Application of terrestrial laser scanner techniques for monitoring dynamic geomorphological processes: snow accumulation and ice masses in mountain areas
DOI:
https://doi.org/10.18172/cig.1994Keywords:
terrestrian laser scanner, snow, glacier, Pyrenees.Abstract
This paper presents the application of a long range terrestrial laser scanner for monitoring snow accumulation and evolution of glaciers in the Pyrenees. With this study we are showing the great potential of the methodology presented for studies in mountain environments, particularly in research related to the cryosphere monitoring in relation to climate variability and the complex topography typical of mountain environments. We present a comprehensive protocol for the acquisition and processing of point clouds measured by a laser scanner (RIEGL LPM-321) for the generation of digital terrain models, in order to compare the models obtained at different times. Thus it is possible to obtain snow thickness and changes of ice thickness. As case studies, results from two small ice masses located in the massif of Monte Perdido and snow accumulation on a small basin located in the Tena Valley are presented.Downloads
References
Abellan, A., Vilaplana, J.M., Martinez, J. 2006. Application of a long-range Terrestrial Laser Scanner to a detailed rockfall study at Vall de Nuria (Eastern Pyrenees, Spain). Engineering Geology 88, 136-148. DOI: https://doi.org/10.1016/j.enggeo.2006.09.012
Abellan, A., Calvet, J., Vilaplana, J.M., Blanchard, J. 2010. Detection and spatial prediction of rockfalls by means of terrestrial laser scanner monitoring. Geomorphology 119, 162-171. DOI: https://doi.org/10.1016/j.geomorph.2010.03.016
Andersen T., Lundteigen-Fossdal, M., Killingtveit, A., Sand, K. 1987. The snow radar: A new device for areal snow depth measurements. “Hydropower 87” International Conference, Norwegian Hydrotechnical Laboratory Bulletins, Norway, pp. 269-274.
Anderton, S.P., White, S.M., Alvera, B. 2004. Evaluation of spatial variability in snow water equivalent for a high mountain catchment. Hydrological Processes 18, 435-453. DOI: https://doi.org/10.1002/hyp.1319
Avian, A., Bauer, A. 2006. First Result on Monitoring Glacier Dynamics with the Aid of Terrestrial Laser Scanning on Pasterze Glacier (Hoe Tauren, Austria). 8th International Symposium on High Mountain Remote Sensing Cartography, Band 41/2006, pp. 27-36.
Barnett, T.P., Adam, J.C., Lettenmaier, D.P. 2005. Potential impacts of a warming climate on water availability in snow-dominated regions. Nature 438, 303-309. DOI: https://doi.org/10.1038/nature04141
Beniston, M. 2003. Climate change in mountain regions: A review of possible impacts. Climatic Change 59, 5-31. DOI: https://doi.org/10.1007/978-94-015-1252-7_2
Bitelli, G., Dubbini, M., Zanutta, A. 2004. Terrestrial Laser Scanning and Digital Photogrammetry Techniques to Monitor Landslides Bodies, ISPRS 2004 International Society for Photogrammetry and Remote Sensing Comission V, WG V/2.
Burki, R., Elsasser, B., Abegg, B. 2003. Climate change: Impacts on the Tourism Industry in Mountain Areas. Proceedings, 1st International Conference on Climate Change and Tourism, Djerba, Tunisia, pp. 1-8.
Cano, I.C., Recio, J.A. 2004. Análisis comparativo de distintos métodos de estimación de la superficie glaciar en el Pirineo axial aragonés a partir de imágenes Landsat. GeoFocus 4, 79-92.
Chueca, J., Julian-Andres, A., Saz-Sánchez, M.A., Creus-Novau, J., Lopez-Moreno, J.I., 2005. Responses to climatic changes since the Little Ice Age on Maladeta Glacier (Central Spanish Pyrenees). Geomorphology 68, 167-182. DOI: https://doi.org/10.1016/j.geomorph.2004.11.012
Chueca, J., Julian-Andres, A., Lopez-Moreno, J.I. 2007. Recent evolution (1981-2005) of the Maladeta glaciers, Pyrenees, Spain: extent and volume losses and their relation with climatic and topographic factors. Journal of Glaciology 53, 247-257. DOI: https://doi.org/10.3189/002214307784409342
Christensen, L., Tague, C.L., Baron, J.S. 2008. Spatial patterns of simulated transpiration response to climate variability in a snow dominated mountain ecosystem. Hydrological Processes 22, 3576-3588. DOI: https://doi.org/10.1002/hyp.6961
Deems, J.S., Fassnacht, S.R., Elder, K.J. 2006. Fractal Distribution of snow depth from Lidar data. American Meteorological Society 7, 285-297. DOI: https://doi.org/10.1175/JHM487.1
Del Rio, M., Rico, I., Serrano, E., Tejado, J.I. 2012. GPR Prospection in the Ossoue Glacier (Pyrenees). 14th International Conference on Ground Penetrating Radar (GPR), Shanghai, China. DOI: https://doi.org/10.1109/ICGPR.2012.6254949
Egli, L., Jonas, T., Grunewald, T., Schirmer, M., Burlando, P. 2012. Dynamics of snow ablation in a small Alpine catchment by repeated terrestrial laser scans. Hydrological Processes 26, 1574-1585. DOI: https://doi.org/10.1002/hyp.8244
Erxleben, J., Elder, K., Davis, R. 2002. Comparison of spatial interpolation methods for estimating snow distribution in the Colorado Rocky Mountains. Hydrological Processes 16, 3627-3649. DOI: https://doi.org/10.1002/hyp.1239
Fassnacht, S.R. 2010. Temporal changes in small scale snowpack surface roughness length for sublimation estimates in hydrological modelling. Cuadernos de Investigación Geográfica 36 (1), 43-57. DOI: https://doi.org/10.18172/cig.1226
Grunewald, T., Schirmer, M., Mott, R., Lehning, M. 2010. Spatial and temporal variability of snow depth and ablation rates in a small mountain cathment. The Cryosphere 4, 215-225. DOI: https://doi.org/10.5194/tc-4-215-2010
Guneriussen, T., Hogda, K.A., Johnsen, H., Lauknes, I. 2001. InSAR for estimation of changes in snow water equivalent of dry snow. IEEE Transactions on Geoscience and Remote Sensing 39, 2101-2108. DOI: https://doi.org/10.1109/36.957273
Haeberli, W., Beniston, M. 1998. Climate change and its impacts on glaciers and permafrost in the Alps. Research for Mountain Area Development: Europe 27, 258-265.
Hall, D.K., Riggs, G.A., Salomonson, V. 1995. Development of Methods for Mapping Snow Cover Using Moderate Resolution Imaging Spectroradiometar Data. Remote Sensing and Environment 54, 127-140. DOI: https://doi.org/10.1016/0034-4257(95)00137-P
Heritage, G., Hetherington, D. 2007. Towards a protocol for laser scanning in fluvial geomorphology. Earth Surface Processes and Landforms 32, 66-74. DOI: https://doi.org/10.1002/esp.1375
Ingensand, H. 2006. Metrological aspects in terrestrial laser-scanning technology. 3rd IAG / 12th FIG Symposium, Baden.
Jaboyedof, J., Oppikofer, T., Abellan, A., Derron, M.H., Loye, A., Metzger, R., Pedrazzini, A. 2012. Use of LIDAR in landslide investigations: a review. Natural Hazards 61, 5-28. DOI: https://doi.org/10.1007/s11069-010-9634-2
Konig, M., Winther, J.G. 2001. Measuring snow and glacier ice properties from satellite. Review of Geophysics 39, 1-27. DOI: https://doi.org/10.1029/1999RG000076
Lana-Renault, N., Alvera, B., Garcia-Ruiz, J.M. 2010. The snowmelt period in a Mediterranean high mountain catchment: runoff and sediment transport. Cuadernos de Investigacion Geografica 36 (2), 97-106. DOI: https://doi.org/10.18172/cig.1240
Lana-Renault, N., Alvera, B., Garcia-Ruiz, J.M. 2011. Runoff and sediment transport during the snowmelt period in a Mediterranean high mountain catchment. Arctic, Antarctic and Alpine Research 42 (2), 213-222. DOI: https://doi.org/10.1657/1938-4246-43.2.213
Lichte, D., Jamtsho, S. 2006. Angular resolution of terrestrial laser scanners. The Photogrammetric Record 21, 141-160. DOI: https://doi.org/10.1111/j.1477-9730.2006.00367.x
Lopez-Moreno, J.I., Garcia-Ruiz, J.M. 2004. Influence of snow accumulation and snowmelt on stream flow in the central Spanish Pyrenees. Hydrological Sciences Journal des Sciences 49, 787-802. DOI: https://doi.org/10.1623/hysj.49.5.787.55135
Lopez-Moreno, J.I., Nogues-Bravo, D. 2006. Interpolating local snow depth data: an evaluation of methods. Hydrological Processes 20, 2217-2232. DOI: https://doi.org/10.1002/hyp.6199
Lopez-Moreno, J.I., Vicente-Serrano, S.M. 2007. Atmospheric influence on the interannual variability of snow pack in the Spanish Pyrenees during the second half of the 20th century. Nordic Hydrology 38, 33-44. DOI: https://doi.org/10.2166/nh.2007.030
Lopez-Moreno, J.I., Latron, J. 2008. Influence of canopy density on snow distribution in a temperate mountain range. Hydrological Processes 22, 117-126. DOI: https://doi.org/10.1002/hyp.6572
Lopez-Moreno, J.I., Nogues-Bravo, D., Chueca, J., Julian-Andres, A. 2006. Change of topographic control on the extent of cirque glaciers since the Little Ice Age. Geophysical Research Letters 33, L24505. DOI: https://doi.org/10.1029/2006GL028204
Lopez-Moreno, J.I., Vicente-Serrano, S.M., Lanjeri, S. 2007. Mapping snowpack distribution over large areas using GIS and interpolation techniques. Climate Research 33, 257-270. DOI: https://doi.org/10.3354/cr033257
Lopez-Moreno, J.I., Beniston, M., Garcia-Ruiz, J.M. 2008. Environmental change and water management in the Pyrenees: Facts and future perspectives for Mediterranean mountains. Global and Planetary Change 61, 300-312. DOI: https://doi.org/10.1016/j.gloplacha.2007.10.004
Lopez-Moreno, J.I., Goyette, S., Beniston, M. 2009. Impact of climate change on snowpack in the Pyrenees: Horizontal spatial variability and vertical gradients. Journal of Hydrology 374, 384-396. DOI: https://doi.org/10.1016/j.jhydrol.2009.06.049
Lopez-Moreno, J.I., Latron, J., Lehmann A. 2010. Effects of simple and grid size on the accuracy and stability of regression- based snow interpolation methods. Hydrological Processes 24, 1914-1928. DOI: https://doi.org/10.1002/hyp.7564
Lopez-Moreno, J.I., Pomeroy, J., Revuelto, J., Vicente-Serrano, S.M. En prensa. Response of snow processes to climate change: spatial variability in a small basin in the Pyrenees. Hydrological Processes. DOI: 10.1002/hyp.9408. DOI: https://doi.org/10.1002/hyp.9408
Lundberg, A., Granlund, N., Gustafsson, D. 2008. “Ground truth” snow measurements: review of operational and new measurements methods for Sweden, Norway and Finland. Hydrological Processes 24, 1955-1970. DOI: https://doi.org/10.1002/hyp.7658
Magnusson, J., Tobias, J., Lopez-Moreno, J.I., Lehning, M. 2010. Snow cover response to climate change in a high alpine and half basin in Switzerland. Hydrology Research 41, 230-240. DOI: https://doi.org/10.2166/nh.2010.115
Molotch, N.P., Colee, M.T., Bales, R.C., Dozier, J. 2005. Estimating the spatial distribution of snow water equivalent in an alpine basin using binary regression tree models: the impact of digital elevation data and independent variable selection. Hydrological Processes 19, 1459-1479. DOI: https://doi.org/10.1002/hyp.5586
Oppikofer, T., Jaboyedoff, M., Keusen, H.R. 2008. Collapse at the eastern Eiger flank in the Swiss Alps. Nature Geoscience 1, 531-535. DOI: https://doi.org/10.1038/ngeo258
Parajka, J., Bloschl, G. 2008. Spatio-temporal combination of MODIS images- potential for snow cover mapping. Water Resources Research 44, W03406. DOI: https://doi.org/10.1029/2007WR006204
Pomeroy, J., Essery, R., Toth, B. 2004. Implications of spatial distribution of snow mass and melt rate for snow-cover depletion: observations in a subarctic mountain catchment. Annals of Glaciology 38, 195-201. DOI: https://doi.org/10.3189/172756404781814744
Prockop, A. 2008. Assessing the applicability of terrestrial laser scanning for spatial snow depth measurements. Cold Regions Science and Technology 54, 155-163. DOI: https://doi.org/10.1016/j.coldregions.2008.07.002
Prockop, A. 2009. Terrestrial laser scanning for snow depth observations: An update on technical developments and applications. International Snow Science Workshop, Proceedings, Davos, pp. 192-196.
Prockop, A., Schirmer, M., Rub, M., Lehning, M., Stocker, M. 2008. A comparison of measurements methods: terrestrial laser scanning, tachymetry and snow probing for the determination of the spatial snow depth distribution on slopes. Annals of Glaciology 49, 210-216. DOI: https://doi.org/10.3189/172756408787814726
Reshetyuk, J. 2006. Investigation and calibration of pulsed time-of-flight terrestrial laser scanners. Tesis Doctoral. Royal Institute of Technology (KTH), Department of Transport and Economics, Division of Geodesy, Stockholm.
Romanescu, G., Cotiuga, V., Asandulesei, A., Stoleriu, C. 2012. Use of 3-D scanner in mapping and monitoring the dynamic degradation of soils: case study of the Cucuteni-Baiceni Gully on the Moldavian Plateau (Romania). Hydrology and Earth System Sciences 16, 953-966. DOI: https://doi.org/10.5194/hess-16-953-2012
Rosenthal, W., Dozzier, J. 1996. Automated mapping of montane snow cover at subpixel resolution from the Landsat Thematic Mapper. Water Resources Research 32, 115-130. DOI: https://doi.org/10.1029/95WR02718
Rott, H., Nagler, T., Scheiber, R. 2004. Snow mass retrieval by means of SAR interferometry. Proceedings of FRINGE 2003 Workshop, ESA SP-550, Frascati, 6 pp.
Scaioni, M. 2005. Direct georreferencing of TLS in surveying of complex sites. Proceedings of the ISPRS Working Group. International Society of Photogrammetry and Remote Sensing 36, 1-8.
Schaffhauser, A., Adams, M., Fromm, R., Jorg, P., Luzi, G., Noferini, L., Sailer, R., 2008. Remote sensing based retrieval of snow cover properties. Cold Regions Science and Technology 54, 164-175. DOI: https://doi.org/10.1016/j.coldregions.2008.07.007
Schwalbe, E., Maas, H.G., Dietrich, R., Ewert, H. 2008. Glacier Velocity determination from multitemporal terrestrial long range laser scanner point clouds. The International Archives of the Photogrammetry, Remote Sensensing and Spatial Information Sciences 37, 457-462.
Singh, P., Singh, V.P. 2001. Snow and glacier hydrology. Kluwer Academic Publishers, Dordrecht, 756 pp.
Tague, C.L., Band, L.E. 2004. RHESSys: Regional Hydro-Ecologic Simulation System-An object orientated approach to spatially distributed Modeling of Carbon, Water and Nutrient Cyling. Earth Interactions 8, 1-42. DOI: https://doi.org/10.1175/1087-3562(2004)8<1:RRHSSO>2.0.CO;2
Wagner, W., Ullrich, A., Melzer, T., Breise, C., Kraus, K. 2004. From single-pulse to full waveform airborne laser scanners: potential and practical challenges. International Archives of Photogrammetry and Remote Sensing and Geoinformation Sciences 35, 414-419.
Wehr, A., Lohr, U. 1999. Airbone laser scanning: an introduction and overview. ISPRS Journal of Photogrammetry & Remote Sensing 54, 68-82. DOI: https://doi.org/10.1016/S0924-2716(99)00011-8
Downloads
Published
How to Cite
Issue
Section
License
The authors retain copyright of articles and authorize Cuadernos de Investigación Geográfica / Geographical Research Letters the first publication. They are free to share and redistribute the article without obtaining permission from the publisher as long as they give appropriate credit to the editor and the journal.
Self-archiving is allowed too. In fact, it is recommendable to deposit a PDF version of the paper in academic and/or institutional repositories.
It is recommended to include the DOI number.
This journal is licensed under a Creative Commons Attribution 4.0 International License