Paraglacial geomorphology associated with slope instability in the North Branch of the Argentino Lake, Argentinean Patagonia

Authors

  • S. Moragues Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales (IANIGLA)-Centro Científico Tecnológico (CCT). CONICET-MENDOZA
  • M.G. Lenzano Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales (IANIGLA)-Centro Científico Tecnológico (CCT). CONICET-MENDOZA
  • S. Moreiras Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales (IANIGLA)-Centro Científico Tecnológico (CCT). CONICET-MENDOZA
  • L. Lenzano Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales (IANIGLA)-Centro Científico Tecnológico (CCT). CONICET-MENDOZA

DOI:

https://doi.org/10.18172/cig.3786

Keywords:

Paraglacial geomorphology, slope instability, geomorphometric parameters, conditioning and triggering factors

Abstract

The worldwide retreat and thinning of glaciers in recent decades have a direct impact on the stability of the slopes. The Upsala glacier basin and the glaciers of the North Branch of Argentino Lake have suffered a marked retreat, generating valleys with steep slopes and covered with unstable moraine deposits. Therefore, the slopes are strongly destabilized, favoring the generation of paraglacial geomorphological processes. The main goal of this study is to identify and analyze the paraglacial geomorphology associated with instability processes. We analysis the area through the combination of morphometric parameters and intervening factors that condition and trigger these processes by satellite images. The results show that paraglacial geomorphology is influenced by the combination of: (i) terrain morphometric parameters as, among others, terrain elevations exceeding 700 m ASL, average slopes with a range between 25º-45º, east-northwest slopes aspects with greater insolation, concave curvature of the terrain and slight to moderate roughness (0.40-0.65); (ii) conditioning factors, moraine material deposited by glaciers, weathered rock outcrops and vegetation cover; (iii) triggering factors, groundwater infiltration by proglacial lagoons and surface infiltration by rainfall, thaw and runoff, variation of air and soil temperatures and variation of lake level. In conclusion, the slopes with the greatest paraglacial geomorphological processes resulting from mass removal processes are those in direct contact with the Upsala, Bertacchi and Cono glaciers, the western slope of the Upsala channel and some areas of the Moyano and Norte valleys. The area is characterized by a combination of glacial and paraglacial environments, each being an integral part of the evolution of the environment.

Downloads

Download data is not yet available.

Author Biographies

S. Moragues, Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales (IANIGLA)-Centro Científico Tecnológico (CCT). CONICET-MENDOZA

Becaria doctoral de CONICET, Departamento de Geomática, IANIGLA

M.G. Lenzano, Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales (IANIGLA)-Centro Científico Tecnológico (CCT). CONICET-MENDOZA

Doctora

References

Abele, G. 1974. Bergstürze in den Alpen. IhreVerbreitung, Morphologie und Folgeerscheinungen. Wissenschaftliche Alpenvereinshefte 25, Munich.

Allen, S.K., Rastner, P., Arora, M., Huggel, C., Stoffel, M. 2016. Lake outburst and debris flow disaster at Kedarnath, June 2013: hydrometeorological triggering and topographic predisposition. Landslides 13 (6), 1479-1491. https://doi.org/10.1007/s10346-015-0584-3.

Aniya, M., Skvarca, P. 1992. Characteristics and variations of Upsala and Moreno glaciers, southern Patagonia. Bulletin of Glacier Research 10, 39-53.

Aniya, M., Sato, H., Naruse, R., Skvarca, P., Casassa, G. 1996. The Use of Satellite and Airborne Imagery to Inventory Outlet Glaciers of the Southern Patagonia Icefield, South America. Photogrammetric Engineering & Remote Sensing 62, 1361-1369.

Aniya, M., Sato, H., Naruse, R., Skvarca, P., Casassa, G. 1997. Recent glacier variations in the Southern Patagonia Icefield, South America. Arctic and Alpine Research 29 (1), 1-12. https://doi.org/10.2307/1551831.

Aniya, M., Enomoto, H., Aoki, T., Matsumoto, T., Skvarca, P., Barcaza, G., Suzuki R, Sawagaki T., Sato, N., Isenko, E., Iwasaki, S., Sala, H., Fukuda, A., Satow, K., Naruse, R. 2007. Glaciological and geomorphological studies at Glaciar Exploradores, Hielo Patagonico Norte, and Glaciar Perito Moreno, Hielo Patagonico Sur, South America, during, 2003-2005 (GRPP03-05). Bulletin of Glaciological Research 24, 95-107. http://www.seppyo.org/bgr/ pdf/24/BGR24p95.pdf.

Aristizábal, E., Yokota, S. 2006. Geomorfología aplicada a la ocurrencia de deslizamientos en el Valle de Aburrá. Dyna 73 (149). https://www.redalyc.org/pdf/496/49614902.pdf.

Ballantyne, C.K., Benn, D.I. 1994. Paraglacial Slope Adjustment and Resedlmenfation following Recent Glacier Retreat, Fåbergstølsdalen, Norway, Arctic and Alpine Research 26 (3), 255-269. https://doi.org/10.2307/1551938.

Ballantyne, C.K. 2002. Paraglacial geomorphology. Quaternary Science Reviews 21, 1935-2017. https://doi.org/10.1016/S0277-3791(02)00005-7.

Ballantyne, C.K., Stone, J.O. 2013. Timing and periodicity of paraglacial rock-slope failures in the Scottish Highlands. Geomorphology 186, 150-161. https://doi.org/10.1016/j. geomorph.2012.12.030.

Barlow, J., Martin, Y., Franklin, S. 2009. Evaluating debris slide occurrence using digital data: paraglacial activity in Chilliwack Valley, British Columbia. Canadian Journal of Earth Sciences 46 (3), 181-191. https://doi.org/10.1139/E09-012.

Bianchi, A.R., Cravero, S.A. 2010. Atlas climático digital de la República Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Salta-Jujuy. Estación Experimental Agropecuaria Salta. Programa Nacional Ecorregiones. Proyectos INTA Pneco, 1301, 33-34.

Caldenius, C.C. 1932. Las glaciaciones cuaternarias en la Patagonia y Tierra del Fuego. Dirección General de Minas y Geología, Publicación 95, Buenos Aires.

Carrasco, J., Casassa, G., Rivera, A. 2002. Meteorological and climatological aspects of the Southern Patagonian Ice Fields. In: G. Casassa, F. Sepúlveda, R. Sinclair (Eds.), The Patagonian Ice Fields, a Unique Natural Laboratory for Environmental and Climate Change Studies. Kluwer Academic/Plenum Publishers, New York, 29-41.

Cave, J.A.S., Ballantyne, C.K. 2016. Catastrophic Rock-Slope Failures in NW Scotland: Quantitative Analysis and Implications. Scottish Geographical Journal 132 (3-4), 185-209. https://doi.org/10.1080/14702541.2016.1156148.

Clarke, B., Burbank, D. 2010. Bedrock fracturing, threshold hillslopes, and limits to the magnitude of bedrock landslides. Earth and Planetary Science Letters 297, 577-586. https://doi.org/10.1016/j.epsl.2010.07.011.

Cruden, D.M., Varnes, D.J. 1996. Landslide types and processes. In: A.K. Turner, R.L. Schuster (Eds.), Landslides investigation and mitigation. Transportation research board, US National Research Council. Special Report 247, Washington, DC, Chapter 3, 36-75.

Cubito, A., Ferrara, V., Pappalardo, G. 2005. Landslide hazard in the Nebrodi Mountains (Northeastern Sicily). Geomorphology 66, 359-372. https://doi.org/10.1016/j. geomorph.2004.09.020.

Curry, A.M. 2000. Observations on the distribution of paraglacial reworking of glacigenic drift in western Norway. Norsk Geografisk Tidsskrift 54, 139-147. https://doi. org/10.1080/002919500448512.

Curry, A.M., Cleasby, V., Zukowskyj, P. 2006. Paraglacial response of steep, sediment-mantled slopes to post-‘Little Ice Age’ glacier recession in the central Swiss Alps. Journal of Quaternary Science 21 (3), 211-225. https://doi.org/10.1002/jqs.954.

Dai, F.C., Lee, C.F. 2002. Landslide characteristics and slope instability modeling using GIS, Lantau Island, Hong Kong. Geomorphology 42 (3-4), 213-228. https://doi.org/10.1016/S0169-555X(01)00087-3.

Echeverria, M.E., Sottile, G.D., Mancini, M.V. 2014. Nothofagus forest dynamics and palaeo environmental variations during the mid and late Holocene, in southwest Patagonia. The Holocene 24, 957-969. https://doi.org/10.1177/0959683614534742.

Estrada, M., Kohiyama, M. 2001. Detection of damage due to the 2001, El Salvador earthquake using Landsat images. Proceedings of 22nd Asian Conference on Remote Sending, Singapore, 6.

Feuillet, T., Coquin, J., Mercier, D., Cossart, E., Decaulne, A., Jónsson, H.P., Sæmundsson, Þ. 2014. Focusing on the spatial non-stationarity of landslide predisposing factors in northern Iceland: Do paraglacial factors vary over space? Progress in Physical Geography 38 (3), 354-377. https://doi.org/10.1177/0309133314528944.

Fernandes, N.F., Guimarães, R.F., Gomes, R.A.T., Vieira, B.C., Montgomery, D.R., Greenberg, H. 2004. Topographic controls of landslides in Rio de Janeiro: filed evidence and modeling. Catena 55, 163-181. https://doi.org/10.1016/S0341-8162(03)00115-2.

Fitzsimons, S.J. 1996. Paraglacial redistribution of glacial sediments in the Vestfold Hills, East Antarctica. Geomorphology 15, 93-108. https://doi.org/10.1016/0169-555X(95)00122-L.

Foresta, L., Gourmelen, N., Weissgerber, F., Nienow, P., Williams, J.J., Shepherd, A., Plummer, S. 2018. Heterogeneous and rapid ice loss over the Patagonian Ice Fields revealed by CryoSat-2 swath radar altimetry. Remote Sensing of Environment 211, 441-455. https://doi. org/10.1016/j.rse.2018.03.041.

Franklin, S.E., Peddle, D.R. 1987. Texture analysis of digital image data using spatial concurrence. Computers & Geosciences 13 (3), 293-311. https://doi.org/10.1016/0098-3004(87)90047-1.

Gariano, S.L., Guzzetti, F. 2016. Landslides in a changing climate. Earth-Science Reviews 162, 227-252. https://doi.org/10.1016/j.earscirev.2016.08.011.

Garreaud, R., Lopez, P., Minvielle, M., Rojas, M. 2013. Large-scale control on the Patagonian climate. Journal of Climate 1, 215-230. https://doi.org/10.1175/JCLI-D-12-00001.1.

Garreaud, R.D., Nicora, M.G., Bürgesser, R.E., Ávila, E.E. 2014. Lightning in Western Patagonia. Journal of Geophysical Research: Atmospheres 119, 1-15. https://doi.org/10.1002/2013JD021160.

Giuseppe, F., Simoni, S., Godt, J.W., Lu, N., Rigon, R. 2016. Geomorphological control on variably saturated hillslope hydrology and slope instability. Water Resources Research 52, 4590-4607. https://doi.org/10.1002/2015WR017626.

Glasser, N.F., Jansson, K.N., Harrison, S., Rivera, A. 2005. Geomorphological evidence for variations of the North Patagonian Icefield during the Holocene. Geomorphology 71 (3), 263-277. https://doi.org/10.1016/j.geomorph.2005.02.003.

Glasser, N.F., Jansson, K.N., Harrison, S., Kleman, J. 2008. The glacial geomorphology and Pleistocene history of South America between 38°S and 56°S. Quaternary Science Reviews 27, 365-390. https://doi.org/10.1016/j.quascirev.2007.11.011.

Glasser, N.F., Ghiglione, M.C. 2009. Structural, tectonic and glaciological controls on the evolution of fjord landscapes. Geomorphology 105 (3), 291-302. https://doi.org/10.1016/j. geomorph.2008.10.007.

Glasser, N.F., Harrison, S., Jansson, K., Anderson, K., Cowley, A. 2011. Global sea-level contribution from the Patagonian Icefields since the Little Ice Age maximum. Nature Geoscience 4, 303-307. https://doi.org/10.1038/ngeo1122.

Gutiérrez-Elorza, M. 2008. Geomorfología. Madrid, Pearson Prentice Hall, 229-270.

Haeberli, W., Kääb, A., Hoelzle, M., Boesch, H., Funk, M., VonderMuehll, D., Keller, F. 1999. Eisschwund und Naturkatastrophenim Hochgebirge. Final Report NFP 31, v/d/f Hochschulverlag ETH Zurich.

Hartemink, A.E., McBratney, A.B. 2009. Geomorphometry. Concepts, Software, Applications. Developments in Soil Science, 33. Series Editors. A.E. Edited by Tomislav Hengl & Hannes I. Reuter.

Hewitt, K., Clague, J.J., Orwin, J.F. 2008. Legacies of catastrophic rock slope failures in mountain landscapes. Earth-Science Reviews 87, 1-38. https://doi.org/10.1016/j.earscirev.2007.10.002.

Hewitt, K. 2009. Rock avalanches that travel onto glaciers and related developments Karakoram Himalaya Asia. Geomorphology 103, 66-79. https://doi.org/10.1016/j.geomorph.2007.10.017.

Huang, F.M., Huang, J.S., Jiang, S.H., Zhou, C.B. 2017. Landslide displacement prediction based on multivariate chaotic model and extreme learning machine. Engineering Geology 218, 173-186. https://doi.org/10.1016/j.enggeo.2017.01.016.

Iturrizaga, L. 2008. Paraglacial landform assemblages in the Hindukush and Karakoram Mountains. Geomorphology 95 (1-2), 27-47. https://doi.org/10.1016/j.geomorph.2006.07.030.

Jarman, D. 2006. Large rock slope failures in the Highlands of Scotland: Characterization, causes and spatial distribution. Engineering Geology 83, 161-182. https://doi.org/10.1016/j.enggeo.2005.06.030.

Johnson, B.G., Thackray, G.D., Van Kirk, R. 2007. The effect of topography, latitude, and lithology on rock glacier distribution in the Lemhi Range, central Idaho, USA. Geomorphology 91 (1-2), 38-50. https://doi.org/10.1016/j.geomorph.2007.01.023.

Kääb, A. 2002. Monitoring high-mountain terrain deformation from repeated air-and spaceborne optical data: examples using digital aerial imagery and ASTER data. ISPRS Journal of Photogrammetry & Remote Sensing 57, 39-52. https://doi.org/10.1016/S0924-2716(02)00114-4.

Kawabata, D., Bandibas, J. 2009. Landslide susceptibility mapping using geological data, a DEM from ASTER images and an Artificial Neural Network (ANN). Geomorphology 113 (1-2), 97-109. https://doi.org/10.1016/j.geomorph.2009.06.006.

Keefer, D.K. 1984. Landslides caused by earthquakes. Geological Society of America Bulletin 95 (4), 406-421. https://doi.org/10.1130/0016-7606(1984)95<406:LCBE>2.0.CO;2.

Kellerer-Pirklbauer, A., Proske, H., Strasser, V. 2010. Paraglacial slope adjustment since the end of the Last Glacial Maximum and its long-lasting effects on secondary mass wasting processes: Hauser Kaibling. Austria Geomorphology 120, 65-76. https://doi.org/10.1016/j. geomorph.2009.09.016.

Kovanen, D., Slaymaker, O. 2015. The paraglacial geomorphology of the Fraser Lowland, southwest British Columbia and northwest Washington. Geomorphology 232, 78-93. https://doi.org/10.1016/j.geomorph.2014.12.021.

Kraemer, P.E., Riccardi, A.C. 1997. Estratigrafía de la región comprendida entre los lagos Argentino y Viedma (49° 40’-50° 10’ lat. S), Provincia de Santa Cruz. Revista de la Asociación Geológica Argentina 52 (3), 333-360.

Leir, M., Michell, A., Ramsay, S. 2004. Regional landslide hazard susceptibility mapping for pipelines in British Columbia. Geo-engineering for the society and its environment. 57th Canadian Geotechnical Conference and the 5th Joint CGS-IAH conference. Old Quebec, Canada, pp. 1-9.

Lo Vecchio, A., Lenzano, M.G., Richiano, S., Lenzano, L.E. 2016. Identificación y caracterización litológica mediante el uso del sensor ETM+ (Landsat 7). Caso de estudio: entorno del glaciar Upsala, Argentina. Revista de teledetección: Revista de la Asociación Española de Teledetección 46, 57-72. https://doi.org/10.4995/raet.2016.4482.

Malagnino, E.C., Strelin, J.A. 1992. Variations of Upsala Glacier in southern Patagonia since the late Holocene to the present. In: R. Naruse, M. Aniya (Eds.), Glaciological Researches in Patagonia, 1990. Japanese Society of Snow and Ice, pp. 61-85.

Matsuoka, M., Abe, M. 2002. Rock slope failures associated with deglaciation: some examples from glaciated valleys in the Swiss Alps. Annual Report, International Geoscience 28, 11-16. McColl, S.T. 2012. Paraglacial rock-slope stability. Geomorphology 153-154, 1-16. https://doi.org/10.1016/j.geomorph.2012.02.015.

McColl, S.T., Fuller, I.C., Anderson, B., Tate, R. 2017. Hillslope failure and paraglacial reworking of sediments in response to glacier retreat, Fox Valley, New Zealand. Geophysical Research Abstracts 19, EGU2017, 170 pp. https://meetingorganizer.copernicus.org/EGU2017/EGU2017-170.pdf.

Mercier, D., Étienne, S., Sellier, D., André, M.F. 2009. Paraglacial gullying of sediment-mantled slopes: a case study of Colletthøgda, Kongsfjorden area, West Spitsbergen (Svalbard). Earth Surface Processes and Landforms: The Journal of the British Geomorphological Research Group 34 (13), 1772-1789. https://doi.org/10.1002/esp.1862.

Moragues, S., Lenzano, M.G., Lo Vecchio, A., Falaschi, D., Lenzano, L. 2018. Surface velocities of Upsala glacier, Southern Patagonian Andes estimated by mean of cross correlation satellite imagery: 2013-2014 period. Andean Geology 45 (1), 87-103. https://doi.org/10.5027/andgeoV45n1-3034.

Moragues, S., Lenzano, M.G., Moreiras, S., Lo Vecchio, A., Lannutti, E., Lenzano, E. 2019. Slope instability analysis in South Patagonia applying multivariate and bivariate techniques on Landsat images during 2001-2015 period. Catena 174, 339-352. https://doi.org/10.1016/j. catena.2018.11.024.

Moreiras, S.M. 2005. Landslide susceptibility zonation in the Rio Mendoza Valley, Argentina. Geomorphology 66, 345-357. https://doi.org/10.1016/j.geomorph.2004.09.019.

Naruse, R., Casassa, G. 1985. Reconnaissance survey of some glaciers in the Southern Icefield. In: C. Nakajima (Ed.), Glaciological Studies in Patagonia Northern Icefield, 1983-1984. Data Center for Glacier Research, Japanese Society of Snow and Ice, pp. 121-133.

Naruse, R., Skvarca, P. 2000. Dynamic Features of Thinning and Retreating Glaciar Upsala, a Lacustrine Calving Glacier in Southern Patagonia. Arctic, Antarctic, and Alpine Research 32 (4), 485-491. https://doi.org/10.1080/15230430.2000.12003393.

Owen, G., Hiemstra, J.F., Matthews, J.A., McEwen, L.J. 2010. Landslide-glacier interaction in a neoparaglacial setting at Tverrbytnede, Jotunheimen, Southern Norway. Geografiska Annaler: Series A, Physical Geography 82, 421-436. https://doi.org/10.1111/j.1468-0459.2010.00405.x.

Paolini, L., Sobrino, J.A., Jiménez-Muñoz, J.C. 2002. Detección de deslizamientos de ladera mediante imágenes Landsat TM: El impacto de estos disturbios sobre los bosques subtropicales del noroeste de Argentina. Revista de Teledetección 18, 21-27.

Petley, D., Crick, W.O., Hart, A.B. 2002. The use of satellite imagery in landslide studies in high mountain areas. Proceedings of the Asian conference on remote sensing, Kathmandu, Nepal.

Reid, M.L., Evans, S.G. 2016. A new approach to evaluating landslide hazard in the mountain glacial environment -mass and hypsometry. Geophysical Research Abstracts 18, EGU2016, 1194 pp.

Richter, A., Marderwald, E., Hormaechea, J.L., Mendoza, L., Perdomo, R., Connon, G., Scheinert, M., Horwath, M., Dietrich, R. 2016. Lake-level variations and tides in Lago Argentino, Patagonia: insights from pressure tide gauge records. Journal of Limnology 75 (1), 62-77. https://doi.org/10.4081/jlimnol.2015.1189.

Ryder, J.M. 1971a. The stratigraphy and morphology of paraglacial alluvial fans in south central British Columbia. Canadian Journal of Earth Sciences 8, 279-298. https://doi.org/10.1139/e71-027.

Ryder, J.M. 1971b. Some aspects of the morphometry of paraglacial alluvial fans in south central BC. Canadian Journal of Earth Sciences 8, 1252-1264. https://doi.org/10.1139/e71-114.

Sakakibara, D., Sugiyama, S., Sawagaki, T., Marinsek, S., Skvarka, P. 2013. Rapid retreat, acceleration and thinning of Glaciar Upsala, Southern Patagonia Icefield, initiated in 2008. Annals of Glaciology 54 (63), 131-138. https://doi.org/10.3189/2013AoG63A236.

Sakakibara, D., Sugiyama, S. 2014. Ice-front variations and speed changes of calving glaciers in the Southern Patagonia Icefield from 1984 to 2011. Journal of Geophysical Research: Earth Surface 119 (11), 2541-2554. https://doi.org/10.1002/2014JF003148.

Santos-González, J., González-Gutiérrez, R.B., Santos, J.A., Gómez-Villar, A., Peña-Pérez, S.A., Redondo-Vega, J.M. 2018. Topographic, lithologic and glaciation style influences on paraglacial processes in the upper Sil and Luna catchments, Cantabrian Mountains, NW Spain. Geomorphology 319, 133-146. https://doi.org/10.1016/j.geomorph.2018.07.019.

Schaefer, M., Machguth, H., Falvey, M., Casassa, G., Rignot, E. 2015. Quantifying mass balance processes on the Southern Patagonia Icefield. The Cryosphere 9, 25-35. https://doi. org/10.5194/tc-9-25-2015.

Serrano, E., Oliva, M., González-García, M., López-Moreno, J. I., González-Trueba, J., Martín-Moreno, R., Gómez-Lende, M., Martín-Díaz, J., Nofre, J., Palma, P. 2018. Post-little ice age paraglacial processes and landforms in the high Iberian mountains: A review. Land Degradation & Development 29, 4186-4208. https://doi.org/10.1002/ldr.3171.

Shulmeister, J., Davies, T.R., Evans, D.J.A., Hyatt, O.M., Tovar, D.S. 2009. Catastrophic landslides, glacier behaviour and moraine formation a view from an active plate margin. Quaternary Science Reviews 28, 1085-1096. https://doi.org/10.1016/j.quascirev.2008.11.015.

Skvarca, P., Marinsek, S., Aniya, M. 2010. Documenting 23 years of areal loss of Hielo Patagónico Sur, recent climate data and potential impact on Río Santa Cruz water discharge. In: Abstracts. International Glaciological Conference. Ice and climate change: a view from the South. Centro de Estudios Científicos, Valdivia, Chile, 82.

Shibasaki, T., Matsuura, S., Okamoto, T. 2016. Experimental evidence for shallow, slow-moving landslides activated by a decrease in ground temperature. Geophysical Research Letters 43 (13), 6975-6984. https://doi.org/10.1002/2016GL069604.

Sidle, R.C., Ochiai, H. 2006. Landslides: processes, prediction, and land use. Water Resour. Monogr. Ser. 18. AGU, Washington DC.

Singhroy, V. 2002. Landslide hazards: CEOS, The use of earth observing satellites for hazard support: Assessments and scenarios. Final report of the CEOS Disaster Management Support Group, NOAA, 98.

Slaymaker, O. 2009. Proglacial, periglacial or paraglacial? Geological Society, London, Special Publications 320 (1), 71-84. https://doi.org/10.1144/SP320.6.

Steffen, H. 1910. Viajes de Exploración y Estudio en la Patagonia Occidental 1892-1902. Tomo II. Anales Universidad de Chile, Santiago.

Strelin, J., Kaplan, M., Vandergoes, M., Denton, G., Schaefer, J. 2014. Holocene glacier history of the Lago Argentino basin, Southern Patagonian Icefield. Quaternary Science Reviews 101, 124-145. https://doi.org/10.1016/j.quascirev.2014.06.026.

Sugiyama, S., Minowa, M., Sakakibara, D., Skvarca, P., Sawagaki, T., Ohashi, Y., Naito, N., Chikita, K. 2016. Thermal structure of proglacial lakes in Patagonia. Journal of Geophysical Research: Earth Surface 121, 2270-2286. https://doi.org/10.1002/2016JF004084.

Tofelde, S., Dusing, W., Schildgen, T.F., Wittmann, H., Alonso, R.N., Strecker, M.R. 2017. Changes in denudation rates and erosion processes in the transition from a low-relief, arid orogen interior to a high-relief, humid mountain-front setting, Toro Basin, southern Central Andes. American Geophysical Union, Fall Meeting 2017, abstract. http://adsabs.harvard. edu/abs/2017AGUFMEP33B1946T.

Tooth, S., Viles, H. 2014. 10 reasons why is important Geomorphology. 1-17. http://www. geomorph.org/2016/06/10-reasons-why-geomorphology-is-important-by-stephen-tooth-and-heather-viles/.

Varnes, D.J. 1978. Slope movement types and processes. In: R.L. Schuster, R.J. Krizek (Eds.), Landslides, analysis and control, special report 176: Transportation research board, National Academy of Sciences, Washington, DC, pp. 11-33. http://onlinepubs.trb.org/Onlinepubs/sr/sr176/176-002.pdf.

Villalba, R., Masiokas, M., Ruiz, L., Pitte, P., Rivera, J., Viale, M. 2017. Impactos del Cambio Climático en el Régimen Hidrológico del Río Santa Cruz. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales (IANIGLA), CONICET. Informe Técnico.

Williams, P.J., Smith, M.W. 1989. The frozen earth: fundamentals of geocryology. Cambridge University Press, Cambridge, UK. https://doi.org/10.1017/CBO9780511564437.

Willis, M., Melkonian, A.K., Pritchard, M.E., Rivera, A. 2012. Ice loss from the Southern Patagonian Ice Field, South America, between 2000 and 2012. Geophysical Research Letters 39, 1-6. https://doi.org/10.1029/2012GL053136.

Winocur, D., Goyanes, G., Viera, G. 2015. Deslizamiento de ladera y tsunami asociado en el Lago Argentino, Canal Upsala, provincia de Santa Cruz, Patagonia Argentina. Congreso Geológico Chileno, La Serena, Chile, pp. 136-139. http://biblioteca.sernageomin.cl/opac/ DataFiles/14905_v3_pp_79_82.pdf.

Zêzere, J., Ferreira, A., Rodrigues, M. 1999. The role of conditioning and triggering factors in the occurrence of landslides: a case study in the area north of Lisbon (Portugal). Geomorphology 30, 133-146. https://doi.org/10.1016/S0169-555X(99)00050-1.

Zinck, J.A. 2012. Geopedología. Elementos de geomorfología para estudios de suelos y de riesgos naturales. ITC. Faculty of Geo-Information Science and Earth Observation Enschede, the Netherlands, pp. 123-131. https://webapps.itc.utwente.nl/librarywww/papers_2012/general/zinck_geopedologia_2012.pdf.

Zischinsky, U. 1969. Über Sackungen. Rock Mechanics 1, 30-52. https://doi.org/10.1007/BF01247356.

Published

18-06-2019

How to Cite

1.
Moragues S, Lenzano M, Moreiras S, Lenzano L. Paraglacial geomorphology associated with slope instability in the North Branch of the Argentino Lake, Argentinean Patagonia. CIG [Internet]. 2019 Jun. 18 [cited 2024 Mar. 28];45(1):367-92. Available from: https://publicaciones.unirioja.es/ojs/index.php/cig/article/view/3786

Issue

Section

Articles