Sea level rise inundation risk assessment in residential cadastral parcels along the Mediterranean Andalusian coast

Authors

DOI:

https://doi.org/10.18172/cig.4744

Keywords:

SLR inundation hazards, physical vulnerability, residential cadastral parcels, web geoviewer, Mediterranean Andalusian coast

Abstract

The general objective of this article is to present the methodological approach for the assessment of the inundation risks associated with the rise in the mean sea level for different models and scenarios of climatic change (IPCC, 2013 and Jevrejeva et al., 2012). The approach focuses on the assessment of the hazard, exposure and physical vulnerability of the built areas, especially the residential areas along the Mediterranean coast of Andalusia (Spain). For hazards calculation a set of tide gauges’ data and climatic scenarios were analyzed to obtain future sea levels for all the spectrum of probabilities. Further, a method is proposed for mapping the probability associated with each scenario using a 5 m cell size DTM. For exposure and vulnerability assessment of built up areas, especially for residential ones, the National Cadastre, which is the most detailed set of data, have been used. Modeling the original cadastral data in a spatial database management system and their analysis through SQL sentences have made possible to identify the cadastral parcels with residential use and associated variables (area, number of residential real estate units, constructed area below ground, etc..), being therefore the cadastral parcel the spatial reference unit for mapping. The overlay of cadastral parcels and the inundation hazard maps has allowed identifying the residential cadastral parcels exposed to each climatic scenario. A method is proposed for better identification of the number of real estate units in each cadastral parcel, assuming this number as the base for residential parcel vulnerability. Finally, the risk assessment is calculated as the product of the previous variables. For the dissemination of the inundation risk assessment results, a web application (geoviewer) was developed. Results show that for the more pessimistic scenario more than 24,000 exposed cadastral parcels would be affected. Out of that, 13,000 exposed residential cadastral parcels were identified and their hazards, exposure and vulnerability calculated in order to map the final inundation risk associated with future sea levels.

Downloads

Download data is not yet available.

References

Álvarez-Francoso, J.I., Ojeda-Zújar, J., Díaz-Cuevas, P., Guisado-Pintado, E., Camarillo-Naranjo, J.M., Prieto-Campos, A., Fraile-Jurado, P. 2020. A Specialized Geoviewer and Dashboard for Beach Erosion Rates Visualization and Exploration. Journal of Coastal Research 95 (sp1), 1006-1010. https://doi.org/10.2112/SI95-196.1

Church, J.A., Clark, P.U., Cazenave A., Gregory, J.M., Jevrejeva, S., Levermann, A., Merrifield, A.M., Milne, G.H., Nerem, R.S., Num, P.D., Payne, A.J., Pfeffer, W.T., Stammenr, D., Unnikrishnam, A.S. 2013. Sea-level rise by 2100. Science 342 (6165), 1445-1445.

Fraile-Jurado, P., Ojeda Zújar, J. 2012. Evaluación de la peligrosidad asociada al aumento de la superficie inundable por la subida del nivel medio del mar en la costa entre Cádiz y Tarifa. Geofocus. Revista Internacional de Ciencia y Tecnología de la Información Geográfica 12, 329-348.

Fraile-Jurado, P., Ojeda-Zújar, J. 2013. The importance of the vertical accuracy of digital elevation models in gauging inundation by sea level rise along the Valdelagrana beach and marshes (Bay of Cádiz, SW Spain). Geo-Marine Letters 33 (2-3), 225-230. https://doi.org/10.1007/s00367-012-0317-8

Fraile-Jurado, P., Fernández Díaz, M. 2016. Escenarios de subida del nivel medio del mar en los mareógrafos de las costas peninsulares de España en el año 2100. Estudios Geográficos 280, 57-79.

Fraile-Jurado, P., Sánchez-Carnero, N., Ojeda Zújar, J. 2014. Sensibilidad del cálculo de los niveles medios del mar al método y período de las series temporales de los mareógrafos en los procesos de inundación: Valdelagrana (Cádiz). Boletín de la Asociación de Geógrafos Españoles 65, 59-70.

Fraile-Jurado, P., Álvarez-Francoso, J.I., Guisado-Pintado, E., Sánchez-Carnero, N., Ojeda-Zújar, J., Leatherman, S.P. 2017. Mapping inundation probability due to increasing sea level rise along El Puerto de Santa María (SW Spain). Natural Hazards 87 (2), 581-598. https://www.doi.org/10.1007/s11069-017-2782-x

Fraile-Jurado, P., Iglesias-Campos, A. Simón-Colina, A., Hodgson, N. 2019. Methods for assessing current and future coastal vulnerability to sea level rise. A review for a case-study in Europe. European Journal of Geography 10 (3), 97-119.

Gardner, A.S., Moholdt, G., Cogley, J.G., Wouters, B., Arendt, A.A., Wahr, J., Berthier, E., Hock, R., Pfeffer, W.T., Kaser, G., Ligtenberg, S.R.M., Bolch, T., Sharp, M.J., Hagen, J.O., van den Broeke, M.R., Paul, F. 2013. A reconciled estimate of glacier contributions to sea level rise: 2003 to 2009. Science 340 (6134), 852-857. https://www.doi.org/10.1126/science.1234532

Gesch, D.B. 2018. Best practices for elevation-based assessments of sea-level rise and coastal flooding exposure. Frontiers in Earth Science 6, 230. https://doi.org/10.3389/feart.2018.00230

Gregory, J. 2013. Projections of sea level rise. In: IPCC (Intergovernmental panel on Climate change), Eds. Climate Change 2013: The Physical Science Basis. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.

Instituto Geográfico Nacional. 2013. Modelo Digital de Elevaciones. 5 metros. Available at http://centrodedescargas.cnig.es/CentroDescargas (last access: 12/06/2020)

IPCC. 2013. Working Group I Contribution to the IPCC Fifth Assessment Report: Climate Change 2013: The Physical Science Basis, Summary for Policymakers. IPCC, UN.

IPCC. 2014. AR5 Climate Change 2014: Impacts, Adaptation, and Vulnerability. Available at https://www.ipcc.ch/report/ar5/wg2/ (last access: 17/06/2020).

IPCC. 2019: Summary for Policymakers. In: H. O. Pörtner, D. C. Roberts, V. Masson-Delmotte, P. Zhai, M. Tignor, E. Poloczanska, K. Mintenbeck, M. Nicolai, A. Okem, J. Petzold, B. Rama, N. Weyer (Eds.). IPCC Special Report on the Ocean and Cryosphere in a Changing Climate, Geneva, Switzerland.

Jevrejeva, S., Moore, J.C., Grinsted, A. 2012. Sea level projections to AD2500 with a new generation of climate change scenarios. Global and Planetary Change 80, 14-20. https://doi.org/10.1016/j.gloplacha.2011.09.006

Johansson, M.M., Pellikka, H., Kahma, K.K., Ruosteenoja, K. 2014. Global sea level rise scenarios adapted to the Finnish coast. Journal of Marine Systems 129, 35-46. https://doi.org/10.1016/j.jmarsys.2012.08.007

Jongman, B., Koks, E.E., Husby, T.G., Ward, P.J. 2014. Financing increasing flood risk: evidence from millions of buildings. Natural Hazards and Earth System Sciences Discussions 2(1), 137-165. https://doi.org/10.5194/nhessd-2-137-2014

Junta de Andalucía. 2016. Plan estratégico de marketing turístico Horizonte 2020. Available at https://www.turismoandaluz.com/pemth2020/data/capitulo3.html (last access: 21/11/2020).

Kersting, D. 2016. Cambio climático en el medio marino español: impactos, vulnerabilidad y adaptación. Ministerio de Agricultura, Alimentación y Medio Ambiente, Centro de Publicaciones.

Kopp, R.E., Hay, C.C., Little, C.M., Mitrovica, J.X. 2015. Geographic variability of sea-level change. Current Climate Change Reports 1(3), 192-204. https://doi.org/10.1007/s40641-015-0015-5

Manno, G., Anfuso, G., Messina, E., Williams, A.T., Suffo, M., Liguori, V. 2016. Decadal evolution of coastline armouring along the Mediterranean Andalusia littoral (South of Spain). Ocean Coastal Management 124, 84–99. https://doi.org/10.1016/j.ocecoaman.2016.02.007

Meyssignac, B., Cazenave, A. 2012. Sea level: a review of present-day and recent-past changes and variability. Journal of Geodynamics 58, 96-109. https://doi.org/10.1016/j.jog.2012.03.005

Nicholls, R.J., Cazenave, A. 2010. Sea-level rise and its impact on coastal zones. Science 328 (5985), 1517-1520. https://doi.org/10.1126/science.1185782

Ojeda, J., Álvarez, J.I., Martín, D., Fraile, P. 2009. El uso de las TIG para el cálculo del indice de vulnerabilidad costera (CVI) ante una potencial subida del nivel del mar en la costa andaluza (España). GeoFocus. Revista Internacional de Ciencia y Tecnología de la Información Geográfica 9, 83-100.

Pérez-Morales, A., Gil-Guirado, S., Olcina, J. 2016. La información catastral como herramienta para el análisis de la exposición al peligro de inundaciones en el litoral mediterráneo español. Eure 42 (127), 231-256.

Pfeffer, W.T., Harper, J.T., O'Neel, S. 2008. Kinematic constraints on glacier contributions to 21st-century sea-level rise. Science 321 (5894), 1340-1343. https://doi.org/10.1126/science.1159099

Piña-Monarrez, M. R. 2015. Desarrollo de la Función Densidad de Probabilidad (pdf) de la Distribución Normal y su Aplicación. Cultura Científica y Tecnológica 45.

Purvis, M.J., Bates, P.D., Hayes, C.M. 2008. A probabilistic methodology to estimate future coastal flood risk due to sea level rise. Coastal Engineering 55(12), 1062-1073. https://doi.org/10.1016/j.coastaleng.2008.04.008

Rahmstorf, S. 2007. A semi-empirical approach to projecting future sea-level rise. Science 315 (5810), 368-370. https://doi.org/10.1126/science.1135456

Rahmstorf, S. 2010. A new view on sea level rise. Nature Climate Change 1(1004), 44-45. https://doi.org/10.1038/climate.2010.29

Rignot, E., Velicogna, I., van den Broeke, M.R., Monaghan, A., Lenaerts, J.T. 2011. Acceleration of the contribution of the Greenland and Antarctic ice sheets to sea level rise. Geophysical Research Letters 38 (5). https://doi.org/10.1029/2011GL046583

Sayol, J.M., Marcos, M. 2018. Assessing flood risk under sea level rise and extreme sea levels scenarios. Application to the Ebro Delta (Spain). Journal of Geophysical Research: Oceans 123, 794–811. https://doi.org/10.1002/2017JC013355

Shepherd, A., Wingham, D. 2007. Recent sea-level contributions of the Antarctic and Greenland ice sheets. Science 315 (5818), 1529-1532. https://doi.org/10.1126/science.113677

Smith, B., Wandel, J. 2006. Adaptation, adaptive capacity and vulnerability. Global Environmental Change 16 (3), 282-292. https://doi.org/10.1016/j.gloenvcha.2006.03.008

Tascón-González, L., Ferrer-Julià, M., Ruiz, M., García-Meléndez, E. 2020. Social Vulnerability Assessment for Flood Risk Analysis. Water 12 (2), 558. https://doi.org/10.3390/w12020558

Titus, J.G., Narayanan, V. K. 1995. The probability of sea level rise. US Environmental Protection Agency, Office of Policy, Planning, and Evaluation, Climate Change Division, 185 pp.

United Nations Office for Disaster Risk Reduction (UNISDR) 2004. Living with risk: a global review of disaster reduction initiatives, 429 p.

Williams, S.J. 2013. Sea-level rise implications for coastal regions. Journal of Coastal Research 63, 184-196. https://doi.org/10.2112/SI63-015.1

World Bank. 2016. Methods in Flood Hazard and Risk Assessment. Techniques notes. Available at https://openknowledge.worldbank.org/handle/10986/22982 (last access: 17/06/2020).

Wright, D. B. 2015. Methods in Flood Hazard and Risk Assessment. World Bank, 19 p.

Zazo Cardeña, C., Goy Goy, J.L., Hillaire-Marcel, C., González Delgado, J.Á., Soler Javaloyes, V., Ghaleb, B., Dabrio, C.J. 2003. Registro de los cambios del nivel del mar durante el cuaternario en las Islas Canarias occidentales (Tenerife y La Palma). Estudios Geológicos 59 (1-4), 133-144.

Zhang, K., Dittmar, J., Ross, M., Bergh, C. 2011. Assessment of sea level rise impacts on human population and real property in the Florida Keys. Climatic Change 107(1-2), 129-146. https://doi.org/10.1007/s10584-011-0080-2

Downloads

Published

17-05-2021

How to Cite

1.
Ojeda-Zújar J, Fraile-Jurado P, Álvarez-Francoso J. Sea level rise inundation risk assessment in residential cadastral parcels along the Mediterranean Andalusian coast. CIG [Internet]. 2021 May 17 [cited 2024 Apr. 24];47(1):243-6. Available from: https://publicaciones.unirioja.es/ojs/index.php/cig/article/view/4744

Issue

Section

Articles