Trees as sentinels of metallic pollution induced by mining along the Odiel River (Southern Iberian Peninsula)

Authors

  • A. Delapierre Department of Earth Sciences, University of Geneva
  • J.A. Ballesteros-Canovas Universidad de Ginebra
  • J. Buzzi Marcos
  • V.I. Slaveykova Institute for Environmental Sciences, University of Geneva
  • M. Stoffel University of Geneva

DOI:

https://doi.org/10.18172/cig.4740

Keywords:

tree ring, flood, fluvial geomorphology, dendrochemistry, heavy metal, pollution, Odiel River

Abstract

Mining activity is often responsible for the drainage of acid or metal-enriched waters to fluvial systems. The release of metals is especially disturbing due to the toxicity and persistence of these products and their accumulation in the biosphere. Hence, a systematic detection and delimitation of highly polluted floodplains and linkages between pollution and high-flow stages would likely assist the improvement of land management and ease the design of mitigation or rehabilitation measures. Here we test how trees growing in different geomorphic positions along a fluvial system uptake metal during floods and how these uptakes can be documented “a posteriori”. To this end, we apply dendrogeochemical analyses to twenty Pinus pinaster Ait. trees growing on the banks of Odiel River (south-western Spain) as well as to five reference trees growing outside the river channel. In the field, trees were sampled with a large-diameter (1 cm) increment borer. In the lab, tree-ring series were dendrochronologically cross dated and separated into 5-yr blocks, so that wood blocks contained the dates of major floods. Then, Inductively Coupled Plasma Mass Spectrometry (ICPM) was employed to evaluate toxic metal concentrations in trees. Results point to clear correlations between the accumulation of toxic metals and the geomorphic position of trees within the fluvial network. We show that morphological units along a river exert control on toxic metal concentrations in trees, with uptake being much higher in trees located on meander cut banks than in trees growing on point-bar structures. Besides, we detect chemical signatures in trees located farthest away from the main river channel after the largest floods, but not in the aftermath of smaller events. We conclude that tree position is the single-most important determinant for metallic pollution in an environment controlled by fluvial processes, but also find that more studies are still needed to determine linkages with individual floods and interactions of metal uptake in roots via the water table in the river corridor.

Downloads

Download data is not yet available.

References

Aguirre, J.A.M., Sánchez, J.C.R., Arce, P.J. S. 2003. Avenidas torrenciales en el Arroyo del Partido y su incidencia en la Marisma del Parque Nacional de Doñana. Organismo Autónomo Parques Nacionales, Madrid.

Ali, H., Khan, E. Ilahi, I. 2019. Environmental Chemistry and Ecotoxicology of Hazardous Heavy Metals: Environmental Persistence, Toxicity, and Bioaccumulation. Journal of Chemical, 6730305. https://doi.org/10.1155/2019/6730305.

Alpers, C.N., Nordstrom, D.K., Spitzley, J. 2003. Extreme acid mine drainage from a pyritic massive sulfide deposit: The Iron Mountain endmember. In: J.L. Jambor, D.W. Blowes, A.I.M. Ritchie (Eds.). Environmental Aspects of Mine-Wastes. Mineralogical Association of Canada, pp. 407-430.

Augustin, S., Stephanowitz, H., Wolff, B., Schröder, J., Hoffmann, E. 2005. Manganese in Tree Rings of Norway Spruce as an Indicator for Soil Chemical Changes in the Past. European Journal of Forest Research 124 (4), 313-318. https://doi.org/10.1007/s10342-005-0084-4.

Ballesteros-Cánovas, J.A., Stoffel, M., St George, S., Hirschboeck, K. 2015. A review of flood records from tree rings. Progress in Physical Geography 39 (6) 794-816. https://doi.org/10.1177/0309133315608758.

Ballesteros-Cánovas, J.A., Stoffel, M., Benito, G., Rohrer, M., Barriopedro, D., García-Herrera, R., Beniston, M., Brönnimann, S. 2018. On the extraordinary winter flood episode over the North Atlantic Basin in 1936. Annals of the New York Academy of Sciences 1436, 206-216. https://doi.org/10.1111/nyas.13911.

Ballesteros-Cánovas, J.A., Stoffel, M., Martín-Duque, J.F., Corona, C., Lucía, A., Bodoque, J.M., Montgomery, D.R. 2017. Gully evolution and geomorphic adjustments of badlands to reforestation. Scientific Reports 7, 45027.

Balouet, J.C., Smith, K.T., Vroblesky, D., Oudijk, G. 2009. Use of dendrochronology and dendrochemistry in environmental forensics: does it meet the Daubert criteria? Environmental Forensics 10 (4), 268-276. https://doi.org/10.1080/ 15275920903347545.

Banchirigah, S.M. 2008. Challenges with eradicating illegal mining in Ghana: A perspective from the grassroots. Resources Policy 33(1), 29-38. https://doi.org/10.1016/ j.resourpol.2007.11.001.

Benito, G., Machado, M.J., Pérez-González, A. 1996. Climate change and flood sensitivity in Spain. Geological Society, London, Special Publications, 115(1), 85-98. https://doi.org/10.1144/GSL.SP.1996.115.01.08.

Bing, H., Wu, Y., Zhou, J., Li, R., Wang, J. 2016. Historical trends of anthropogenic metals in Eastern Tibetan Plateau as reconstructed from alpine lake sediments over the last century. Chemosphere 148, 211-219. https://doi.org/10.1016/j.chemosphere.2016.01.042.

Borrego, J. 1992. Sedimentología del estuario del Río Odiel, Huelva, S.O. España. PhD thesis, Univ. of Sevilla, Sevilla, Spain.

Braungardt, C.B., Achterberg, E.P., Mimmo, M. 1998. Behaviour of disolved trace metals in the Rio Tinto/Rio Odiel Esturine System. In: J.A. Morales, J. Borrego, J. (Eds). European land-ocean interaction studies. Second annual scientific conference. Abstract 51.

Buzzi Marcos, J. 2012. Imaging Spectroscopy to Evaluate the Contamination from Sulphide Mine Waste in the Iberian Pyrite Belt Using Hyperspectral Sensors (Huelva, Spain). Ph.D. Thesis, Universidad de León, León, Spain.

Buzzi, J., Riaza, A., García-Meléndez, E., Weide, S., Bachmann. M. 2014. Mapping Changes in a Recovering Mine Site with Hyperspectral Airborne Hymap Imagery (Sotiel, SW Spain). Minerals 4, 313-329. https://doi.org/10.3390/min4020313.

Cánovas, C.R. 2009. La calidad del agua de los ríos Tinto y Odiel: evolución temporal y factores condicionantes de la movilidad de los metales. Universidad de Huelva. Huelva.

Cheng, Z., Buckley, B.M., Katz, B., Wright, W., Bailey, R., Smith, K.T., van Geen, A. 2007. Arsenic in tree rings at a highly contaminated site. Science of the Total Environment 376 (1-3), 324-334. https://doi.org/10.1016/j.scitotenv.2007.01.074.

Ciszewski, D. 1998. Channel processes as a factor controlling accumulation of heavy metals in river bottom sediments: consequences for pollution monitoring (Upper Silesia, Poland). Environmental Geology 36 (1), 45-54. https://doi.org/10.1007/s002540050319.

Ciszewski. D. 2004. Pollution of Mala Panew river sediments by heavy metals: Part I. Effect of changes in river bed morphology. Polish Journal of Environmental Studies 13 (6), 589-595.

Consejería de Agricultura, Pesca y Medio Ambiente (Junta de Andalucía), 2014. Anejo 5 Implantación del régimen de caudales ecológicos. Demarcación Hidrográfica del Tinto, Odiel y Piedras. Memoria del Ciclo de Plan Hidrológico de la Planificación Hidrológica 2015/2021.

Corella, J.P., Valero-Garcés, B.L., Wang, F., Martínez-Cortizas, A., Cuevas, C.A., Saiz-Lopez, A. 2017. 700 years reconstruction of mercury and lead atmospheric deposition in the Pyrenees (NE Spain). Atmospheric Environment 155, 97-107. https://doi.org/10.1016/j.atmosenv.2017.02.018.

Cutter, B.E., Guyette. R.P. 1993. Anatomical, Chemical, and Ecological Factors Affecting Tree Species Choice in Dendrochemistry Studies. Journal of Environment Quality 22 (3): 611-619. https://doi.org/10.2134/jeq1993.00472425002200030028x.

Donnelly, J.R., Shane, J.B., Schaberg P.G. 1990. Lead mobility within the xylem of red spruce seedlings: implications for the development of pollution histories. Journal of Environmental Quality 19, 268-271. https://doi.org/10.2134/jeq1990.00472425001900020012x.

Doucet, A. 2011. Perspective spatio-temporelle et impacts des contaminants atmosphériques d’origine diffuse sur les forêts périurbaines du sud-est du Canada : une approche dendrogéochimique. Université du Québec, Quebec, Canada.

Fifield, F.W., Haines, P.J. (Eds.). 2000. Environmental analytical chemistry. Wiley.

Foster, I.D.L., Charlesworth, S.M. 1996. Heavy metals in the hydrological cycle: trends and explanation. Hydrological Processes 10 (2), 227-261. https://doi.org/10.1002/(SICI)1099-1085(199602)10:2<227::AID-HYP357>3.0.CO;2-X.

Foulds, S.A., Brewer, P.A., Macklin, M.G., Haresign, W., Betson, R.E., Rassner, S.M.E., 2014. Flood-related contamination in catchments affected by historical metal mining: an unexpected and emerging hazard of climate change. Science of the Total Environment 476, 165-180. https://doi.org/10.1016/j.scitotenv.2013.12.079.

Galván González, L. 2012. Modelización hidrológica del río Odiel: aplicación al estudio de la contaminación por drenaje ácido de minas. Ph.D. Thesis, Universidad de Huelva, Huelva, Spain.

Galván, L., Olías, M., 2015. Estudio de la contaminación por drenaje ácido de minas en la cuenca del Río Odiel. Boletín de la Sociedad Española de Mineralogía 20, 51-52.

George, S.S., Outridge, P.M., Nielsen, E. 2006. High-resolution dendrochemical analysis of flood-affected oaks using laser ablation ICP-mass spectrometry. IAWA Journal 27(1), 19-31. https://doi.org/10.1163/22941932-90000134.

Grande, J.A., Pérez Ostalé, E., de la Torre Sánchez, M.L., Fernandes Valente, T.M., Borrego Flores, J., Pérez Macias, J.A., Santisteban Fernández, M., Garrido Morillo, R., Romero Macías, E., Salmerón García, I. 2016. Drenaje ácido de mina en la Faja Pirítica Ibérica: Técnicas de estudio e inventario de explotaciones. Servicio de Publicaciones Universidad de Huelva, Huelva, Spain.

Gross, J.H. 2006. Mass spectrometry: a textbook. Springer, 1-518 pp., Heilderberg,

Guyette, R.P., Cutter. B.E. 1994. Barium and manganese trends un tree-rings as monitors of sulfur deposition. Water, Air, and Soil Pollution 73, 213-223. https://doi.org/10.1007/BF00477987.

Hagemeyer, J. 1995. Radial distributions of Cd in stems of oak trees (Quercus robur L.) re-analyzed after 10 years. Trees-Structure and Function 9 (4): 200-203. https://doi.org/10.1007/BF00195273.

Hänsch, R., Mendel, R. R. 2009. Physiological Functions of Mineral Micronutrients (Cu, Zn, Mn, Fe, Ni, Mo, B, Cl). Current Opinion in Plant Biology 12 (3): 259-266. https://doi.org/10.1016/j.pbi.2009.05.006.

Hong, S., Candelone, J.P., Patterson, C.C., Boutron, C.F. 1996. History of ancient copper smelting pollution during Roman and medieval times recorded in Greenland ice. Science 272(5259), 246-249. https://doi.org/10.1126/science.272.5259.246.

Hürkamp, K., Raab, T., Völkel, J. 2009. Lead pollution of floodplain soils in a historic mining area-age, distribution and binding forms. Water, air, and soil pollution 201(1-4), 331-345. https://doi.org/10.1007/s11270-008-9948-9.

Islam, M.S., Ahmed, M.K., Raknuzzaman, M., Habibullah-Al-Mamun, M., Islam, M.K. 2015. Heavy metal pollution in surface water and sediment: a preliminary assessment of an urban river in a developing country. Ecological Indicators 48, 282-291. https://doi.org/10.1016/j.ecolind.2014.08.016.

Kabata-Pendias, A., Pendias, H. 2001. Trace elements in soils and plants. 3rd ed. FI CRC Press, 1-413 pp., Boca Raton, US.

Lageard, J.G.A., Howell, J.A., Rothwell, J.J., Drew, I.B. 2008. The utility of Pinus sylvestris L. in dendrochemical investigations: Pollution impact of lead mining and smelting in Darley Dale, Derbyshire, UK. Environmental Pollution 153 (2), 284-294. https://doi.org/10.1016/j.envpol.2007.08.031.

Leistel, J.M., Marcoux, E., Thiéblemont, D., Quesada, C., Sánchez, A., Almodóvar, G.R., Sáez, R.J.M.D. 1997. The volcanic-hosted massive sulphide deposits of the Iberian Pyrite Belt Review and preface to the Thematic Issue. Mineralium Deposita 33 (1-2), 2-30.

Lewis, T.E. (Ed.). 1995. Dendrochronology and dendrochemistry in regional ecosystem health assessments: the forest health monitoring experience. In: Tree Rings as Indicators of Ecosystem Health, 25 June 1993, Penn State University, University Park, Pa. CRC Press, Boca Raton, Fla. pp. 1-16.

López, E., Sánchez, J., Diez, M., Santofimia, E., Reyes J., 2008. Cortas mineras inundadas de la Faja Pirítica: inventario e hidroquímica. Instituto Geológico y Minero de España. Madrid.

Madejon, P., Marañón, T., Murillo, J. M., Robinson, B. 2004. White poplar (Populus alba) as a biomonitor of trace elements in contaminated riparian forests. Environmental Pollution 132 (1), 145-155. https://doi.org/10.1016/j.envpol.2004.03.015.

Meerts, P. 2002. Mineral nutrient concentrations in sapwood and heartwood: a literature review. Annals of Forest Science 59 (7), 713-722. https://doi.org/10.1051/forest:2002059.

Morales, J.A., Pons, J.M., Cantano, M. 2005. Introducción al análisis de los riesgos de inundación en las riberas de las áreas estuarinas: El caso de las poblaciones adyacentes a la Ría de Huelva (SO España). Geogaceta 37, 243-246.

Morillo, J., Usero, J., Gracia, I. 2002. Partitioning of metals in sediments from the Odiel River (Spain). Environment International 28 (4), 263-271. https://doi.org/10.1016/S0160-4120(02)00033-8.

Nobel, P.S. 1999. Physicochemical and environmental plant physiology. Academic Press, San Diego, California, USA.

Nordstrom, D.K., Alpers, C.N. 1999. Geochemistry of acid mine waters. In: The environmental geochemistry of mineral deposits, 6A: 133-160. Rev Econ Geol. Plumlee GS, Logsdon MJ.

Norton, S.A. 1977. Changes in chemical processes in soils caused by acid precipitation. Water, Air, and Soil Pollution, 7(3), 389-400. https://doi.org/10.1007/BF00284133.

Nriagu, J.O. 1996. A history of global metal pollution. Science 272 (5259), 223-223. https://doi.org/10.1126/science.272.5259.223.

Obeng, E.A., Oduro, K.A., Obiri, B.D., Abukari, H., Guuroh, R.T., Djagbletey, G.D., Appiah, M., 2019. Impact of illegal mining activities on forest ecosystem services: local communities’ attitudes and willingness to participate in restoration activities in Ghana. Heliyon 5 (10), e02617. https://doi.org/10.1016/j.heliyon.2019.e02617.

Pérez-López, R., Nieto, J.M., López-Cascajosa, M.J., Díaz-Blanco, M.J., Sarmiento, A.M., Oliveira, V., Sánchez-Rodas, D. 2011. Evaluation of heavy metals and arsenic speciation discharged by the industrial activity on the Tinto-Odiel estuary, SW Spain. Marine Pollution Bulletin 62, 405-411. https://doi.org/10.1016/j.marpolbul.2010.12.013.

Riaza, A., Buzzi, J., García-Meléndez, E., Carrère, V., Sarmiento A., Müller, A. 2012. River acid mine drainage: sediment and water mapping through hyperspectral Hymap data. International Journal of Remote Sensing 33 (19), 6163-6185. https://doi.org/10.1080/01431161.2012.675454.

Riaza, A., Buzzi, J., García-Meléndez, E., Del Moral, B., Carrère, V., Richter, R. 2017. Monitoring salt crusts on an AMD contaminated coastal wetland using hyperspectral Hyperion data (Estuary of the River Odiel, SW Spain). International Journal of Remote Sensing 38 (12), 3735-3762. https://doi.org/10.1080/01431161.2017.1302621.

Rico, M., Benito, G., Diez-Herrero, A. 2008. Floods from tailings dam failures. Journal of Hazardous Materials 154 (1-3), 79-87. https://doi.org/10.1016/j.jhazmat.2007.09.110.

Rinn F. 1996. Tsap V. 3.6 Reference Manual: Computer Program for Tree-Ring Analysis and Presentation, 263 pp., Heidelberg, Germany,

Robles-Arenas, V.M., Rodríguez, R., García, C., Manteca, J.I., Candela, L. 2006. Sulphide-mining impacts in the physical environment: Sierra de Cartagena–La Unión (SE Spain) case study. Environmental Geology 51(1), 47-64. https://doi.org/0.1007/s00254-006-0303-4.

Rodríguez-Martín, J.A.R., Gutiérrez, C., Torrijos, M., Nanos, N. 2018. Wood and bark of Pinus halepensis as archives of heavy metal pollution in the Mediterranean Region. Environmental Pollution 239, 438-447. https://doi.org/10.1016/ j.envpol.2018.04.036.

Prohaska, T., Stadlbauer, C., Wimmer, R. Stingeder, G., Latkoczy, Ch., Hoffmann, E., Stephanowitz, H. 1998. Investigation of element variability in tree rings of young Norway spruce by laser-ablation-ICPMS. Science of the Total Environment 219 (1): 29-39. https://doi.org/10.1016/S0048-9697(98)00224-1.

Saint-Laurent, D., St-Laurent, J., Duplessis, P., Lavoie, L. 2010. Isotopic record of lead contamination in alluvial soils and tree rings on recent floodplains (Southern Québec, Canada). Water, Air, & Soil Pollution 20, 9(1-4), 451-466. https://doi.org/10.1007/s11270-009-0213-7.

Scharnweber, T., Hevia, A., Buras, A., van der Maaten, E., Wilmking, M. 2016. Common trends in elements? Within-and between-tree variations of wood-chemistry measured by X-ray fluorescence-A dendrochemical study. Science of the Total Environment 566, 1245-1253. https://doi.org/10.1016/j.scitotenv.2016.05.182.

Schweingruber, F.H., 2007. Wood structure and environment. Springer, Heidelberg, Germany.

Sheppard, J.C., Funk. W.H. 1975. Trees as environmental sensors monitoring long-term heavy metal contamination of Spokane River, Idaho. Environmental Science & Technology 9 (7), 638-642.

Silva, J.B., Oliveira, J.T., Ribeiro, A. 1990. Structural outline. In: R.D. Dallmeyer, E.M. García (Eds.). Pre-Mesozoic Geology of Iberia. IGCP-Project 233 (Terranes in the Circum-Atlantic Palezoic Orogens), Springer, pp. 348-362, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-83980-1_24.

Smith, K.T., Shortle, W.C. 1996. Tree biology and dendrochemistry. In: J.S. Dean, D.M. Meko, T.W. Swetnam (Eds.). Tree rings, Environment and Humanity. Proceedings of an International Conference. Tucson, AZ: Radiocarbon: 629-635.

Sprent, P., Smeeton, N.C. 2001. Applied Nonparametric Statistical Methods. 3rd Edition, Chapman & Hall/CRC, 463 pp., Boca Raton, US.

St. George, S., Outridge, P.M., Nielsen, E. 2006. High-resolution dendrochemical analysis of flood-affected oaks using laser ablation ICP-mass spectrometry. IAWA journal 27(1), 19-31.

St. Laurent, J., Saint-Laurent, D., Duplessis, P., Hähni, M., Begin, C. 2009. Application of dendrochronological and dendrochemical methods for dating contamination events of the Saint-François and Massawippi riverbanks (Québec, Canada). Soil, Sediment and Contamination 18 (5), 642-668. https://doi.org/10.1080/15320380903113626.

Stoffel, M., Slaveykova, V.I., Corona, C., Ballesteros-Cánovas, J.A. 2020. When scientists become detectives: investigating systematic tree poisoning in a protected cove. Heliyon 6(2), e03386. https://doi.org/10.1016/j.heliyon.2020.e03386.

Tchounwou, P.B., Yedjou, C.G., Patlolla, A.K., Sutton, D.J. 2012. Heavy metal toxicity and the environment. In: A. Luch (Ed.). Molecular, Clinical and Environmental Toxicology. Springer, pp. 133-164, Basel.

Watmough, S.A., Hutchinson, T.C. 1996. Analysis of Tree Rings Using Inductively Coupled Plasma Mass Spectrometry to Record Fluctuations in a Metal Pollution Episode. Environmental Pollution 93 (1), 93-102. https://doi.org/10.1016/0269-7491(95)00107-7.

Watmough, S.A., Hutchinson, T.C. 2002. Historical changes in lead concentrations in tree-rings of sycamore, oak and Scots pine in north-west England. Science of the Total Environment 293 (1): 85-96. https://doi.org/10.1016/S0048-9697(01)01149-4.

Watmough, S.A., Hutchinson, T.C. 2003. A comparison of temporal patterns in trace metal concentration in tree rings of four common European tree species adjacent to a Cu-Cd refinery. Water, Air, & Soil Pollution 146 (1): 225-241. https://doi.org/10.1023 /A:1023952417583.

Witte, K.M., Wanty, R.B., Ridley, W.I. 2004. Engelmann Spruce (Picea engelmannii) as a biological monitor of changes in soil metal loading related to past mining activity. Applied Geochemistry 19 (9), 1367-1376. https://doi.org/10.1016/j.apgeochem.2004.01.022.

Wright, G., Woodward, C., Peri, L., Weisberg, P.J., Gustin, M.S. 2014. Application of tree rings [dendrochemistry] for detecting historical trends in air Hg concentrations across multiple scales. Biogeochemistry 120 (1-3), 149-162. https://doi.org/10.1007/s10533-014-9987-9.

Yanosky, T.M., Hupp, C.R., Hackney, C.T. 1995. Chloride concentrations in growth rings of Taxodium distichum in a saltwater‐intruded estuary. Ecological Applications 5 (3), 785-792. https://doi.org/10.2307/1941986.

Yanosky, T.M., Vroblesky, D.A. 1992. Relation of nickel concentrations in tree rings to groundwater contamination. Water Resources Research 28 (8), 2077-2083. https://doi.org/10.1029/92WR00731.

Downloads

Published

01-07-2021

How to Cite

1.
Delapierre A, Ballesteros-Canovas J, Buzzi Marcos J, Slaveykova V, Stoffel M. Trees as sentinels of metallic pollution induced by mining along the Odiel River (Southern Iberian Peninsula). CIG [Internet]. 2021 Jul. 1 [cited 2024 Apr. 19];47(2):371-90. Available from: https://publicaciones.unirioja.es/ojs/index.php/cig/article/view/4740

Issue

Section

Articles