las variables 
relacionadas con combustibles y clima, como el contenido de humedad del combustible seco (DFMC, por sus 
siglas en inglés) y su anomalía, mostraron en general una menor importancia, aunque su influencia aumentó 
notablemente en la zona sur. Los gráficos de dependencia parcial permitieron además esclarecer las distintas 
formas en que estas variables clave influyeron en la probabilidad de ignición entre regiones y entre incendios 
provocados y no intencionales. Los hallazgos enfatizan la necesidad de adoptar enfoques específicos por región 
en la modelación y las estrategias de prevención de incendios forestales, reconociendo las diferentes interacciones 
entre los factores naturales y antropogénicos a lo largo de Chile. Esta investigación proporciona una base 
fundamental para futuros modelos avanzados y esfuerzos de gestión del riesgo más focalizados. Las 
investigaciones futuras deberían incorporar datos socioeconómicos más detallados con el fin de refinar los modelos 
predictivos e informar sobre estrategias de mitigación del riesgo más efectivas. 
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1. Introduction  

Wildfires are a key environmental agent that plays an important role in the maintenance and 
evolution of ecosystems and have been essential to human life since ancestral times (Castillo et al., 
2003). Nevertheless, anthropogenic actions and climate change are significantly modifying fire regimes, 
increasing burn severity and intensity, fire size, and ignition frequency (Kelly et al., 2023). Globally, 
wildfires are a main cause of forest decline and a substantial source of greenhouse gas emissions and 
pollutants, which further exacerbate climate change (Urzúa and Cáceres, 2011). Wildfires are becoming 
a threat to the biosphere, driving degradation through the reduction of biodiversity or destruction of 
habitats in non-fire-prone regions, while causing extensive social and economic impacts, both directly 
through the loss of human lives and infrastructure, and indirectly by aggravating soil erosion, loss of 
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ecosystem services, and water pollution (Úbeda and Sarricolea, 2016). This situation is raising concern 
about the impacts of wildfires from anthropogenic fire regimes (FAO and Plan Bleu, 2018).  

Recently, we have witnessed some of the most dramatic and damaging wildfire seasons and 
episodes, exemplified by the southern California fires in January 2025, the Canadian summer of 2023, 
or the wildfire heat wave across Europe in 2022 (Rodrigues et al., 2023a).  

In Chile, the study region of this work, fires pose a major societal threat, with the so-called 
firestorms emerging in Central Chile in the last decade. The recent Valparaíso fire in February 2024 
resulted in 137 deaths, following similar devastating events in 2017 and 2023 where single fires 
exceeded 100,000 hectares. This situation is projected to intensify with climate change in the coming 
decades. It has been estimated that in the south-central zone of Chile (31°- 45° S), rainfall will decrease 
by approximately 25% in spring and 40% in summer by the end of the 21st century (González et al., 
2011). Furthermore, temperatures are expected to increase throughout the country between 2 and 4 °C 
in some scenarios (CONAMA, 2006), altogether increasing fuel aridity, thus facilitating the occurrence 
and spread of fires. In Chile, landscape flammability, fuel availability, and the presence of ignition 
sources modulate the occurrence and magnitude of wildfires (González et al., 2020). The intermingling 
of buildings and urban areas with vegetated lands, commonly known as the wildland-urban interface 
(WUI), also serves as a major (and growing) driver of ignition (Sarricolea et al., 2020). This expansion 
sometimes originates from informal neighborhoods with limited resources, a phenomenon known as 
'tomas' – the occupation or takeover of land for housing. 

In this context, understanding the underlying driving factors of ignition is crucial to effectively 
prevent wildfires and mitigate risk. The development and implementation of predictive tools, such as 
fire ignition models, are among the most effective approaches. Their added value lies in their ability to 
reveal where and how factors influence fire incidence, providing a fundamental basis for designing 
effective prevention strategies (Nunes et al., 2016). Recent studies embody this approach. Aguirre et al. 
(2024) identified key factors for fire prediction within the particular context of the Chilean wildland-
urban interface (WUI), finding that those related to their spatial disposition had an important impact. 
Ochoa et al. (2024) mapped the ignition probability and its fundamental drivers across Europe, 
highlighting the importance of climatic variables. Similarly, Keeping et al. (2024) characterized wildfire 
occurrence throughout the United States, seeing some spatial differences and also pointing to the 
importance of climatic variables, such as fuel moisture.   

However, Costafreda-Aumedes et al. (2017) highlighted in their review the scarcity of studies 
in Ibero-American regions. In this context, several studies were recently conducted in Chile. One 
example is the work of Azócar de la Cruz et al. (2022), which integrates climatic, topographic, and 
anthropogenic factors. Although their study is limited to a specific region of Chile, it identifies the 
proportion of agricultural land, proximity to roads, and distance to urban areas as the most influential 
variables, with fuel moisture also playing a notable role. Another relevant study is that of Aguirre et al. 
(2024), which analyzes how specific housing characteristics within the Chilean wildland–urban 
interface contributes to wildfire vulnerability at a local scale. Nonetheless, the national focus of this 
research makes direct comparison with broader-scale models more challenging, as they have been 
adapted to the specific settings of each study region in the central sector of Chile (Aguirre et al., 2024; 
Azócar de la Cruz et al., 2022).  

Our study aims to enhance the understanding of factors contributing to wildfire ignition across 
continental Chile. We developed a set of statistical models using Random Forest to estimate the spatial 
probability of wildfire occurrence. The models leveraged geospatial data on historical fires, buildings, 
power lines, roads, land cover, and weather. We investigated the role of ignition drivers, focusing on 
potential differences between arson and unintended fires, as well as regional differences across four zones: 
north, central, south, and Andes. We hypothesize that ignition factors will vary by region and cause, with 
fuel moisture content and distance to the wildland-urban interface (WUI) being primary drivers.  
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2. Study Area  

The study region covers the full extent of continental Chile (Fig. 1). The country presents a wide 
array of climatic conditions due to its significant latitudinal range (spanning from 17°30'S at the 
Peruvian border to 56°30'S at Cape Horn), encompassing warm desert climates in the north (BWh and 
BSh1), a Mediterranean climate in the central region (Csa and Csb), and temperate-to-cold climates in 
the south (Cf, ET and EF) (Sarricolea et al., 2016). This climatic diversity is coupled with a pronounced 
west-east elevation gradient from the Pacific coast to the Andes Mountains, with altitudes ranging from 
0 to over 6,000 m.a.s.l. (Errázuriz et al.,1998), interrupted in central Chile by the Coastal Range, which 
creates the Chilean Central Valley. Climate conditions influence fire activity, which is highly seasonal, 
with the largest number of ignitions and burned area concentrated in the summer months, when weather 
conditions are favorable to fire ignition and spread (González et al., 2020). 

 

 
Figure 1. Spatial division of modeling zones across Chile. Color key indicates outlines the four analyzed 

regions. Images: Jorge Félez-Bernal. 

 
1 Climate codes given according to the Köppen-Geiger taxonomy. 
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The temperate central zone is the demographic and economic heart of the country, hosting major 
urban areas and the primary agricultural and forestry activities, particularly the cultivation of eucalyptus 
(Eucalyptus spp.) and pine (Pinus radiata) (CONAF, n.d.). 

Historically, Chile's development has been rooted in the extraction of natural resource like 
copper, with many industrial uses; guano, used as organic fertilizer, and the production of cereals. The 
latter grew aggressively during the 19th and 20th centuries boosted by economic incentives to transform 
native forests into agricultural or grazing land (Urzúa and Cáceres, 2011) a process that increased soil 
erosion due to the resulting loss of vegetation. An extensive plantation policy was subsequently 
implemented to address the issue, resulting in the current landscape configuration. This policy had 
notable social, economic, and environmental repercussions, including land ownership concentration in 
large corporations; as a result, currently, two major companies dominate the country's forestry 
production (Poblete et al., 2023). The expansion of plantation monocultures simplified the landscape in 
central Chile, particularly in the Coastal Range, which was less suitable for mechanized agriculture and 
even more prone to erosion. The companies' preference for contiguous land parcels resulted in vast, 
structurally and compositionally homogeneous industrial plantations (McWethy et al., 2018). Bowman 
et al. (2019) highlighted the significant flammability of these plantations, attributing it to their dense 
structure and thick litter accumulation. 

Eucalyptus spp. are exotic fast-growing species adapted to fire regimes, with some species 
exhibiting adaptations for post-fire survival and regeneration (i.e., Eucalyptus globulus), influencing 
their propagation and ecosystem dynamics. Its establishment further exacerbated wildfire risk (Fig. 2). 
The horizontal continuity compounds with vertical fuel ladders, as these plantations often lack 
understory clearing, contributing to an observed trend of increasing extreme fire seasons in terms of 
annually burned area (González et al., 2011). 

 

 
Figure 2. Eucalyptus globulus plantations in Pudá sector, Tomé commune, Biobío Region, after ‘El Cortijo’ 

fire (February 2023). Photo by Jorge Félez-Bernal (2023). 
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Ignition sources manifest in various ways, with power lines being an important contributor. 
Beyond the inherent risk of sparks, the use of uninsulated low- and medium-voltage wires substantially 
elevates the likelihood of fires, particularly when coupled with inadequately maintained vegetation-free 
corridors. In Chile, the WUI's footprint and arrangement are particularly complex, stemming largely 
from the urban expansion of major population settlements. According to Úbeda and Sarricolea (2016), 
the laxity of regulations in the past allowed the construction of these very low-quality buildings with 
poor infrastructure provision in these forest areas, which are often excluded from urban plans. This has 
resulted in a vast and intricate WUI that is challenging to study, as these unofficial neighborhoods are 
frequently unregistered because 'the territorial planning instruments are either outdated or do not 
consider preventive planning for this type of threats' (Garay et al., 2019).  

The accumulation of fuel within the WUI, combined with areas of high population density, 
creates a highly flammable environment (Úbeda and Sarricolea, 2016) (Fig. 3). Likewise, people's 
accessibility to flammable surfaces also boosts ignition potential, making roads and pathways important 
elements to consider in wildfire studies (Martín et al., 2018; McWethy et al., 2018; Oliveira et al., 2012).  

 

 
Figure 3. Wildland-urban interface zone affected by fire in areas dominated by Pinus radiata at the base of 

the Coastal Range, Chiguayante commune, Biobío Region. Photo by Nicolás Salazar Maleras (2021). 

 

3. Materials and methods  

3.1. Fire data and response variable 

The dependent variable, fire occurrence, was created using the database of the National Forest 
Corporation (CONAF), which contains historical fire records from 1984 to 2023 across the entire 
Chilean territory. This database provides information on the location where a fire starts. Additionally, it 
offers supplementary information such as the start and end dates, as well as the causes of the fires 
(causality data is only included up to 2019). 

The database attained a wide array of ignition sources. For this work, causes were aggregated 
into 4 major groups as follows: unintentional fires (related to agricultural and forestry work, recreation, 
and transit); intentional (mainly caused by economic benefits, individuals with mental health issues, or 
conflicts); natural fires (primarily lightning strikes and volcanic eruptions); and fires of unidentified 
origin. In the exploratory analysis (section 4.1) we assess the 4 groups, retaining only intentional and 
unintentional fires into the regression models. 
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A binary response variable (presence and absence of ignitions) was constructed from this 
information. Presence locations were retrieved from the pair coordinates recorded during 2009 to 2019 
(fires smaller than 1 hectare were excluded). To obtain the non-fire data points, we constructed 10 
background random samples across the region. The placement of non-fire locations was constrained to 
vegetated areas located 500 meters away from an ignition (to avoid corregistration) (Azócar de la Cruz et 
al., 2022). Each “non-fire” sample was balanced to contain the same number of observations that the “fire” 
sample in terms of ignition cause and date (Costafreda-Aumedes et al., 2017; Gelabert et al., 2025). 

 

3.2. Explanatory variables 

To predict the probability of ignition, variables from different domains were selected according 
to the literature. We selected environmental factors related to fuel aridity like dead fuel moisture content 
(DFMC), DFMC anomaly, and fuel type, as found in Rodrigues et al. (2023b) or Oliveira et al. (2012); 
factors related to site accessibility (Martín et al., 2018; Oliveira et al., 2012), namely the Euclidean 
distance to the road network; we considered the human pressure on wildlands (Azócar de la Cruz et al., 
2022), modeled as the Euclidean distance to buildings; and potential sources of accidental ignitions 
(Sayarshad, 2023), spatialized as the distance to the power line network, calculated with GIS tools. 

Among weather-related factors, DFMC was selected as it synthesizes the information of two 
variables, temperature and relative humidity, into a single value. The premise behind using this variable 
is that moisture content hinders the start of a fire by influencing the energy required for combustion. To 
obtain the DFMC and anomalies, data from the Copernicus Climate Change Service was used. This 
service provides a historical series of surface temperature and relative humidity data from the ERA5-
Land Reanalysis dataset with a spatial resolution of 9km (Copernicus Climate Change Service, 2019) 
and an hourly temporal resolution. This allows linking the calculated data to the date each ignition 
occurred and grants the constructed models a dynamic nature, meaning that predictions can be generated 
at multiple temporal scales (daily, based on climatic aggregates, or on future projections). The type of 
fuel sustaining ignition was also considered. For this, the land cover map of MapBiomas Chile 
(MapBiomas, 2022) was used. This map provides the country's land cover and land use with a spatial 
resolution of 30m and is yearly updated. The 2022 map was chosen as it’s the latest product and therefore 
likely the most accurate in the series, despite being outside the study period. From these layers, the 
relevant covers were extracted, which were those that could serve as fuel for an ignition: forest 
formations (code 1), non-forest natural formations (code 2), forest plantations, and agriculture-pasture 
mosaic (code 3). 

Accessibility was represented by the distance to roads, based on the premise that proximity to 
communication routes leads to a higher probability of fire occurrence due to human transit (Leone et al., 
2009 and Costafreda-Aumedes et al., 2017). The national road network layer from the Ministry of Public 
Works was used, updated to 2019. To represent the WUI, information on the distance to buildings was 
also extracted. Chile has experienced significant urban expansion in large cities, and this growth 
sometimes occurs unplanned through informal settlements (Schuster-Olbrich et al., 2024). To represent 
this complex reality, the Microsoft Building Footprints layer, updated to 2024, was used. Its suitability 
for the objective of this work lies in the fact that it includes all buildings, regardless of their legal status, 
with a precision of 95% in South America (Microsoft, 2024). Finally, the distance to power lines was 
also considered. The layer used was provided by the Superintendency of Electricity and Fuels, updated 
to 2021. However, in this case, not all sections were used; only overhead power lines were selected and 
distinguished based on whether the cable was covered by protection or not. 

Once the layers of power lines, roads, and buildings were obtained, the Euclidean distance was 
calculated. These layers were all generalized to a common resolution of 100 meters, and the value of 
each variable was extracted for each point. 
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3.3. Exploratory analysis 

Before creating the model, an exploratory analysis of fire incidence was conducted to 
understand the broad patterns of fire incidence in the country and to select a representative temporal 
period upon which building our ignition probability model. The exploratory analysis sought to ensure a 
temporally coherent association between fire occurrence and other variables, and to verify the reliability 
of historical ignition data regarding their spatial and temporal location, as well as the assigned cause. 
We acknowledged the likely improvement in fire records over the long study period (1984-2023), which 
could have led to an increase in recorded fires due to enhanced data collection methods. Initially, we 
considered the ten-year period up to 2023 as optimal, given that during this las decades CONAF began 
recording precise geographical coordinates of fires. Nevertheless, data on the cause of fires were 
unavailable for the last four years of this range, extending up to 2019. We analyzed the annual and 
monthly distribution of the number and size of fires across the entire historical record and selected a 
period for modeling. In addition, we also considered their cause and the geographical zone. 

 

3.4. Training and testing the ignition probability model 

3.4.1. Model Calibration 

The ignition probability model was trained using the Random Forest (RF) algorithm (Breiman, 
2001), which allows modeling the probability of occurrence of a binary event (presence/absence of fire) 
drawing non-linear relationships from a set of explanatory variables (Fig. 4). This algorithm is one of 
the best performing and is often the preferred alternative in most fire modeling endeavors (Chicas et al., 
2022). The success of RF lies in its ability to handle large data sets and capture complex relationships 
between variables, offering robust and accurate predictions by combining the results of multiple decision 
trees. This has made it a popular model for predicting fires due to its flexibility and predictive power 
(Oliveira et al., 2012). 

Our ignition probability model was hence constructed using a binary classification model, which 
estimates the probability of a given observation belonging to the “fire” category. To do this, we 
calibrated 1,000 model realizations, optimizing each individual model according to the number of 
predictors at each split (mtry=2-to-4). The optimal mtry was estimated via repeated cross-validation with 
five data splits and three repetitions of the cross-validation. The number of trees in the forest (ntree) was 
constantly set at 1,000.  

During the calibration process, a stratified sampling was used to ensure a balanced training set 
in each iteration, thus reducing the risk of overfitting. To achieve this, the data were grouped according 
to fuel types, geographical tile (1x1º), and biome class based in the pyromes of Luebert and Pliscoff 
(2022), selecting 1 “fire” and 1 “no-fire” instance for each combination of classes. This strategy ensured 
that the sample was representative in terms of fuel type and geographical settings while contributing to 
minimize spatial autocorrelation in the residuals (see also section 3.4.2). This procedure was repeated 
across the 8 combinations resulting from 2 ignition causes and 4 major geographical regions. All 
analyses were carried out using the caret R package (Kuhn, 2008; R Core Team, 2023). 

 

3.4.2. Model testing and performance 

Each of the 1000 candidate models underwent validation to estimate its predictive accuracy. Test 
samples were extracted from the pool of records not used during calibration, using the same stratified 
sampling approach. For each model, we calculated the Area Under the Curve (AUC), a widely used, 
threshold-independent metric that quantifies classifier performance on a scale from 0.5 to 1. An AUC of 
0.5 indicates random prediction, signifying a completely unreliable model, while an AUC of 1 represents 
perfect prediction. As a guideline, a minimum AUC of 0.70 is often considered acceptable (Zhou et al., 
2011). AUCs were calculated for each combination of ignitions source and geographical region. 
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We also analyzed the spatial autocorrelation of the predictive model residuals using the global 
Moran's I index. This step was crucial because the presence of spatial autocorrelation would suggest that 
the model inadequately captures the spatial structure of the fire phenomenon, indicating that it fails to 
account for spatial relationships within the data, potentially due to missing independent variables. Only 
models with no significant spatial structure in their errors (p > 0.05) were submitted to interpretation 
and variable importance estimate. 

 

3.4.3. Variable importance and explanatory sense 

In addition to the model's ability to correctly predict fire occurrence, the contribution of the 
considered predictive variables and their explanatory sense have been evaluated. Once the importance 
of these variables was obtained, a box and whisker plot were constructed to visualize the weight of each 
variable in the models. 

To complete the study of the variables, an analysis of the variables with PDP (Partial 
Dependence Plot) was also performed to understand how a specific variable act within a complex model. 
To obtain the PDP and the importance of the variables, it was first necessary to choose a representative 
model, which was selected based on the AUC extracted previously, choosing the model with the AUC 
value closest to the median of the set of models. 

 

 
Figure 4. Methodological workflow followed for modeling fire ignition probability. 

 

4. Results 

4.1. Exploratory analysis 

Since 1984, 229,813 fires have been documented in Chile, affecting 3,163,720.3 ha, with an 
annual average of 5,745 (±1,280.9σ) fires and 79,093 (±92,262.7σ) ha burned. Annual fire occurrences 
and burned area are distributed relatively evenly throughout the recorded period. Nevertheless, 2017 
and 2023 stand out against this trend, with notably larger burned areas than the other seasons (512,876.6 
ha in 2017 and 383,272.7 ha in 2023). These years also coincide with the local minimum in the number 
of fires (4,863 in 2017 and 4,448 in 2023) (Fig. 5, Table 1).  
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Figure 5. Yearly evolution of burned area (filled bars) and number of fires (solid dotted line). Orange bars 

mark the 2017 and 2023 fire storms. 

 

Table 1. Summary of fire incidence across Chile. N, number of fires; BA burned area (ha); P95, 95th percentile of 
fire size. Shaded cells represent fire count data whereas italics represent the percent contribution of each cause to 

the total number of fires and burned area output. Summer corresponds to December, January, and February. 

 Zone North Central Chile South Andes Total 

20
09

-2
01

9 

N 738  60,214 717 1,557 63,226 
% in summer 

Arson 
63 
0.5 

63.5 
98.45 

72.5 
0.17 

59.1 
0.88 

63.45 
22,659 

Natural 0 53.78 0.4 45.82 251 
Unintended 1.16 94.58 1.57 2.69 36,533 
Unknown 5.31 85.09 2.72 6.87 3,783 

BA 3590.5 1,114,740.8 6,069.4 85,279.1 1,209,679.8 
% in summer 59.7 87.5 86.9 71.3 86.24 

Arson 0.08 98.26 0.09 1.57 357,948.4 
Natural 0 35.35 0 64.65 13,063.5 

Unintended 0.35 87.6 0.87 11.18 586,259.8 
Unknown 0.5 97 0.25 2.25 252,408.2 

Mean size (ha)  4.52 35.2 5.85 47.5  
P95 (ha) 14.5 24.74 17.86 150.77  

Largest (ha) 350 159,812.6 1900 17,606  

19
84

-2
01

9 

N 1,774 189,024 3,316 5,787 199,901 
% in summer 62.7 66.8 79.3 63.9 66.92 

Arson 0.33 97.80 0.72 1.15 64,737 
Natural 0 54.52 0.46 45.01 431 

Unintended 0.83 93.89 1.87 3.41 112,344 
Unknown 2.78 89.33 3.35 4.54 22,389 

BA 7,491.3 2,171,305.8 76,219.9 217,939.5 2,472,956.5 
% in summer 60.2 82.1 94.5 75.9 81.88 

Arson 0.08 96.15 0.22 3.54 668,619.1 
Natural 0 73.96 0 26.04 33,227.6 

Unintended 0.35 84.73 3.16 11.76 1,304,167.7 
Unknown 0.51 85,42 7,18 6,89 466,942.1 

Mean size (ha)  3.74 36.3 16.9 37  
P95 (ha) 11.95 14.26 12.95 94.12  

Largest (ha) 350 159,812.6 16,760.7 25,389  
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Between 1984 and 2019, a total of 199,901 wildfires were recorded in Chile (Table 1), affecting 
a cumulative area of 2,472,956.52 hectares. During this period, 2017 stands out for experiencing a 
significantly larger burned area than any other year, despite coinciding with a local minimum in the 
number of fires— contrasting with the general trend where years with more extensive burned areas tend 
to also show higher fire counts. Additionally, the largest wildfire on record occurred in 2017, burning 
159,812.6 hectares.  

Focusing on the period 2009-2019, the total number of fires was 63,226, with an annual average 
of 5,764.27, which is higher than the average of 5,497.84 for the preceding period from 1984 to 2008. 
Differences are also observed in fire size, with the average fire size for 2009-2019 being 19.07 ha, 
compared to 9.2 ha for the earlier range of years. Notably, fire incidence is concentrated during the 
summer months, with this pattern being most pronounced in the central and southern zones, particularly 
regarding burned area. 

Regarding the causes, throughout both periods (1984–2019 and 2009–2019), most fires were 
caused by accidents, followed by intentional ignitions, while natural fires rank last, accounting for a 
very small share. Regionally, clear differences emerge, with wildfires primarily concentrated in the 
central zone of the country, followed by the Andean region. Remarkably, this central predominance is 
less pronounced in the case of natural fires, a large proportion of which occurred in the Andes (45.82% 
between 2009-2019 and 45.01% between 1984-2019). In contrast, the northern and southern zones 
report significantly fewer wildfires in both periods (738 and 717 respectively), with accidental fires 
predominating and, notably, no natural fires recorded in the northern region, although a significant 
number of fires have unknown origins (1.16%). 

Concerning the affected area, unintentional fires continue to dominate, followed by intentional 
ones. Nonetheless, during 2009–2019, the Andes concentrate the majority of the area affected by natural 
fires (64.65%). When analyzing the average wildfire size over the entire period, both Central Chile and 
the Andes show similar and notably higher averages (35.2 and 47.5 respectively) than the northern and 
southern zones (4.52 and 5.85). Even so, for the analysis period, the Andes exhibit the highest average 
burned area. In this regard, the 95th percentile is particularly illustrative: in both periods, the highest 
value is found in the Andes, while the figure for Central Chile is closer to those of the north and south. 
Nonetheless, it is in the central zone where the largest recorded wildfire occurred, vastly exceeding those 
in other regions. 

 

4.2. Model performance  

Model performance after filtering out those exhibiting spatial autocorrelation in their residual 
distribution (see Table S1 for a summary of number of models without autocorrelation), varies greatly 
by region and, to a lesser extent, between arson and unintended cause (Fig. 6). For the northern zone of 
the country, the average AUC value is very high in both cases, only surpassed by the models of the 
southern zone. The AUC for arson (0.934) is higher than the average for non-intentional fires (0.911). 
The central zone records the lowest AUC values, with the models for intentional fires being slightly 
better than those for non-intentional fires, with averages of 0.679 and 0.67, respectively. Regarding the 
south, the predictive capacity for fires is much higher than in the center, also being the highest for all 
zones defined in this work. Again, on average, the AUC is lower for non-intentional fires. Finally, the 
Andes zone also shows differences in the AUC values between intentional and non-intentional fires. 
Although unintended fires have a higher AUC, being the only case where this occurs, the maximum 
value is recorded for intentional fires with 0.919 (Table S2). 
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Figure 6. Summary of model validation by region and cause. Histograms show the frequency distribution of 

AUC values calculated from the validation samples across the 1000 models per combination. 

 

4.3. Importance of Variables and PDP 

The contribution of the drivers of ignition featured large regional differences and minor 
variations by cause (Fig. 7). The distance to power lines emerges as the most important variable in nearly 
all models, with the exception of the southern zone. It is the most influential variable for intentional fires 
in the northern and Andes zones, and for non-intentional fires in the central zone. Unprotected power 
lines also rank among the most important variables.  

Road proximity shows consistently high importance for both fire causes across all regions, with 
a slightly greater relevance for non-intentional fires. Models for unintended fires display attributed the 
highest importance to accessibility by road in the south and north regions, whereas it contributes largely 
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to model arson fires in Central Chile. The distance to the wildland-urban interface is also a key factor 
across all regions and fire causes, generally being a more relevant predictor in non-intentional fires. 
DFMC attains moderate importance across models, but its influence greatly varies by region. It is least 
relevant in the north, while in the south, especially for intentional fires, it becomes one of the top 
influential factors.  

A similar pattern is observed in intentional fires in the Andes. The DFMC anomaly variable, 
though slightly less important than raw DFMC, follows a similar pattern. It is most influential in the 
central zone and in intentional fires in the south. Fuel types consistently register the lowest importance 
across all variables, though its significance varies by region. In the central zone, agricultural and 
silvicultural areas carry more weight, while in the Andes, their contribution is marginal. In the north and 
south, shrublands and plantations hold similar relevance across both fire causes, with a slightly higher 
importance of agricultural fuels for non-intentional fires in the north. 

 

 
Figure 7. Variable importance by region and cause. Boxplots showing the distribution of variable importance 

(%) for models predicting arson (blue) and unintended (grey) wildfires across different regions of Chile. 

 

In terms of explanatory sense, we observed a similar pattern across variables. Distance-based 
predictors (roads, WUI and power lines) displayed the expected sharp and inverse profile, meaning the 
closest to one of these infrastructures, the higher the chance of ignition. Similarly, DFMC-based drivers 
indicate higher probability of ignition under dry conditions, i.e., low moisture content and abnormally 
low DFMC (Fig. 8). 

There are noticeably exceptions to these overall profiles. Given their lowest importance, the 
profiles of WUI draw a rather “flat” profile in arson fires in the south and power lines in unintended 
fires. In turn, DFMC in the north displays distinct profiles. In arson fires, DFMC draws a V-shaped line, 
and so does the anomaly. In unintended fires, the profile is positive, indicating a lower chance of ignition 
under moister conditions.  
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Figure 8. Partial dependence of wildfire probability by region and cause (based on median AUC 

representative model). 

 

5. Discussion 

In regions characterized by high fire incidence, the development of robust fire models is of 
paramount importance for advancing both theoretical understanding and practical application. Models 
enable the precise identification of areas exhibiting heightened vulnerability to fire damage, thereby 
facilitating evidence-based decision-making in territorial planning (Aguirre et al., 2024); while 
elucidating the underlying causal mechanisms, provide solid insights into the factors exerting the most 
significant influence on fire initiation (Keeping et al., 2024).  

The vast majority of wildfires in Chile result from human activity, a pattern consistently 
reported in the literature (Castillo et al., 2015; González et al., 2020; Úbeda and Sarricolea, 2016) and 
also observed in other regions such as Portugal (Nunes et al., 2016) and California (Chakraborty and 
Composto, 2022). In contrast, naturally ignited fires account for only a small fraction, both in terms of 
frequency and affected area. Jaksic and Fariña (2015) argue that fire is not an inherent part of the natural 
dynamics of Chile’s native ecosystems. 

Our featured models displayed strong regional differences in their capability to predict and 
explain the drivers of ignition (Fig. 7), with the southern and northern regions exhibiting higher 
predictive capacity. The superior performance in these regions (AUC≈0.90) may be attributed to their 
lower fire occurrence but also to the less dense road and power line networks in the north, and the 
sensitivity to weather anomalies in the south, altogether facilitating establishing causal links. The Andes 
region also attained a high AUC, in line with the study by Bianchi et al. (2023).  

In contrast, the central zone records the lowest average AUC values (0.68), slightly below the 
0.7 threshold. This area is characterized by a dense presence of infrastructure, including buildings, power 
lines, and roads. Model's performance in this region is noticeably lower than that reported in the 
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literature, e.g., by Azócar de la Cruz et al. (2022), Bjånes et al. (2021), and McWethy et al. (2018). This 
discrepancy is likely to be related to the need of more variables or our strict sampling procedure aimed 
at minimizing spatial autocorrelation in the error of the model. Central Chile is highly prone to 
autocorrelation since fire occurrences concentrate along human infrastructure. Together with the large 
number of fires, it recommends caution in model calibration to avoid overfitting and autocorrelation. 
The presence of autocorrelation, among other effects, may artificially boost model performance (Guélat 
et al., 2018). 

In the northern zone, the distance to power lines (both covered and uncovered) emerged as one 
of the most influential variables, particularly for intentional fires. Power lines might play a dual role, 
being a potential ignition source due to sparks, but also acting as a proxy for accessibility, as power lines 
often follow or intersect with paths and roads used for deploying and maintenance. The distance to roads 
also ranked among the most important drivers, posing a similar threat to power lines. Moisture content 
showed the least impact in this region, likely due to the persistently arid conditions. In fact, our 
relationship profiles (Fig. 8) might indicate positive feedback between water availability and fires, 
meaning that under desertic conditions ignition is fuel-limited - favorable weather conditions increase 
the availability of fuels, hence fires become more likely. The relevance of DFMC anomalies was low 
and highly variable, consistent with the region's aridity. In fact, obtained relationship profiles might 
indicate positive feedback between water availability and fires, meaning that under desertic conditions 
ignition is fuel-limited. Fuels consistently showed the lowest importance, with their role in spatial fire 
modeling being secondary. 

For central Chile, the distance to power lines was, again, the most important variable for non-
intentional fires, while also being significant for intentional fires, although to a lesser extent. The 
proximity to the WUI held significant weight, especially for non-intentional fires, as highlighted by the 
increase in fire activity in WUI areas tied to routine human activities that can lead to accidental ignitions 
(McWethy et al., 2018). The expansion of informal urban settlements ("tomas") poses a growing 
challenge, requiring specific prevention plans that address community engagement and fire safety 
practices such as the establishment of basic firebreaks or fuel reduction zones at the periphery of these 
settlements where they interface with wildlands (Prior and Eriksen, 2013).  

In this context, numerous works emphasize the importance of the socioeconomic 
characterization in peripheral neighborhoods (Garay et al., 2019; Garfias et al., 2012), which are 
relevant in fire occurrence (Aguirre et al., 2024; Sarricolea et al., 2020). DFMC supported dry conditions 
as a driver of fire ignition in this region. The importance of DFMC anomalies increased in central Chile, 
reflecting the sensitivity of this area to periods of unusually low humidity. Regarding fuels, agricultural 
areas and plantations were more influential, likely because they are widespread and highly flammable, 
especially pine and eucalyptus plantations, though their importance remained lower than what had been 
found in other studies (Peña and Valenzuela, 2008). 

In the Andes, the distance to power lines showed moderate influence for intentional fires. DFMC 
exerted a large influence for intentional fires, suggesting that arsonists might exploit periods of low 
moisture to ignite fires. Fuels consistently showed the lowest importance across this region as well. 

Southern regions showed a sharp increase in DFMC's importance, aligning with Jaksic and 
Fariña (2015) and Kitzberger (2015) that emphasize the critical role of low fuel moisture in fire behavior. 
The DFMC anomaly is more important for intentional fires and showed high variability in this region. 
Fuels maintained their secondary role in spatial fire modeling. 

Despite regional variations, certain patterns emerged consistently across Chile. The proximity 
to the WUI held significant weight in most models, especially for non-intentional fires, reflecting the 
documented increase in fire activity in these areas (Castillo et al., 2015). The overall influence of DFMC 
anomalies was lower than that reported in southwestern Europe (Rodrigues et al., 2023b), suggesting 
different climatic drivers or fire regimes between regions. Fuels consistently showed the lowest 
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importance across all regions and fire causes (Table S3). This doesn’t imply they are unimportant, but 
rather their role in spatial fire modeling is secondary compared to anthropogenic factors and moisture 
conditions. 

 

6. Conclusions 

This study examined fire occurrence models across four zones of Chile, highlighting key spatial 
and causal differences in wildfire dynamics. The initial exploratory analysis revealed marked 
interannual variability due to recent extreme fire seasons. Model validation using AUC scores showed 
regional differences in predictive performance—lower in the central zone due to its high complexity and 
greater in the south, likely due to simpler landscapes and fewer ignitions. The Andes showed 
intermediate performance, influenced by a mix of factors including varied topography and human 
activity concentrated in valleys. 

Among predictors, proximity to power lines, roads, and the wildland–urban interface (WUI) 
consistently ranked as highly important, reflecting the central role of human access and activity. In 
contrast, fuel-related and climatic variables (such as DFMC and its anomaly) were generally less 
influential, though they gained relevance in the southern zone. Partial dependence plots helped interpret 
how these variables influenced ignition probability across zones and fire causes, revealing clear 
geographic and behavioral stratification. These findings emphasize the importance of considering both 
natural and anthropogenic factors in fire modeling and underscore the need for region-specific 
approaches. 

This work provides a foundation for advanced fire modeling and targeted risk management in 
Chile. Nonetheless, the study's limitations, particularly regarding data quality and spatial resolution, 
highlight the need for continued research. Future work should incorporate socioeconomic variables and 
seek finer temporal detail to enhance prediction, especially under evolving climate scenarios.  
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Supplementary Material 

 

Table S1. Summary of models without autocorrelation. 

Number of models without autocorrelation (/1000) 
Moran Arson Unintended 
North 460 904 

Central Chile 990 888 
South 513 485 
Andes 661 946 

 
 

Table S2. Descriptive statistics of AUC across regions and causes. 

Arson 
AUC Minimum Mean Maximum 
North 0.786 0.934 1 

Central Chile 0.559 0.679 0.773 
South 0.764 0.966 1 
Andes 0.642 0.794 0.919 

Unintended 
North 0.766 0.911 0.986 

Central Chile 0.566 0.67 0.77 
South 0.875 0.951 0.992 
Andes 0.733 0.831 0.901 

 
 

Table S3. Marginal effects of fuel types across regions and causes. 

Zone Arson Unintended 
Forest 

formations 
Non-forest 

natural 
formations 

(shrublands) 

Crops and 
plantations 

Forest 
formations 

Non-forest 
natural 

formations 
(shrublands) 

Crops and 
plantations 

North 0.129 0.133 0.133 0.262 0.253 0.289 
Central Chile 0.513 0.529 0.48 0.51 0.544 0.482 

South 0.048 0.035 0.07 0.127 0.129 0.13 
Andes 0.178 0.165 0.2 0.339 0.309 0.318 

 
 


