Atmospheric water vapor content as indicator of global warming in a Caribbean zone of Colombia

Authors

  • M. Pérez-Viloria Universidad de Córdoba-Colombia
  • L. Gónima Universidad de Córdoba-Colombia

DOI:

https://doi.org/10.18172/cig.2517

Keywords:

climatic variations, air temperature, atmospheric water vapor content, global warming, Colombia.

Abstract

This study shows the importance of the atmospheric water vapour content as an indicator of global warming at local scale in part of the middle and lower basin of the Sinú river (Colombia). The climatic regime of the selected zone is represented by the meteorological stations of Turipaná, El Salado, Lorica and La Doctrina. Data series of air temperature T and relative humidity HR of the mentioned stations, between 1968 and 2011, were selected and tested for quality by rigorous statistical and climatic analysis. Furthermore, atmospheric water vapor density data dv were estimated, using mean annual values of T and HR previously calculated for each of the selected 44 years. The interannual trend analysis of the annual means of T and dv, for the four selected stations and the integrated studied zone, demonstrated that even though their climatic variability strongly depends of El Niño and La Niña phenomena, the upward trend of both variables remains since 1968. Particularly in the integrated studied zone, an increment in T of 0.75ºC (2.7%) or 0.17ºC dec-1 was detected, which coincides with the reported global value by WMO, while dv increased in 1.02 g m-3 (5.9%) or 0.23 g m-3 dec-1. It was determinated likewise that 1991-2000 was the warmest decade of the period of time 1968-2011 and not the next one (2001-2010), as it is exposed in diverse studies worldwide. On the contrary of the results obtained from global and regional researchs, in this study the decadal means do not explain completely the great tropical climatic variability at local level and the effect of the global warming. The statistical analysis of T and dv trends for the periods of time 1968-1974 and 1975-2011, allowed to identify evidences of the possible beginning of the global warming in the studied zone, probably due to the most intensive La Niña event of the history, registered between 1973 and 1974 (ONI of -2.0). The results obtained in this study about the global warming in the four selected meteorological stations and the integrated studied zone, probably caused by extense and intense human land intervention, confirm that the atmospheric water vapor content dv is the most adequate thermodynamic variable for the description of the behavior of tropical climatic regimes at local level.

Downloads

Download data is not yet available.

Author Biographies

M. Pérez-Viloria, Universidad de Córdoba-Colombia

Geógrafa, estudiante IV semestre Maestría en Ciencias Ambientales SUE-Caribe. Autora de artículos publicados en revistas científicas.

L. Gónima, Universidad de Córdoba-Colombia

Dr. rer.nat en Meteorología, Profesor de física aplicada en la Universidad de Córdoba-Colombia. Experto en teledetección y en medio ambiente. Numerosos artículos publicados en revistas científicas. Postdoctorados en Francia (INRA y CNRS), Alemania (Universidad Humboldt  y Universidad Libre de Berlín) y España (Universidad de Granada y CSIC).

References

Aro, T.O. 1976. Analysis of data on surface and tropospheric water vapour. Journal of Atmospheric and Terrestrial Physics 38, 565-57.

Antilla, L. 2005. Climate of scepticism: US newspaper coverage of the science of climate change. Global Environmental Change 15, 338-352.

Benavides-Ballesteros, H.O y Rocha-Enciso, C.E 2012. Indicadores que manifiestan cambios en el sistema climático de Colombia (Años y décadas más calientes y las más y menos lluviosas). En IDEAM–METEO/001-2012, Nota Técnica del IDEAM. Instituto de Hidrología, Meteorología y Estudios Ambientales, Bogotá, 26 pp.

Brown, P.J., y DeGaetano, A.T. 2013. Trends in U.S. surface humidity, 1930-2010. Journal of Applied Meteorology and Climatolology 52, 147-163.

Comisión Económica para América Latina y el Caribe (CEPAL) 1999. Efectos macroeconómicos del fenómeno El Niño de 1997-1998. En LC/MEX/R.688. Comisión Económica para América Latina y el Caribe, 38 pp.

Corporación Autónoma Regional de los Valles del Sinú y San Jorge (CVS), Parques Nacionales Naturales de Colombia (PNN), Corporación Autónoma Regional de Sucre (CARSUCRE) y Universidad de Córdoba 2006. Fases de prospección y formulación del Plan de Ordenamiento y Manejo Integral de la Cuenca Hidrográfica del Río Sinú (POMCA-RS). Montería, 859 pp.

Dai, A. 2006. Recent climatology, variability, and trends in global surface humidity. Journal of Climate 19, 3589-3606.

Fernández-García, F. 1995. Manual de climatología aplicada. Síntesis. Madrid, 385 pp.

Förster, E. y Rönz, B. 1979. Methoden der Korrelations- und Regressionsanalyse. Verlag Die Wirtschaft. Berlin, 324 pp.

Gónima, L. 2009. Evidencias del calentamiento global en el Caribe Colombiano. Meteorología Colombiana 13, 1-10.

Instituto de Hidrología, Meteorología y Estudios Ambientales (IDEAM) 1997. Posibles efectos naturales y socioeconómicos del fenómeno El Niño en el período 1997-1998 en Colombia. Bogotá, 71 pp.

Instituto de Hidrología, Meteorología y Estudios Ambientales (IDEAM) 2005. Atlas Climático de Colombia. Bogotá, 219 pp.

Instituto de Hidrología, Meteorología y Estudios Ambientales (IDEAM) 2011. Boletín informativo sobre el monitoreo del fenómeno de "La Niña". Boletín número 30, Bogotá, 5 pp.

Instituto Geográfico Agustín Codazzi (IGAC) 2009. Estudio general de suelos y zonificación de tierras del Departamento de Córdoba 1:100.000. Bogotá, 502 pp.

Intergovernmental Panel on Climate Change (IPCC) 2001. Cambio Climático 2001: Impactos, adaptación y vulnerabilidad-Contribución del grupo de trabajo II al Tercer informe de evaluación del IPCC 2001. Ginebra, 101 pp.

Intergovernmental Panel on Climate Change (IPCC) 2013. Summary for policymakers. Disponible en: http://www.climatechange2013.org/images/uploads/WGIAR5-SPM_Approved27Sep2013.pdf (fecha de acceso 11/10/2013).

Isaac, V. y van Wijngaarden, W.A. 2012. Water vapor pressure and temperature trends in North American during 1948-2010. Journal Climate 25, 3599-3609.

Kousari, M.R., Ekhtesasi, M.R., Tazeh, M., Saremi-Naeini, M.A. y Asadi-Zarch M.A. 2011. An investigation of the Iranian climatic changes by considering the precipitation, temperature, and relative humidity parameters. Theoretical and Applied Climatology 103, 321-335.

Lahsen, M. 2008. Experiences of modernity in the greenhouse: a cultural analysis of a physicist ‘‘trio’’ supporting the backlash against global warming. Global Environmental Change 18, 204-219.

Leckner, B. 1978. The spectral distribution of solar radiation at the earth´s surface-elements of a model. Solar Energy 20, 143-150.

León-Aristizabal, G.E. 2000. Tendencia de la temperatura del aire en Colombia. Meteorología Colombiana 2, 57-65.

Linke, F. y Baur, F. 1970. Meteorologisches Taschenbuch. Geest & Portig, Leipzig, 712 pp.

McLean, J.D., de Freitas, C.R., y Carter, R.M. 2009. Influence of the Southern Oscillation on tropospheric temperature. Journal of Geophysical Research 114: 10.1029/2008JD011637.

Moeller-Houborg, R. y Soegaard, H. 2004. Regional simulation of ecosystem CO2 and water vapor exchange for agricultural land using NOAA AVHRR and Terra MODIS satellite data. Application to Zealand, Denmark. Remote Sensing of Environment 93, 150-167.

Murphy, J., Kattsov, V., Keenlyside, N., Kimoto, M., Meehl, G., Mehtaf, V., Pohlmann, H., Scaife, A. y Smith, D. 2010. Towards prediction of decadal climate variability and change. Procedia Environmental Sciences 1, 287-304.

Nongovernmental International Panel on Climate Change (NIPCC-IR1) 2011. Climate Change Reconsidered: 2011 Interim Report of the Nongovernmental International Panel on Climate Change (NIPCC). The Heartland Institute, Chicago, 416 pp.

National Oceanic and Atmospheric Administration (NOAA) 2013. ENSO cycle: recent evolution, current status and predictions. Disponible en: http://www.cpc.ncep.noaa.gov/products/analysis_monitoring/lanina/enso_evolution-status-fcsts-web.pdf (fecha de acceso 13/09/2013).

Ocampo-López, O.L. 2012. Análisis de vulnerabilidad de la cuenca del río Chinchiná para condiciones estacionarias y de cambio climático. Tesis de maestría. Departamento de Ingeniería Química. Universidad Nacional de Colombia-Sede Manizales, Manizales, 255 pp.

Organización Meteorológica Mundial (OMM) 2008. Adaptación a la variabilidad del clima y al cambio climático. Boletín 57 (2), Ginebra, 68 pp.

Padilla-Agámez, M.H. 2011. Definición de indicadores de cambio climático para la cuenca baja del río Sinú: Distrito de Riego de la Doctrina. Tesis de maestría. Facultad de Ciencias Contables, Económicas y Administrativas. Universidad de Manizales, Manizales, 45 pp.

Pérez-Viloria, M. 2012. Nuevas evidencias del calentamiento global en el Caribe colombiano. En El Cambio Global: su expresión e impactos en Colombia, Memorias en CD del X Ciclo Anual de Conferencias. Departamento de Geografía. Universidad Nacional de Colombia, Bogotá.

Ruiz-Murcia, J.F. 2010. Cambio Climático en temperatura, precipitación y humedad relativa para Colombia usando modelos meteorológicos de alta resolución (panorama 2011-2100). En IDEAM–METEO/005-2010, Nota Técnica del IDEAM. Instituto de Hidrología, Meteorología y Estudios Ambientales, Bogotá, 91 pp.

Santer, B.D., Mears, C., Wentz, F.J., Taylor, K.E., Gleckler, P.J., Wigley, L.T.M., Barnett, T.P., Boyle, J.S., Brüggemann, W., Gillett, N.P., Klein, S.A., Meehl, G.A., Nozawa, T., Pierce, D.W., Stott, P.A., Washington, W.M. y Wehner, M.F. 2007. Identification of human-induced changes in atmospheric moisture content. Proceedings of the National Academy of Sciences of the United States of America. 39, 15248-15253.

Seidel, Th.M., Grant, A.N., Pszenny, A.A.P. y Allman, D.J. 2007. Dewpoint and humidity measurements and trends at the summit of Mount Washington, New Hampshire, 1935-2004. Journal of Climate 20, 5629-5641.

TableCurve 2000. TableCurve 2D 5.0 Automated Curve Fitting & Equation Discovery. AISN Software Inc.

Trenberth, K.E., Fasullo, J. y Smith, L. 2005. Trends and variability in column-integrated atmospheric water vapor. Climate Dynamics 24, 741-758.

United Nations Framework Convention on Climate Change (UNFCCC) 1992. Convención marco de las Naciones Unidas sobre el cambio climático. Disponible en: http://unfccc.int/resource/docs/convkp/convsp.pdf (fecha de acceso 13/09/2013).

Wall Street Journal 2011. The case against global-warming skepticism. Opinion Europe. Disponible en: http://online.wsj.com/news/articles/SB10001424052970204422404576594872796327348 (fecha de acceso 21/09/2013).

Wilks, D.S. 2006. Statistical methods in the atmospheric sciences. Academic Press, USA, 627 pp.

Willett, K.M., Williams, Jr.C.M., Dunn, R.J.H., Thorne, P.W., Bell, S., de Podesta, M., Jones, P.D., y Parker, D.E. 2013. HadISDH: an updateable land surface specific humidity product for climate monitoring. Climate of the Past 9, 657-677.

World Meteorological Organization (WMO) 2011. Guide to climatological practices. WMO-No. 100. Geneva, 115 pp.

World Meteorological Organization (WMO) 2013. The global climate 2001–2010: a decade of climate extremes. WMO-No. 1103. Geneva, 117 pp.

Published

07-03-2014

How to Cite

1.
Pérez-Viloria M, Gónima L. Atmospheric water vapor content as indicator of global warming in a Caribbean zone of Colombia. CIG [Internet]. 2014 Mar. 7 [cited 2024 Mar. 29];40(2):477-96. Available from: https://publicaciones.unirioja.es/ojs/index.php/cig/article/view/2517