Snowfall and snow cover evolution in the Eastern Pre-Pyrenees (NE Iberian Peninsula)

Authors

DOI:

https://doi.org/10.18172/cig.4879

Keywords:

Pre-Pyrenees, climate variability, snowfall, snow depth

Abstract

Snow cover has significant impacts on geoecological dynamics as well as on socio-economical systems. An accurate quantification of snow precipitation patterns in mountain regions is needed to better understand the spatio-temporal implications of snow cover. The objective of this work is to characterize the patterns of solid precipitation and snow cover in two high Mediterranean massifs. To this purpose, we analyse instrumental data series of snowfall and snow depth of Port del Comte (2316 m a.s.l.) and Cadí-Nord (2134 m). Both stations are situated in the eastern Pre-Pyrenees and include 14 consecutive snow seasons from November to May, allowing to (i) explore the dependence of the main drivers of snowpack: temperature and snowfall; (ii) find out the most frequent circulation weather types associated with high intensity snowfall events, and finally (iii) investigate the role of the North Atlantic Oceanic (NAO) teleconnection pattern explaining snow cover evolution during the winter season. Data show that snowfall is controlled by similar weather types in both stations that resulted in similar snowfall averages: 205 cm and 258 cm at Port del Comte and Cadí-Nord, respectively. Nevertheless, local factors interfere with the amount of snow depth recorded, which is moderately different between stations. Whereas Cadí-Nord records a seasonal mean of 66 cm, Port del Comte records a smaller quantity of 25 cm with a high interannual and seasonal variability. In fact, snowfall recurrence, snow amount or duration in the ground is considerably variable among years (CV>20). In these stations, snow cover duration is determined by the precipitation in the form of snow falling during the previous months. Snowfalls in moderate to severe episodes (>15 cm in 24 h) are mainly driven by Atlantic flows, mostly from NW. In addition, NAO pattern is negatively correlated with snowfall in November and December months (R>-0.50), showing a weaker and not statistically significant correlation during the rest of the winter season.

Downloads

Download data is not yet available.

Author Biographies

F. Salvador-Franch, Department of Geography. Universitat de Barcelona

Professor. Department of Geography. Universitat de Barcelona

Grupo de Investigación Consolidado Paisaje y Paleoambientes en la Montaña Mediterránea

M. Oliva, Department of Geography. Universitat de Barcelona

Ramón y Cajal researcher (RYC-2015-17597).Department of Geography. Universitat de Barcelona

Antarctic, Arctic and Alpine Environments (ANTALP)

References

Alonso‐González, E., López‐Moreno, J.I., Navarro‐Serrano, F., Sanmiguel‐Vallelado, A., Revuelto, J., Domínguez‐Castro, F., Ceballos, A. 2020. Snow climatology for the mountains in the Iberian Peninsula using satellite imagery and simulations with dynamically downscaled reanalysis data. International Journal of Climatology 40 (1), 477-491. https://doi.org/10.1002/joc.62235

Alonso-González, E., López-Moreno, J.I., Navarro-Serrano, F.M., Revuelto, J. 2020. Impact of North Atlantic Oscillation on the Snowpack in Iberian Peninsula Mountains. Water, 12, 105. https://doi.org/10.3390/w12010105

Buisan, S., López‐Moreno, J.I., Saz, M.A., Kochendorfer, J. 2016. Impact of weather type variability on winter precipitation, temperature and annual snowpack in the Spanish Pyrenees. Climate Research 69, 79-92. https://doi.org/10.3354/cr01391

Cattell, R.B. 1966. The Scree Plot Test for the Number of Factors. Multivariate Behavioral Research. 1, 140-161.

Cortesi, N., Trigo, R., Gonzalez-Hidalgo J.C., Ramos, A. 2013. Modelling monthly precipitation with circulation weather types for a dense network of stations over Iberia. Hydrology and Earth System Sciences 17, 665-678. https://doi.org/10.5194/hess-17-665-2013

Esteban, P., Soler, X., Prohom, M., Planchón, O. 2001. La distribución de la precipitación a través del índice NAO. El efecto del relieve a escala local: el Pirineo Oriental. In III Congreso de la AEC: El agua y el clima, Marratxí, Mallorca, pp. 594.

Esteban, P., Jones, P., Martin-Vide, J., Mases, M. 2005. Atmospheric Circulation patterns related to heavy snowfall days in Andorra Pyrenees. International Journal of Climatology 25, 319-329. https://doi.org/10.1002/joc.1103

García-Ruiz, J.M., López-Moreno, J.I., Vicente-Serrano, S., Lasanta, T., Beguería, S. 2011. Mediterranean Water Resources in a Global Change Scenario. Earth-Science Reviews 105, 121-139. https://doi.org/10.1016/j.earscirev.2011.01.006

Hall, A. 2004. The Role of Surface Albedo Feedback in Climate. Journal of Climate 17, 1550-1568. https://doi.org/10.1175/1520-0442(2004)017<1550:TROSAF>2.0.CO;2

Hurrell, J.W. 1995. Decadal trends in the North Atlantic Oscillation: regional temperatures and precipitation. Science 269, 676-679. https://doi.org/10.1126/science.269.5224.676

IPCC, 2013. Climate Change: The Physical Science Basis. In: T.F. Stocker, D. Qin, G.K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, P.M. Midgley (Eds.). Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, NY, 1535.

Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., White, G., Woollen, J., Zhu, Y., Chelliah, M., Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, K.C., Ropelewski, C., Wang, J., Leetmaa, A., Reynolds, R., Jenne, R., Jospeh, D. 1996. The NCEP/NCAR 40-Year Reanalysis Project. Bulletin American Meteorological Society 77, 437-472. https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2

Kaiser, H.E. 1958. The varimax criterion for analytic rotation in factor analysis. Psikometrica 23, 187-200. https://doi.org/10.1007/BF02289233

Lasanta, T., Vicente-Serrano, S., Cuadrat, J. 2005. Mountain Mediterranean landscape evolution caused by the abandonment of traditional primary activities: A study of the Spanish Central Pyrenees. Applied Geography 25, 47-65. https://doi.org/10.1016/j.apgeog.2004.11.001

Lemus-Canovas, M., Lopez-Bustins, J.A., Trapero, L., Martin-Vide, J. 2019a. Combining circulation weather types and daily precipitation modelling to derive climatic precipitation regions in the Pyrenees. Atmospheric Research 220, 181-193. https://doi.org/10.1016/j.atmosres.2019.01.018

Lemus-Canovas, M., Lopez-Bustins, J.A., Martin-Vide J., Royé, D. 2019b. synoptReg: An R package for computing a synoptic climate classification and a spatial regionalization of environmental data. Environmental Modelling & Software 118, 114-119. https://doi.org/10.1016/j.envsoft.2019.04.006

Lopez-Bustins, J.A, Martin-Vide, J., Sanchez-Lorenzo, A. 2008. Iberia winter rainfall trends based upon changes in teleconnection and circulation patterns. Global and Planetary Change 63, 171-176. https://doi.org/10.1016/j.gloplacha.2007.09.002

López-Moreno, J.I. 2005. Recent variations of snowpack depth in the central Spanish Pyrenees. Arctic Antarctic Alpine Research 37(2), 253-260.

López-Moreno, J.I., Soubeyroux, J.M., Gascoin, S., Alonso-González, E., Durán-Gómez, N., Lafaysse, M., Vernay, M., Carmagnola, C., Morin, S. 2020. Long-term trends (1958–2017) in snow cover duration and depth in the Pyrenees. International Journal of Climatology, 1-15. https://doi.org/10.1002/joc.6571

López-Moreno, J.I., Vicente-Serrano S.M., Morán-Tejeda E., Lorenzo J., Kenawy, A., Beniston, M. 2011. NAO effects on combined temperature and precipitation winter modes in the Mediterranean mountains: Observed relationships and projections for the 21st century. Global and Planetary Change 77, 62-76.

Navarro-Serrano, F., López-Moreno, J.I. 2017. Spatio-Temporal analysis of snowfall events in the Spanish Pyrenees and their relationship to Atmospheric Circulation. Cuadernos de Investigación Geográfica (Geographical Research Letters) 43(1), 233-254. https://doi.org/10.18172/cig.3042

Martin-Vide, J., Lopez-Bustins, J.A. 2006. The Western Mediterranean Oscillation and rainfall in Iberian Peninsula. International Journal of climatology 26, 1455–1475. https://doi.org/10.1002/joc.1388

Martin-Vide, J., Sanchez-Lorenzo, A., Lopez-Bustins, J.A., Cordobilla, M.J., Garcia-Manuel, A., Raso, J. 2008. Torrential rainfall in northeast of the Iberian Peninsula: Synoptic patterns and WeMO influence. Advances in Science and Research (2), 99-105. https://doi.org/10.5194/asr-2-99-2008

Oliva, M., Ruiz-Fernández, J., Barriendos, M., Benito, G., Cuadrat, J.M., García-Ruiz, J.M., Giralt, S., Gómez-Ortiz, A., Hernández, A., López-Costas, O., López-Moreno, J.I., López-Sáez, J.A., Martínez- Cortizas, A., Moreno, A., Prohom, M., Saz, M.A., Serrano, E., Tejedor, E., Trigo, R., Valero-Garcés, B.L., Vicente-Serrano, S. 2018. The Little Ice Age in Iberian mountains. Earth-Science Review 177, 175-188. https://doi.org/10.1016/j.earscirev.2017.11.010

Pepin, N., Bradley, R., Diaz, H. 2015. Elevation‐dependent warming in mountain regions of the world. Nature Climate Change 5, 424‐430. https://doi.org/10.1038/nclimate2563

Revuelto, J., López-Moreno, J.I., Morán, E., Fassnacht, S., Vicente, S.M., 2012. Variabilidad interanual del manto de nieve en el Pirineo: tendencias observadas y su relación con índices de teleconexión durante el periodo 1985-2011. En: C. Rodríguez, A. Ceballos, N. González, E. Morán, S. Pacheco, A. Hernández (Eds.). Asociación Española de Climatología, pp. 613- 621, Madrid. http://hdl.handle.net/20.500.11765/8325

Salvador Franch, F., Salvà, G., Vilar, F., García, C. 2014. Nivometría y perfiles de innivación en Núria (1970 m, Pirineo Oriental): 1985-2013. En: IX Congreso de la AEC, pp. 729-738, Almería. http://hdl.handle.net/20.500.11765/8229

Salvador-Franch, F., Salvà, G., Vilar, F., García, C. 2016. Contribución al análisis nivométrico del Pirineo Oriental: La Molina, período 1956-1996. En: X Congreso Internacional AEC: Clima, sociedad, riesgos y ordenación del territorio, pp. 365-375, Alicante. http://hdl.handle.net/10045/58002

Scherrer, S.C., Appenzeller, C. 2006. Swiss Alpine snow pack variability: major patterns and links to local climate and large-scale flow. Climatic Research 32, 187-199. https://doi.org/10.3354/cr032187

SMC. 2008. Atlas climàtic de Catalunya: periode 1961-1990. Termopluviometria. ICC. Barcelona.

SMC. 2019. Roses dels vents climàtiques. https://www.meteo.cat/wpweb/climatologia/serveis-i-dades-climatiques/roses-dels-vents-climatiques/ (last access: 10/05/2020).

Vicente-Serrano, S.M., Rodríguez-Camino, E., Domínguez-Castro, F., El Kenawy, A., Azorín-Molina, C. 2017. An updated review on recent trends in observational surface atmospheric variables and their extremes over Spain. Cuadernos de Investigación Geográfica (Geographical Research Letters) 43 (1), 209-232. https://doi.org/10.18172/cig.3134

Vigo, J., Soriano, I., Carreras, J., Aymerich, P., Carrillo, E., Font, X., Masalles, R.M., Ninot, J.M. 2003. Flora del Parc Natural del Cadí-Moixeró i de les serres veïnes. Monografies del Museu de Ciències Naturals, 1. Barcelona.

Wipf, S., Stoeckli, V., Bebi, P. 2009. Winter climate change in alpine tundra: plant responses to changes in snow depth and snowmelt timing. Climatic Change 94, 105-121. https://doi.org/10.1007/s10584-009-9546-x

Xercavins-Comas, A. 1985. Els climes del Pirineu Oriental: des de les terres gironines fins a la Catalunya Nord i Andorra. Documents d’Anàlisi Geogràfica 7, 81-102.

Downloads

Published

01-07-2021

How to Cite

1.
Bonsoms J, Salvador-Franch F, Oliva M. Snowfall and snow cover evolution in the Eastern Pre-Pyrenees (NE Iberian Peninsula). CIG [Internet]. 2021 Jul. 1 [cited 2024 Apr. 25];47(2):291-307. Available from: https://publicaciones.unirioja.es/ojs/index.php/cig/article/view/4879

Issue

Section

Articles