Effect of hyaloclastite breccia boulders on meso-scale periglacial-aeolian landsystem in semi-arid Antarctic environment, James Ross Island, Antarctic Peninsula

M. Kňažková, F. Hrbáček, J. Kavan, D. Nývlt


In this study we aim to describe the processes leading to the creation of a specific periglacial and aeolian landsystem, which evolves around the hyaloclastite breccia boulders on James Ross Island, north-eastern Antarctic Peninsula. These boulders were deposited as a result of the Late Holocene advance of Whisky Glacier, forming a well-developed boulder train approximately 5-km long, stretching from Whisky Glacier moraine to Brandy Bay. The combination of ground temperature monitoring, snow cover measurements, grain size analysis and field survey were used to quantify and understand the interplay of periglacial and aeolian processes leading to the formation of the specific meso-scale landsystem around the boulders. The ground temperature probes were installed during January 2017 in the vicinity of two selected boulders. The two study sites, at Monolith Lake (large boulder) and Keller Stream (smaller boulder), were also fitted with snow stakes and trail cameras. An automatic weather station (AWS) on the Abernethy Flats, located approximately two kilometres to the north-west, was used as a reference site for ground temperature and snow cover thickness. The hyaloclastite breccia boulders act as obstacles to wind and trap wind-blown snow, resulting in the formation of snow accumulations on their windward and lee sides. These accumulations affect ground thermal regime and lead to the transport of fine particles by meltwater from the snow during the summer season. The snow cover also traps wind-blown fine sand resulting in the formation of fine-grained rims on the windward and lee sides of the boulders after the snow has melted. Furthermore, the meltwater affects ground moisture content, creating favourable, but spatially limited conditions for colonisation by mosses and lichens.


ground sorting; periglacial environment; Antarctica; wind accumulation; snowmelt

Full Text:



Altunkaynak, Ş., Aldanmaz, E., Güraslan, I.N., Çalışkanoğlu, A.Z., Ünal, A., Nývlt, D. 2018. Lithostratigraphy and petrology of Lachman Crags and Cape Lachman lava-fed deltas, Ulu Peninsula, James Ross Island, north-eastern Antarctic Peninsula: Preliminary results. Czech Polar Reports 8 (1), 60-83.

Atkins, C.B., Dunbar, G.B. 2009. Aeolian sediment flux from sea ice into Southern McMurdo Sound, Antarctica. Global and Planetary Change 69 (3), 133-141. https://doi.org/10.1016/j.gloplacha.2009.04.006.

Ayling, B.F., McGowan, H.A. 2006. Niveo-eolian sediment deposits in coastal South Victoria Land, Antarctica: Indicators of regional variability in weather and climate. Arctic, Antarctic and Alpine Research 38 (3), 313-324. https://doi.org/10.1657/1523-0430(2006)38[313:NSDICS]2.0.CO;2.

Balks, M.R., O’Neill, T.A. 2016. Soil and permafrost in the Ross Sea region of Antarctica: stable or dynamic? Cuadernos de Investigación Geográfica 42 (2), 415-434. https://doi.org/10.18172/cig.2923.

Benn, D.I., Evans, D.J.A. 2010. Glaciers and Glaciation. 2nd Edition. 802 pp., Hodder Arnold Publication, London.

Björck, S., Olsson, S., Ellis-Evans, C., Håkansson, H., Humlum, O., de Lirio, J.M. 1996. Late Holocene palaeoclimatic records from lake sediments on James Ross Island, Antarctica. Palaeogeography, Palaeoclimatology, Palaeoecology 121 (3-4), 195-220. https://doi.org/10.1016/0031-0182(95)00086-0.

Bourke, M.C., Ewing, R.C., Finnegan, D., McGowan, H.A. 2009. Sand dune movement in the Victoria Valley, Antarctica. Geomorphology 109, 14-160. https://doi.org/10.1016/j.geomorph/2009.02.028.

Brookfield, M.E. 2011. Aeolian processes and features in cool climates. In: Martini, I.P., French, H.M., Pérez Alberti, A. (Eds.), Ice-marginal and periglacial processes and sediments. Geological Society of London, Special Publication, 354, pp. 241-258. https://doi.org/10.1144/SP354.16.

Burton-Johnson, A., Black, M., Fretwell, P.T., Kaluza-Gilbert, J. 2016. An automated methodology for differentiating rock from snow, clouds and sea in Antarctica from Landsat 8 imagery: a new rock outcrop map and area estimation for the entire Antarctic continent. Cryosphere 10 (4), 1665-1677. https://doi.org/10.5194/tc-101665-2016.

Carrivick, J.L., Davies, B.J., Glasser, N.F., Nývlt, D., Hambrey, M.J. 2012. Late-Holocene changes in character and behaviour of land-terminating glaciers on James Ross Island, Antarctica. Journal of Glaciology 58 (212), 1176-1190. https://doi.org/10.3189/2012JoG11J148.

Crame, J.A., Pirrie, D., Riding, J.B., Thomson, M.R.A. 1991. Campanian–Maastrichtian (Cretaceous) stratigraphy of the James Ross Island area, Antarctica. Journal of the Geological Society, London 148, 1125-1140. https://doi.org/10.1144/gsjgs.148.6.1125.

Davies, B.J., Hambrey, M.J., Smellie, J.L., Carrivick, J.L., Glasser, N.F. 2012. Antarctic Peninsula Ice Sheet evolution during the Cenozoic Era. Quaternary Science Reviews 31, 30-66. https://doi.org/10.1016/j.quascirev.2011.10.012.

Davies, B.J., Glasser, N.F., Carrivick, J.L., Hambrey, M.J., Smellie, J.L., Nývlt, D. 2013. Landscape evolution and ice-sheet behaviour in a semi-arid polar environment: James Ross Island, NE Antarctic Peninsula. In: Hambrey, M.J., Barker, P.F., Barrett, P.J., Bownam, V., Davies, B., Smellie, J.L., Tranter, M. (Eds.), Antarctic Palaeoenvironments and Earth-Surface Processes. Geological Society of London, Special Publication, 381, pp. 353-395. https://doi.org/10.1144/SP381.1.

Davies, B.J., Golledge, N.R., Glasser, N.F., Carrivick, J.L., Ligtenberg, S.R.M., Barrand, N.E., van den Broeke, M., Hambrey, M.J., Smellie, J.L. 2014. Modelled glacier response to centennial temperature and precipitation trends on the Antarctic Peninsula. Nature Climate Change 4 (11), 993-998. https://doi.org/10.1038/nclimate2369.

Del Valle, R.A., Elliot, D.H., Macdonald, D.I.M. 1992. Sedimentary basins on the east flank of the Antarctic Peninsula: proposed nomenclature. Antarctic Science 4, 477-478. https://doi.org/10.1017/S0954102092000695.

Engel, Z., Nývlt, D., Láska, K. 2012. Ice thickness, areal and volumetric changes of Davies Dome and Whisky Glacier (James Ross Island, Antarctic Peninsula) in 1979-2006. Journal of Glaciology 58 (211), 904-914. https://doi.org/10.3189/2012JoG11J156.

Engel, Z., Láska, K., Nývlt, D., Stachoň, Z. 2018. Surface mass balance of small glaciers on James Ross Island, north-eastern Antarctic Peninsula, during 2009-2015. Journal of Glaciology 64 (245), 349-361. https://doi.org/10.1017/jog.2018.17.

Evans, D.J.A., Ed. 2003. Glacial Landsystems. 532 pp., Arnold, London.

Eyles, N. 1983. Glacial geology: a landsystem approach. In: N. Eyles (Ed.), Glacial Geology: An Introduction for Engineers and Earth Scientists. Pergamon Press, Oxford, pp. 1-18. https://doi.org/10.1016/B978-0-08-030263-8.50007-5.

Frauenfeld, O.W., Zhang, T., McCreight, J.L., 2007. Northern hemisphere freezing/thawing index variations over the twentieth century. International Journal of Climatology 27, 47-63. https://doi.org/10.1002/joc1372.

French, H.M. 2017. The Periglacial Environment. 4th Edition. Wiley-Blackwell, Oxford, 515 pp.

Gillies, J.A., Nickling, W.G., Tilson, M. 2013. Frequency, magnitude, and characteristics of aeolian sediment transport: McMurdo Dry Valleys, Antarctica. Journal of Geophysical Research-Earth Surface 118 (2), 461-479. https://doi.org/10.1002/jgrf.20007.

Glasser, N.F., Davies, B.J., Carrivick, J.L., Rodés, A., Hambrey, M.J., Smellie, J.L., Domack, E. 2014. Ice-stream initiation, duration and thinning on James Ross Island, northern Antarctic Peninsula. Quaternary Science Reviews 86, 78-88. https://doi.org/10.1016/j.quascirev.2013.11.012.

Hedding, D.W., Nel, W., Anderson, R.L. 2015. Aeolian processes and landforms in the sub-Antarctic: preliminary observations from Marion Island. Polar Research 34 (1), 26365. https://dx.doi.org/10.3402/polar.v34.26365.

Hjort, C., Ingólfsson, Ó., Möller, P., Lirio, J.M. 1997. Holocene glacial history and sea-level changes on James Ross Island, Antarctic Peninsula. Journal of Quaternary Science 12, 259-273. https://doi.org/10.1002/(SICI)1099-1417(199707/08)12:4<259::AID-JQS307>3.3.CO;2-Y.

Hrbáček, F., Láska, K., Engel, Z. 2016. Effect of Snow Cover on the Active-Layer Thermal Regime – A Case Study from James Ross Island, Antarctic Peninsula. Permafrost and Periglacial Processes 27, 307-315. https://doi.org/10.1002/ppp.1871.

Hrbáček, F., Nývlt, D., Láska, K. 2017. Active layer thermal dynamics at two lithologically different sites on James Ross Island, Eastern Antarctic Peninsula. Catena, 149, 592-602. https://doi.org/10.1016/j.catena.2016.06.020.

Hrbáček, F., Vieira, G., Oliva, M., Balks, M., Guglielmin, M., de Pablo, M.A., Molina, A., Ramos, M., Goyanes, G., Meiklejohn, I., Abramov, A., Demidov, N., Fedorov-Davydov, D., Lupachev, A., Rivkina, E., Láska, K., Kňažková, M., Nývlt, D., Raffi, R., Strelin, J., Sone, T., Fukui, K., Dolgikh, A., Zazovskaya, E., Mergelov, N., Osokin, N., Miamin, V., 2019. Active layer monitoring in Antarctica: an overview of results from 2006 to 2015. Polar Geography, in press. https://doi.org/10.1080/1088937X.2017.1420105.

Johnson, J.S., Bentley, M.J., Roberts, S.J., Binnie, S.A., Freeman, S.P.H.T. 2011. Holocene deglacial history of the northeast Antarctic Peninsula - A review and new chronological constraints. Quaternary Science Reviews 30, 3791-3802. https://doi.org/10.1016/j.quascirev.2011.10.011.

Kavan, J., Dagsson-Waldhauserova, P., Renard, J.B., Láska, K., Ambrožová, K. 2018. Aerosol concentrations in relationship to local atmospheric conditions on James Ross Island, Antarctica. Frontiers in Earth Science-Atmospheric Science 6, 207. https://doi.org/10.3389/feart.2018.00207.

Košler, J., Magna, T., Mlčoch, B., Mixa, P., Nývlt, D., Holub, F.V. 2009. Combined Sr, Nd, Pb and Li isotope geochemistry of alkaline lavas from northern James Ross Island (Antarctic Peninsula) and implications for back-arc magma formation. Chemical Geology 258, 207-218. https://doi.org/10.1016/j.chemgeo.2008.10.006.

Koster, E.A., Dijkmans, J.W.A. 1988. Niveo-aeolian deposits and denivation forms, with special reference to the Great Kobuk sand dunes, northwestern Alaska. Earth Surface Processes and Landforms 13 (2), 153-170. https://doi.org/10.1002/esp.3290130206.

Kovanan, D., Slaymaker, O. 2015. The paraglacial geomorphology of the Fraser Lowland, southwest British Columbia and northwest Washington. Geomorphology 232, 78-93. https://doi.org/10.1016/j.geomorph.2014.12.021.

Lancaster, N. 2002. Flux of eolian sediment in the McMurdo Dry Valleys, Antarctica: a preliminary assessment. Arctic, Antarctic, and Alpine Research 34 (3), 318-323. https://doi.org/10.1080/15230430.2002.12003500.

Lancaster, N. 2004. Relations between aerodynamic and surface roughness in a hyper-arid cold desert: McMurdo Dry Valleys, Antarctica. Earth Surface Processes and Landforms 29 (7), 853-867. https://doi.org/10.1002/esp.1073.

López-Martínez, J., Serrano, E., Schmid, T., Mink, S., Linés, C. 2012. Periglacial processes and landforms in the South Shetland Islands (northern Antarctic Peninsula region). Geomorphology 155, 62-79. https://doi.org/10.1016/j.geomorph.2011.12.018.

Marchant, D.R., Lewis, A.R., Phillips, W.M., Moore, E.J., Souchez, R.A., Denton, G.H., Sugden, D.E., Potter, N., Landis, G.P. 2002. Formation of patterned ground and sublimation till over Miocene glacier ice in Beacon Valley, southern Victoria Land, Antarctica. Geological Society of America Bulletin 114 (6), 718-730. https://doi.org/10.1130/0016-7606(2002)114<0718:FOPGAS>3.3.CO;2.

Matsuoka, N., Moriwaki, K., Hirakawa, K. 1996. Field experiments on physical weathering and wind erosion in an Antarctic cold desert. Earth Surface Processes and Landforms 21, 687-699. https://doi.org/10.1002/(SICI)1096-9837(199608)21:8<687::AID-ESP614>3.3.CO;2-A.

McGowan, H.A., Neil, D.T., Speirs, J.C. 2014. A reinterpretation of geomorphological evidence for Glacial Lake Victoria, McMurdo Dry Valleys, Antarctica. Geomorphology 208, 200-206. https://doi.org/10.1016/j.geomorph.2013.12.005.

McKenna Neuman, C. 1993. A review of aeolian transport processes in cold environments. Progress in Physical Geography: Earth and Environment 17 (2), 137-155. https://doi.org/10.1177/030913339301700203.

McKenna Neuman, C. 2004. Effects of temperature and humidity upon the transport of sedimentary particles by wind. Sedimentology 51, 1-17. https://doi.org/10.1046/j.1365-3091.2003.00604.x.

Mlčoch, B., Nývlt, D., Mixa, P., (Eds.) 2018. Geological map of James Ross Island – Northern part 1: 25,000. Czech Geological Survey, Praha.

Nelson, P.H.H. 1975. The James Ross Island Volcanic Group of North-East Graham Land. British Antarctic Survey Scientific Report 54, 62 pp.

Nývlt, D., Braucher, R., Engel, Z., Mlčoch, B., ASTER Team 2014. Timing of the Northern Prince Gustav Ice Stream retreat and the deglaciation of northern James Ross Island, Antarctic Peninsula during the last glacial-interglacial transition. Quaternary Research 82, 441-449. https://doi.org/10.1016/j.yqres.2014.05.003.

Nývlt, D., Nývltová Fišáková, M., Barták, M., Stachoň, Z., Pavel, V., Mlčoch, B., Láska, K. 2016. Death age, seasonality, taphonomy and colonization of seal carcasses from Ulu Peninsula, James Ross Island, Antarctic Peninsula. Antarctic Science 28, 3-16. https://doi.org/10.1017/S095410201500036X.

Ó Cofaigh, C., Davies, B.J., Livingstone, S.J., Smith, J.A., Johnson, J.S., Hocking, E.P., Hodgson, D.A., Anderson, J.B., Bentley, M.J., Canals, M., Domack, E., Dowdeswell, J.A., Evans, J., Glasser, N.F., Hillenbrand, C.D., Larter, R.D., Roberts, S.J., Simms, A.R. 2014. Reconstruction of ice-sheet changes in the Antarctic Peninsula since the Last Glacial Maximum. Quaternary Science Reviews 100, 87-110. https://doi.org/10.1016/j.quascirev.2014.06.023.

Oliva, M., Ruiz-Fernández, J. 2015. Coupling patterns between para-glacial and permafrost degradation responses in Antarctica. Earth Surface Processes and Landforms 40 (9), 1227-1238. https://doi.org/10.1002/esp.3716.

Oliva, M., Hrbáček, F., Ruiz-Fernández, J., de Pablo, M.A., Vieira, G., Ramos, M., Antoniades. D. 2017. Active layer dynamics in three topographically distinct lake catchments in Byers Peninsula (Livingston Island, Antarctica). Catena 149 (2), 548-559. https://doi.org/10.1016.j.catena.2016.07.011.

Olivero, E., Scasso, R.A., Rinaldi, C.A. 1986. Revision of the Marambio Group, James Ross Island, Antarctica. Instituto Antártico Argentino, Contribución 331, 28 pp.

Šabacká, M., Priscu, J.C., Basagic, H.J., Fountain, A.G., Wall, D.H., Virginia R.A., Greenwood, M.C. 2012. Aeolian flux of biotic and abiotic material in Taylor Valley, Antarctica. Geomorphology 155-156, 102-111. https://doi.org/10.1016/j.geomorph/2011.12.009.

Seehaus, T., Cook, A.J., Silva, A.B., Braun, M. 2018. Changes in glacier dynamics in the northern Antarctic Peninsula since 1985. Cryosphere 12 (2), 577-594. https://doi.org/10.5194/tc-12577-2018.

Seppälä, M. 2004. Wind as a geomorphic agent. Cambridge University Press, Cambridge, 368 pp.

Smellie, J.L., Johnson, J.S., Mcintosh, W.C., Esser, R., Gudmundsson, M.T., Hambrey, M.J., Van Wyk De Vries, B. 2008. Six million years of glacial history recorded in volcanic lithofacies of the James Ross Island Volcanic Group, Antarctic Peninsula. Palaeogeography, Palaeoclimatology, Palaeoecology 260, 122-148. https://doi.org/10.1016/j.palaeo/2007.08.011.

Smellie, J.L., Johnson, J.S., Nelson, A.E. 2013. Geological map of James Ross Island. I. James Ross Island Volcanic Group (1:125 000 Scale). BAS GEOMAP 2 Series, Sheet 5, British Antarctic Survey, Cambridge.

Smith, M.W., Riseborough, D.W. 1996. Permafrost Monitoring and Detection of Climate Change. Permafrost and Periglacial Processes 7, 301-309. https://doi.org/10.1002/(SICI)1099-1530(199610)7:4<301::AID-PPP231>3.0.CO;2R.

Speirs, J.C., McGowan, H.A., Neil, D.T. 2008. Meteorological controls on sand transport and dune morphology in a polar-desert: Victoria Valley, Antarctica. Earth Surface Processes and Landforms 33 (12), 1875-1891. https://doi.org/10.1002/esp.1739.

Thomas, D.S.G. 1997. Arid Zone Geomorphology. 2nd Edition. John Wiley & Sons, 624 pp.

Tsoar, H. 2001. Types of Aeolian Sand Dunes and Their Formation. In: N.J. Balmforth, A. Provenzale (Eds.) Geomorphological Fluid Mechanics. Lecture Notes in Physics, vol. 582. Springer, Berlin, Heidelberg.

Van Lipzig, N.P.M., King, J.C., Lachlan-Cope, T.A., van der Broeke, M.R. 2004. Precipitation, sublimation and snow drift in the Antarctic Peninsula region from a regional atmospheric model. Journal of Geophysical Research-Atmosphere 109, D24106. https://doi.org/10.1029/2004JD004701.

Wiggs, G., Baird, A., Atherton, R. 2004. The dynamic effects of moisture on the entrainment and transport of sand by wind. Geomorphology 59, 13-30. https://doi.org/10.1016/j.geomorph.2003.09.002.

Zhang, T. 2005. Influence of the seasonal snow cover on the ground thermal regime: an overview. Reviews of Geophysics 43 (4). https://doi.org/10.1029/2004RG000157.

DOI: https://doi.org/10.18172/cig.3800

Copyright (c) 2020 M. Kňažková, F. Hrbáček, J. Kavan, D. Nývlt

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

© Universidad de La Rioja, 2013

ISSN 0211-6820

EISSN 1697-9540