How wildfires affect soil properties. A brief review
DOI:
https://doi.org/10.18172/cig.2522Keywords:
forest fires, forest soils, soil degradation, soil chemical properties, soil physical propertiesAbstract
Wildfires may produce several changes in the short- and longterm in the landscape and in the soil system. The magnitude of these changes induced by fire in the components of ecosystems (water, soil, vegetation and fauna) depends on fire properties (fire intensity and severity) and environmental factors (vegetation, soil, geomorphology, etc.). The most important impacts on soils in the short-term are the reduction of vegetation cover (which increases soil erosion risk), the deposition of ash after combustion of biomass, the induction of enhancement of water repellency and changes in the structure and soil components. Combustion of biomass and soil organic matter also results in the release of gases and other pollutants into the atmosphere. Similarly, the changes induced by fire on the biological soil components (vegetation, animals and soil microorganisms) may occur rapidly and produce a large-scale response. The long-term effects of fire on soils and water may well persist for relatively short periods (hours, days or months), long (years or tens of years), or be permanent depending on the severity of fire and fire regime. Some of these effects are a consequence of the relationship between fire, soil, hydrology and nutrient cycling
Downloads
References
Agee, J.K. 1993. Fire Ecology of Pacific Northwest Forests, Island Press, Washington, DC, Covelo, CA.
Albini, F.A. 1976. Estimating wildfire behavior and effects. General Technical Report INT-30. United States Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station. Ogden, UT.
Alexander, M.E. 1982. Calculating and interpreting forest fire intensities. Canadian Journal of Botany 60, 349-357. DOI: https://doi.org/10.1139/b82-048
Arocena, J.M., Opio, C. 2006. Prescribed fire-induced changes in properties of sub-boreal forest soils, Geoderma 113, 1-16. DOI: https://doi.org/10.1016/S0016-7061(02)00312-9
Bárcenas-Moreno, G., Baath, E. 2009. Bacterial and fungal growth in soil heated at different temperatures to simulate a range of fire intensities. Soil Biology and Biochemistry 41, 2517-2526. DOI: https://doi.org/10.1016/j.soilbio.2009.09.010
Bárcenas-Moreno, G., García-Orenes, F., Mataix-Solera, J., Mataix-Beneyto, J., Baath, E. 2011. Soil microbial recolonisation after a fire in a Mediterranean forest. Biology and Fertility of Soils 47, 261-272. DOI: https://doi.org/10.1007/s00374-010-0532-2
Bengtsson, J. 2002. Disturbance and resilience in soil animal communities. European Journal of Soil Biology 38, 119-125. DOI: https://doi.org/10.1016/S1164-5563(02)01133-0
Betremieux, R., Le Borgne, E., Monnier, G. 1960. Evolution de certaines proriétés du sol sous l’influence du chauffage. Comptes Rendus de l’Academie des Sciences de Paris 251, 2753-2755.
Bezkorovainaya, I.N., Krasnoshchekova, E.N., Ivanova, G.A. 2007. Transformation of soil invertebrate complex after surface fires of different intensity. Biology Bulletin 34, 517-522. DOI: https://doi.org/10.1134/S1062359007050159
Blackwell, P.S. 2000. Management of water repellency in Australia, and risks associated with preferential flow, pesticide concentration and leaching. Journal of Hydrology 231-232, 384-395. DOI: https://doi.org/10.1016/S0022-1694(00)00210-9
Bodí, M.B., Cerdà, A., Mataix-Solera, J., Doerr, S.H. 2012a. Efectos de los incendios forestales en la vegetación y el suelo en la cuenca mediterránea: revisión bibliográfica. Boletín de la Asociación de Geógrafos Españoles 58, 33-55. DOI: https://doi.org/10.21138/bage.2058
Bodí M.B., Doerr S.H., Cerdà A., Mataix-Solera J. 2012b. Hydrological effects of a layer of vegetation ash on underlying wettable and water repellent soil. Geoderma 191, 14-23. DOI: https://doi.org/10.1016/j.geoderma.2012.01.006
Boerner, R.E.J., Huang, J.J., Hart, S.C. 2009. Impacts of fire and fire surrogate treatments on forest soil properties: a meta-analytical approach. Ecological Applications 19, 338-58. DOI: https://doi.org/10.1890/07-1767.1
Bond, W.J., Keeley, J.E. 2005. Fire as a global “herbivore”: the ecology and evolution of flamable ecosystems. TRENDS in Ecology and Evolution 20, 387-394. DOI: https://doi.org/10.1016/j.tree.2005.04.025
Bond, W.J., Van Wilgen, B.W. 1996. Fire and plants. Population and community biology. Chapman and Hall, London. DOI: https://doi.org/10.1007/978-94-009-1499-5
Cairney, J.W.G., Bastias, B.A. 2007. Influences of fire on forest soil fungal communities. Canadian Journal of Forest Research 37, 207-215. DOI: https://doi.org/10.1139/x06-190
Campbell, R.E., Baker, M.B., Folliott, P.F. 1977. Wildfire effects on a ponderosa pine ecosystem: an Arizona case study. USDA Forest Service Papers, RM-191. Rocky Mountain Forest and Range Experimental Station, United States Department of Agriculture, Forest Service. Fort Collins, CO.
Carballas, T. 1993. Organic matter, nitrogen, phosphorus and microbial population evolution in forest humiferous acid soils after wildfires. In Fire in Mediterranean ecosystems, L. Trabaud, R. Prodon (eds.), Ecosystems Research Series EEC, report nº 5, Brussels, pp. 379-385.
Cerdà, A. 1998. Postfire dynamics of erosional processes under mediterranean climatic conditions. Zeitschrift für Geomorphologie 42, 373-398. DOI: https://doi.org/10.1127/zfg/42/1998/373
Cerdà, A., Bodí, M.B. 2007. Erosión hídrica en suelos afectados por incendios forestales. In Incendios forestales, suelos y erosión hídrica, J. Mataix-Solera (ed.), Caja de Ahorros del Mediterráneo CEMACAM, Alcoi, pp. 71-118.
Cerdà, A., Doerr, S.H. 2008. The effect of ash and needle cover on surface runoff and erosion in the immediate post-fire period. Catena 74, 256-263. DOI: https://doi.org/10.1016/j.catena.2008.03.010
CERTINI, G. (2005): Effects of fire on properties of forest soils: a review. Oecologia 143, 1-10. DOI: https://doi.org/10.1007/s00442-004-1788-8
Chandler, C., Cheney, P., Thomas, P., Trabaud, L., Williams, D. 1983. Fire in forestry. Vol. 1. Forest fire behaviour and effects. John Wiley & Sons, New York, NY.
Crosti, R., Ladd, P.G., Dixon, K.W., Piotto, B. 2006. Post-fire germination: the effect of smoke on seeds of selected species from the central Mediterranean basin. Forest Ecology and Management 221, 306-312. DOI: https://doi.org/10.1016/j.foreco.2005.10.005
De La Rosa, J.M., Knicker, H., López-Capel, E., Manning, D.A.C., González-Perez, J.A., González-Vila, F.J. 2008. Direct detection of black carbon in soils by Py-GC/MS, Carbon-13 NMR spectroscopy and thermogravimetric techniques. Soil Science Society of America Journal 72, 258- 267. DOI: https://doi.org/10.2136/sssaj2007.0031
De Luis, M., González-Hidalgo, J.C., Raventós, J. 2003. Effects of fire and torrential rainfall on erosion in a Mediterranean gorse community. Land Degradation and Development 14, 203-213. DOI: https://doi.org/10.1002/ldr.547
Debano, L.F. 1996. Formation of non-wettable soils involves heat transfer mechanism. USDA Forest Service Research Note PSW-132. Berkeley, CA.
Debano, L.F. 1991. Effects of Fire on Soil Properties. General Technical Report, INT-280. USDA Forest Service. Berkeley, CA.
Debano, L.F., Krammes, J.S. 1966. Water repellent soils and their relation to wildfire temperatures. International Association of Scientific Hydrology Bulletin 11, 14-19. DOI: https://doi.org/10.1080/02626666609493457
Debano, L.F., Dunn, P.H., Conrad, C.E. 1977. Fire’s effect on physical and chemical properties of chaparral soils. I. Soil nitrogen. Soil Science Society of America Journal 43, 504-509. DOI: https://doi.org/10.2136/sssaj1979.03615995004300030015x
Debano, L.F., Neary, D.G.And Ffolliott, P.F. 1998. Fire’s effects on ecosystems. SJohn Wiley & Sons, New York, NY.
Demeyer, A., Vuondi Nkana, J.C., Verloo, M.G. 2001): Characteristics of wood ash and influence in soil properties and nutrient uptake: an overview. Bioresource Technology 77, 253-266. DOI: https://doi.org/10.1016/S0960-8524(00)00043-2
Dikici, H., Yilmaz, C.H. 2006. Peat fire effects on some properties of an artificially drained peatland. Journal of Environmental Quality 35, 866-870. DOI: https://doi.org/10.2134/jeq2005.0170
Doerr, S.H., Shakesby, S.H., Walsh, R.P.D. 2000. Soil water repellency: its causes, characteristics and hydro-geomorphological significance. Earth-Science Reviews 51, 33-65. DOI: https://doi.org/10.1016/S0012-8252(00)00011-8
Doerr, S.H., Shakesby, R.A., Dekker, L.W., Ritsema, C.J. 2006. Occurrence prediction and hydrological effects of water repellency amongst major soil and land-use types in a humid temperate climate. European Journal of Soil Science 57, 741-754. DOI: https://doi.org/10.1111/j.1365-2389.2006.00818.x
Dunn, P.H., Barro, S.C., Poth, M. 1985. Soil moisture affects survival of microorganisms in heated Chaparral soil. Soil Biology and Biochemistry 17, 143-148. DOI: https://doi.org/10.1016/0038-0717(85)90105-1
Dyrness, C.T., Youngberg, C.T. 1957. The effects of logging and slash burning on soil structure. Soil Science Society of America Proceedings 21, 444-447. DOI: https://doi.org/10.2136/sssaj1957.03615995002100040022x
Eckmeier, E., Egli, M., Hagedorn, F., Schmidt, M.W.I. 2010. Preservation of fire-derived carbon compunds and sorptive stabilization promote the accumulation of organic matter in black soils of the Southern Alps. Geoderma 159, 147-155. DOI: https://doi.org/10.1016/j.geoderma.2010.07.006
Eckmeier, E., Mavris, C., Krebs, R., Pichler, B., Egli, M. 2013. Black carbon contributes to organic matter in young soils in the Morterasch proglacial area (Switzerland). Biogeosciences 10, 1265-1274. DOI: https://doi.org/10.5194/bg-10-1265-2013
Eiten, G. 1992. Natural Brazilian vegetation types and their causes. Anais da Academia Brasileira de Ciencias 64, 35-65.
Etiégni, L., Campbell, A.G. 1991. Physical and Chemical characteristics of wood ash. Bioresource Technology 37, 173-178. DOI: https://doi.org/10.1016/0960-8524(91)90207-Z
Fernández, C., Vega, J.A., Gras, J.M., Fonturbel, T., Cuiñas, P., Dambrine, E., Alonso, M. 2004. Soil erosion after Eucalyptus globulus clearcutting: differences between logging slash disposal treatments. Forest Ecology and Management 195, 85-95. DOI: https://doi.org/10.1016/j.foreco.2004.02.052
Ferran, A., Vallejo, R. 1992. Litter dynamics in post-fire successional forests of Quercus ilex. Vegetatio 99-100, 239-246. DOI: https://doi.org/10.1007/BF00118230
Ferran, A., Vallejo, R. 1998. Long-term plant regeneration after wildfires in Mediterranean ecosystems of NE Spain. In L.V. Trabaud (ed.), Fire management and landscape ecology. Fairfield, Washington, DC, pp.155-166.
Fisher, R.F., Binkley, D. 2000. Ecology and management of forest soils. 3rd ed. John Wiley & Sons, New York, NY.
Flannigam M.D., Stocks, B.J., Wotton, B.M. 2000. Climate change and forest fires. The Science of the Total Environment 262, 221-229. DOI: https://doi.org/10.1016/S0048-9697(00)00524-6
Forbes, M.S., Raison, R.J., Skjemstad, J.O. 2006. Formation, transformation and transport of black carbon (charcoal) in terrestrial and aquatic ecosystems. Science of the Total Environment 370, 190-206. DOI: https://doi.org/10.1016/j.scitotenv.2006.06.007
Frandsen, W.H., Ryan, K.C. 1986. Soil moisture reduces belowground heat flux and soil temperature under a burning fuel pile. Canadian Journal of Forest Research 16, 244-248. DOI: https://doi.org/10.1139/x86-043
Gabet, E.J., Sternberg, P. 2008. The effects of vegetative ash on infiltration capacity sediment transport and generation of progressively bulked debris flows. Geomorphology 101, 666- 673. DOI: https://doi.org/10.1016/j.geomorph.2008.03.005
García-Corona, R., Benito, E., De Blas, E., Varela, M.E. 2004. Effects of heating on some soil physical properties related to its hydrological behaviour in two north-western Spanish soils. International Journal of Wildland Fire 13, 195-199. DOI: https://doi.org/10.1071/WF03068
Giardina, C.P., Sanford, R.L., Dockersmith, I.C. 2000. Changes in soil phosphorus and nitrogen during slash-andburn clearing of a dry tropical forest. Soil Science Society of America Journal 64, 339 - 405. DOI: https://doi.org/10.2136/sssaj2000.641399x
Gil, J., Zavala, L.M., Bellinfante, N., Jordán, A. 2010. Acidez y capacidad de intercambio catiónico en los suelos afectados por incendios. Métodos de determinación e interpretación de resultados. In Actualización en métodos y técnicas de estudio de los suelos afectados por incendios forestales, A. Cerdà, A. Jordán (eds.), Cátedra de Divulgació de la Ciència, Valencia, pp. 315-331.
Gimeno-García, E., Andreu, V., Rubio, J.L. 2000. Changes in organic matter, nitrogen, phosphorus and cations as a result of fire and water erosion in a Mediterranean landscape. European Journal of Soil Science 51, 201-210. DOI: https://doi.org/10.1046/j.1365-2389.2000.00310.x
Giovannini, G. 1994. The effect of fire on soil quality. In Soil erosion as a consequence of forest fires, M. Sala, J.L. Rubio (eds.), Geoforma Ediciones, Logroño, pp. 15-27.
Giovannini, G., Lucchesi, S., Giachetti, M. 1988. Effect of heating on some physical and chemical parameters related to soil aggregation and erodibility. Soil Science 146, 255-262. DOI: https://doi.org/10.1097/00010694-198810000-00006
Giovannini, G., Lucchesi, S., Giachetti, M. 1990. Effect of heating on some chemical parameters related to soil fertility and plant growth. Soil Science 149, 344-350. DOI: https://doi.org/10.1097/00010694-199006000-00005
Gongalsky, K.B., Persson, T. 2013): Recovery of soil macrofauna after wildfires in boreal forests. Soil Biology and Biochemistry 57, 182-191. DOI: https://doi.org/10.1016/j.soilbio.2012.07.005
Gongalsky, K.B., Midtgaard, F., Overgaard, H.J. 2006. Effects of prescribed forest burning on carabid beetles (Coleoptera: Carabidae): a case study in south-eastern Norway. Entomologica Fennica 17, 325-333. DOI: https://doi.org/10.33338/ef.84352
Gongalsky, K.B., Wikars, L.O., Persson, T. 2008): Ground beetle (Coleoptera: Carabidae) responses to a forest wildfire in northern Europe. Russian Entomological Journal 17, 273-282.
González-Vila, F.J., Almendros, G., González-Pérez, A., Knicker, H., González-Vázquez, R., Hernández, Z., Piedra-Buena, A., De La Rosa, J. M. 2009. Transformaciones de la materia orgánica del suelo por incendios naturales y calentamientos controlados en condiciones de laboratorio. In Efectos de los incendios forestales sobre los suelos en España. El estado de la cuestión visto por los científicos españoles, A. Cerdà, J. Mataix-Solera (eds.), Cátedra de divulgación de la ciencia, Universitat de València, Valencia, pp. 219-267.
Granged, A.J.P., Jordán, A., Zavala, L.M., Muñoz-Rojas, M., Mataix-Solera, J. 2011a. Short-term effects of experimental fire for a soil under eucalypus forest (SE Australia). Geoderma 167-168, 125-134. DOI: https://doi.org/10.1016/j.geoderma.2011.09.011
Granged, A.J.P., Zavala, L.M., Jordán, A., Bárcenas-Moreno, G. 2011b. Post-fire evolution of soil properties and vegetation cover in a Mediterranean heathland after experimental burning: a 3-year study. Geoderma 164, 85-94. DOI: https://doi.org/10.1016/j.geoderma.2011.05.017
Grogan, P., Bruns T.D., Chapin, F.S. 2000. Fire effects on ecosystem nitrogen cycling in a Californian bishop pine forest. Oecologia 122, 537-44. DOI: https://doi.org/10.1007/s004420050977
Guerrero, C., Gómez, I., Mataix Solera, J., Moral, R., Mataix Beneyto, J., Hernández, M.T. 2000. Effect of solid waste compost on microbiological and physical properties of a burnt forest soil in field experiments. Biology and Fertility of Soils 32, 410-414. DOI: https://doi.org/10.1007/s003740000270
Guerrero, C., Mataix-Solera, J., Gómez, I., García-Orenes, F., Jordán, M.M. 2005. Microbial recolonization and chemical changes in soil heated at different temperatures. International Journal of Wildland Fire 14, 385-400. DOI: https://doi.org/10.1071/WF05039
Hajdas, I., Schlumpf, N., Minikus-Stary, N., Hagedorn, F., Eckmeier, E., Schoch, W., Burga, C., Bonani, G., Schmidt, M.W.I., Cherubini, P. 2007. Radiocarbon ages of soil charcoals from the southern Alps, Ticino, Switzerland. Nuclear Instruments and Methods in Physics Research B 259, 398-402. DOI: https://doi.org/10.1016/j.nimb.2007.02.075
Hartford, R.A., Frandsen, W.H. 1992. When it’s hot, it’s hot … or maybe it’s not (surface flaming may not portend extensive soil heating). International Journal of Wildland Fire 2, 139-144. DOI: https://doi.org/10.1071/WF9920139
Hernández, T., García, C., Reinhardt, I. 1997): Short-term effect of wildfire on the chemical, biochemical and microbiological properties of Mediterranean pine forest soils. Biology and Fertility of Soils 25, 109-116. DOI: https://doi.org/10.1007/s003740050289
Inbar, M., Tamir, M., Wittenberg, L. 1998. Runoff and erosion processes after a forest fire in Mount Carmel, a Mediterranean area. Geomorphology 24, 17-33. DOI: https://doi.org/10.1016/S0169-555X(97)00098-6
Ketterings, Q.M., Bigham, J.M., Laperche, V. 2000. Changes in soil mineralogy and texture caused by slash-and-burn fires in Sumatra, Indonesia. Soil Science Society of American Journal 64, 1108-1117. DOI: https://doi.org/10.2136/sssaj2000.6431108x
Khanna, P.K., Raison, R.J. 1986. Effect of fire intensity on solution chemistry of surface soil under a Eucalyptus pauciflora forest. Australian Journal of Soil Research 24, 423-434. DOI: https://doi.org/10.1071/SR9860423
KHANNA, P.K., RAISON, R.J. and FALKINER, R.A. (1994): Chemical properties of ash derived from Eucalyptus litter and its effects on forest soils. Forest Ecology and Management 66, 107-125. DOI: https://doi.org/10.1016/0378-1127(94)90151-1
Knoepp, J.D., Debano, L.F., Neary, D.G. 2005. Soil Chemistry. In Wildland fire in ecosystems: effects of fire on soils and water, D.G. Neary, K.C. Ryan, L.F. DeBano (eds.), General Techical Report RMRS-GTR-42-vol.4. United States Department of Agriculture, Forest Service and Rocky Mountain Research Station, Ogden, UT, pp. 53-71.
Kutiel, P. 2006. Fire and ecosystem heterogeneity: A Mediterranean case of study. Earth Surface Processes and Landforms 19, 187-194. DOI: https://doi.org/10.1002/esp.3290190209
Kutiel, P., Inbar, M. 1993. Fire impacts on soil nutrients and soil erosion in a mediterranean pine forest plantation. Catena 20: 129-139. DOI: https://doi.org/10.1016/0341-8162(93)90033-L
Kutiel, P., Naveh, Z. 1987. Soil properties beneath Pinus halepensis and Quercus calliprinos trees on burned and unburned mixed forest on Mt. Carmel, Israel. Forest Ecology and Management 20, 11-24. DOI: https://doi.org/10.1016/0378-1127(87)90147-2
Kutiel, P., Naveh, Z., Kutiel, H. 1995. The effect of a wildfire on soil nutrients and vegetation in an Aleppo pine forest on Mount Carmel, Israel. In Fire and ecosystems dynamics. Mediterranean and northern dynamics, J.C. Goldamer, M.J. Jenkins (eds.), SPB Academy Publishing, The Hague.
Larsen, I., Macdonald, L.H., Brown, E., Rough, D., Welsh, M.J., Pietraszek, J.H., Libohava, Z., Benavides-Solorio, J.D., Schaffrath, K. 2009. Causes of post-fire runoff and erosion: water repellency, cover, or soil sealing? Soil Science Society of America Journal 73, 1393-1407. DOI: https://doi.org/10.2136/sssaj2007.0432
Leighton-Boyce, G., Doerr, S.H., Shakesby, R.A., Walsh, R.P.D. 2005. Quantifying the impact of soil water repellency on overland flow generation and erosion: a new approach using rainfall simulation and wetting agent on in situ soil. Hydrological Processes 21, 2337-2435. DOI: https://doi.org/10.1002/hyp.6744
Lloret, F., Zedler, P.H. 2009. The effect of forest fire on vegetation. In Fire effects on soils and restoration strategies, A. Cerdà, P.R. Robichaud (eds.), Science Publishers, Enfield, pp. 257-295. DOI: https://doi.org/10.1201/9781439843338-c9
Mallik, A.U., Gimingham, C.H., Rahman, A.A. 1984. Ecological effects of heather burning. I. Water infiltration, moisture retention and porosity surface soil. Journal of Ecology 72, 787-776. DOI: https://doi.org/10.2307/2259530
Malmström, A., Persson, T., Ahlström, K., Gongalsky, K.B., Bengtsson, J. 2009. Dynamic of soil meso-and macrofauna during a 5-year period after clear-cut burning in a boreal forest. Applied Soil Ecology 43, 61-74. DOI: https://doi.org/10.1016/j.apsoil.2009.06.002
Marcos, E., Tárrega, R., Luis-Calabuig, E. 2000. Comparative analysis of runoff and sediment yield with a rainfall simulator after experimental fire. Arid Soil Research and Rehabilitation, 14, 293-307. DOI: https://doi.org/10.1080/089030600406699
Margaris, N.S., Koutsidou, E., Giourga, Ch. 2000. Changes in traditional Mediterranean land-use systems. In Mediterranean desertification and land use, C.J. Brandt, J.B. Thornes (eds.), Chichester, Wiley, pp. 29-42.
Mataix-Solera, J., Doerr, S.H. 2004. Hydrophobicity and aggregate stability in calcareous topsoils from fire-affected pine forest in southeastern Spain. Geoderma 118, 77-88. DOI: https://doi.org/10.1016/S0016-7061(03)00185-X
Mataix-Solera, J., Guerrero, C. 2007. Efectos de los incendios forestales sobre las propiedades edáficas. In Incendios forestales, suelos y erosión hídrica, J. Mataix-Solera (ed.), Caja de Ahorros del Mediterráneo CEMACAM, Alcoi, pp. 5-40.
Mataix-Solera, J, Gómez, I., Navarro-Pedreño, J., Guerrero, C., Moral, R. 2002. Soil organic matter and aggregates affected by wildfire in a Pinus halepensis forest in Mediterranean environment, International Journal of Wildland Fire 11, 107-111. DOI: https://doi.org/10.1071/WF02020
Mataix-Solera, J., Cerdà, A., Arcenegui, V., Jordán, A., Zavala, L.M. 2011. Fire effects on soil aggregation: A review. Earth-Science Reviews 109, 44-60. DOI: https://doi.org/10.1016/j.earscirev.2011.08.002
Metz, L., Dindal, D. 1980. Effects of fire on soil fauna in North America. pp. 450-459. In Soil biology as related to land use practices, EPA-560/13-80-038, D.L. Dindal (ed.), Office of Pesticide and Toxic Substances, EPA, Washington, DC.
Misra, M.K., Ragland, K.W., Baker, A.J. 1993. Wood ash composition as function of furnace temperature. Biomass and Bioenergy 4, 291-303. DOI: https://doi.org/10.1016/0961-9534(93)90032-Y
Moreno, J.M., Oechel, W.C. 1995. The role of fire in Mediterranean type ecosystems. Springer, New York, NY. DOI: https://doi.org/10.1007/978-1-4612-4186-7
Moreno, J.M., Vázquez, A., Vélez, R. 1998. Recent history of forest fires in Spain. In Large forest fires, J.M. Moreno (ed.), Backhuys Publishers, Leiden, pp. 159-186.
Moretti, M., Duelli, P., Obrist, M. 2006. Biodiversity and resilience of arthropod communities after fire disturbance in temperate forests. Oecologia 149, 312-327. DOI: https://doi.org/10.1007/s00442-006-0450-z
Neary, D.G., Klopatek, C.C., Debano, L.F., Ffolliott, P.F. 1999. Fire effects on belowground sustainability: a review and synthesis. Forest Ecology and Management 122, 51-71. DOI: https://doi.org/10.1016/S0378-1127(99)00032-8
Neary, D.G., Ryan, K.C., Debano, L.F. 2005. Wildland fire in ecosystems: effects of fire on soils and water. General Techical Report RMRS-GTR-42-vol.4. USDA, Forest Service, Rocky Mountain Research Station, Ogden, UT. DOI: https://doi.org/10.2737/RMRS-GTR-42-V4
Nishita, H., Haug, R.M. 1972. Some physical and chemical characteristics of heated soils. Soil Science 113, 422-430. DOI: https://doi.org/10.1097/00010694-197206000-00006
Noble, I.R., Slatyer, R.I. 1980. The use of vital attributes to predict successional changes in plant communities subject to recurrent disturbances. Vegetatio 43, 5-21. DOI: https://doi.org/10.1007/978-94-009-9200-9_2
Onda, Y., Dietrich W.E., Booker, F. 2008. Evolution of overland flow after severe forest fire, Point Reyes, California. Catena 72, 13-20. DOI: https://doi.org/10.1016/j.catena.2007.02.003
Packham, D., Pompe, A. 1971. The radiation temperatures of forest fires. Australian Forest Research 5, 1-8.
Paine, R.T., Tegner, M.J., Johnson, E.A. 1998. Compounded perturbations yield ecological surprises. Ecosystems 1, 535-545. DOI: https://doi.org/10.1007/s100219900049
Pardini, G., Gispert, M., Dunjó, G. 2000. Relative intluence of wildfire on soil properties and erosion processes in different Mediterranean environments in NE Spain. Science of the Total Environment 328, 237-246 DOI: https://doi.org/10.1016/j.scitotenv.2004.01.026
Pastor-López, A., Martin-Martin, J. 1995. Potential nitrogen losses due to fire from Pinus halepensis stands in the Alicante Province (Southeastern Spain): Mineralomass variability. In The Biswell Symposium: Fire issues and solutions in urban interface and wildland ecosystems. Pacific Southwest Research Station, USDA Forest Service, Albany, CA.
Paula, S., Cervello, C.P., Pausas, J.G. 2006. Fire as a germination cue: A review for the Mediterranean basin. Forest Ecology and Management 234S, S151-S179. DOI: https://doi.org/10.1016/j.foreco.2006.08.227
Pausas, J.G. 2004. Changes in fire and climate in the eastern Iberian Peninsula (Mediterranean basin). Climatic Change 63, 337-350. DOI: https://doi.org/10.1023/B:CLIM.0000018508.94901.9c
Pausas, J.G., Keeley, J.E. 2009. A burning story: the role of fire in the history of life. BioScience 59, 593-601. DOI: https://doi.org/10.1525/bio.2009.59.7.10
Pausas, J.G., Verdú, M. 2005. Plant persistence traits in fire-prone ecosystems of the Mediterranean Basin: a phylogenetic approach. Oikos 109, 196-202. DOI: https://doi.org/10.1111/j.0030-1299.2005.13596.x
Pausas, J.G., Llovet, J., Rodrigo, A., Vallejo, R. 2008. Are wildfires a disaster in the Mediterranean basin?-A review. International Journal of Wildland Fire 17, 173-723. DOI: https://doi.org/10.1071/WF07151
Pereira, P., Úbeda, X., Martin, D. 2009. Application of a clusters analysis to fire effects on solute release from some Mediterranean species. Silva Lusitana 17, 39-50.
Pereira, P., Bodí, M., Úbeda, X., Cerdà, A., Mataix-Solera, J., Balfour, V., Woods, S. 2010. Las cenizas y el ecosistema suelo. In Actualización en métodos y técnicas de estudio de los suelos afectados por incendios forestales, A. Cerdà, A. Jordán (eds.), Cátedra de Divulgació de la Ciència, Valencia, pp. 345-398.
Pereira, P., Cerdà, A., Bolutiene, V., Úbeda, X., Pranskevicius, M., Jordán, A., Zavala, L.M., Mataix-Solera, J. 2013a. Spatio-temporal effects of low severity grassland fire on soil colour. Geophysical Research Abstracts 15, EGU2013-10641.
Pereira, P., Úbeda, X., Cerdà, A., Mataix-Solera, J., Martin, D., Jordán A., Burguet, M. 2013b. Spatial models for monitoring the spatio-temporal evolution of ashes after fire - a case study of a burnt grassland in Lithuania. Solid Earth 4, 153-165. DOI: https://doi.org/10.5194/se-4-153-2013
Pereira, P., Cerdà, A., Úbeda, X., Mataix-Solera, J., Arcenegui, V., Zavala, L.M. 2013c. Modelling the impacts of wildfire on ash thickness in a short-term period, Land Degradation and Development. DOI: 10.1002/ldr.2195. DOI: https://doi.org/10.1002/ldr.2195
Piccolo, A., Mbagwu, J.S.C. 1999. Role of hydrophobic components of soil organicmatter in soil aggregate stability. Soil Science Society of America Journal 63, 1801-1810. DOI: https://doi.org/10.2136/sssaj1999.6361801x
Pietikäinen, J., Fritze, H. 1995. Clear-cutting and prescribed burning in coniferous forest: comparison of effects on soil fungal and total microbial biomass, respiration activity and nitrification. Soil Biology and Biochemistry 27, 101-109. DOI: https://doi.org/10.1016/0038-0717(94)00125-K
Ponder, F.Jr., Tadros, M., Loewenstein, E.F. 2009. Microbial properties and litter and soil nutrients after two prescribed fires in developing savannas in an upland Missouri Ozark Forest. Forest Ecology and Management 257, 755-763. DOI: https://doi.org/10.1016/j.foreco.2008.10.009
Prieto‐Fernández, A., Villar, M.C., Carballas, M., Carballas, T. 1993. Short‐term effects of a wildfire on the nitrogen status and its mineralization kinetics in an Atlantic forest soil. Soil Biology and Biochemistry 25, 1657‐1664. DOI: https://doi.org/10.1016/0038-0717(93)90167-A
Pritchett, W.L., Fisher, R.F. 1987. Properties and management of forest soils. Second Edition. John Wiley & Sons, New York, NY.
Pyne, S.J. 2001. Fire: A brief history. University of Washington Press, Seattle, WA.
Raison, R.J., Khanna, P.K., Jacobsen, K.L.S., Romanya, J., Serrasolses, I. 2009. Effect of fire on forest nutrient cycles. In Fire effects on soils and restoration strategies, A. Cerdà, P.R. Robichaud (eds.), Science Publishers, Enfield, pp. 225-256. DOI: https://doi.org/10.1201/9781439843338-c8
Ritsema, C.J., Dekker, L.W. 1994. How water moves in a water repellent sandy soil. 2. Dynamics of fingered flow. Water Resources Research 30, 2519-2531. DOI: https://doi.org/10.1029/94WR00750
Rivas, Y., Huygens, D., Knicker, H., Godoy, R., Matus, F., Boeckx, P. 2012. Soil nitrogen dynamics three years after a severe Araucaria-Nothofagus forest fire. Austral Ecology 37, 153-163 DOI: https://doi.org/10.1111/j.1442-9993.2011.02258.x
Robichaud, P.R., Hungerford, R.D. 2000. Water repellency by laboratory burning of four northern Rocky Mountain forest soils. Journal of Hydrology 231-232, 207-219. DOI: https://doi.org/10.1016/S0022-1694(00)00195-5
Robichaud, P.R., Beyers, J.L., Neary, D.G. 2000. Evaluating the effectiveness of postfire rehabilitation treatments. General Technical Report, RMRS-GTR-63. USDA Forest Service, Rocky Mountain Research Station, Ogden, UT. DOI: https://doi.org/10.2737/RMRS-GTR-63
Robinson, J.M. 1991. Fire from space: Global fire evaluation using infrared remote sensing. International Journal of Remote Sensing 12, 3-24. DOI: https://doi.org/10.1080/01431169108929628
Ruiz Del Castillo, J. 2000. Efectos del fuego en los ecosistemas forestales. In La defensa contra incendios forestales. Fundamentos y experiencias, R. Vélez (coord.), McGraw Hill, Madrid.
Ryan, K.C. 2002. Dynamic interactions between forest structure and fire behavior in boreal ecosystems. Silva Fennica 36, 13-39. DOI: https://doi.org/10.14214/sf.548
Sala, M., Sabaté, S., Gracia, C.A. 1990. Organización vertical en un matorral de Quercus coccifera y Pistacia lenticus tras el fuego: índice foliar y gradientes morfológicos. Mediterránea Serie de Estudios Biológicos 12, 47-58. DOI: https://doi.org/10.14198/MDTRRA1990.12.03
Savage, S.M. 1974. Mechanism of fire-induced water repellency in soil. Soil Science Society America Proceedings 38, 652-657. DOI: https://doi.org/10.2136/sssaj1974.03615995003800040033x
Savage, S.M., Osborn, J., Letey, J., Heaton, C. 1972. Substances contributing to fire-induced water repellency in soils. Soil Science Society America Proceedings 36, 674-678. DOI: https://doi.org/10.2136/sssaj1972.03615995003600040047x
Schmidt, M.W.I., Skjemstad, J.O., Gehrt, E., Kögel-Knabner, I. 1999. Charred organic carbon in German chernozemic soils. European Journal of Soil Science 50, 351-365. DOI: https://doi.org/10.1046/j.1365-2389.1999.00236.x
Scott, A.C. 2000. The Pre-Quaternary history of fire. Palaeo 164, 281-329. DOI: https://doi.org/10.1016/S0031-0182(00)00192-9
Scott, A.C. 2009. Forest fire in the fossil record. In Fire effects on soils and restoration strategies, A. Cerdà, P.R. Robichaud (eds.), Science Publishers, Enfield, pp. 1-37. DOI: https://doi.org/10.1201/9781439843338-c1
Shakesby R.A. 2011. Post-wildfire soil erosion in the Mediterranean: Review and future research directions Earth-Science Reviews 105, 71-100. DOI: https://doi.org/10.1016/j.earscirev.2011.01.001
Shakesby, R.A., Doerr, S.H. 2006. Wildfire as hydrological and geomorphological agent. Earth-Science Reviews 74, 269-307. DOI: https://doi.org/10.1016/j.earscirev.2005.10.006
Simard, A.J. 1991. Fire severity, changing scales, and how things hang together. International Journal of Wildland Fire 1, 23-34. DOI: https://doi.org/10.1071/WF9910023
Smithwick, E.A.H., Turner, M.G., Mack, M.C., Chapin, F.S. 2005. Postfire soil N cycling in northern conifer forests affected by severe, stand-replacing wildfires. Ecosystems 8, 163-81. DOI: https://doi.org/10.1007/s10021-004-0097-8
Terefe, W.T., Mariscal, S.I., Gomez, M.V., Espejo, S.R. 2005. Influence of heating on various properties of six Mediterraean soils. A laboratory study. Geoderma 143, 273-380. DOI: https://doi.org/10.1016/j.geoderma.2007.11.018
Terefe, W.T., Mariscal, S.I., Gomez, M.V., Espejo, S.R. 2008. Relationship between soil color and temperature in the surface horizon of Mediterranean soils: a laboratory study. Soil Science 170, 495-503. DOI: https://doi.org/10.1097/01.ss.0000175341.22540.93
Trabaud, L. 2000. Post-fire regeneration of Pinus halepensis forest in the west Mediterranean. In Ecology, biogeography and management of Pinus halepensis and P. brutia forest ecosystems in the Mediterranean basin, G. Ne’eman, L. Trabaud (eds.), Backhuys Publishers, Leiden, pp. 257-268.
Turner, M.G., Smithwick, E.A.H., Metzger, K.L, Tinker, D.B., Romme, W.H. 2007. Inorganic nitrogen availability after severe stand-replacing fire in the Greater Yellowstone ecosystem. Proceedings of the National Academy of Sciences of the United States of America 104, 4782-4789. DOI: https://doi.org/10.1073/pnas.0700180104
Úbeda, X., Pereira, P., Outeiro, L., Martin, D. 2009. Effects of fire temperature on the physical and chemical characteristics of the ash from two plots of cork oak (Quercus suber). Land Degradation and Development 20, 589-609. DOI: https://doi.org/10.1002/ldr.930
Ulery A.L., Graham, R.C. 1993. Forest fire effects on soil color and texture. Soil Science Society of America Journal 57, 135-140. DOI: https://doi.org/10.2136/sssaj1993.03615995005700010026x
Ulery, A., Graham, R.C., Amrhein, C. 1993. Wood ash composition and soil pH following intense burning. Soil Science 156, 358-364. DOI: https://doi.org/10.1097/00010694-199311000-00008
Ulery, A.L., Graham, R.C., Chadwick, O.A.And Wood, H.B. 1995. Decadescale changes of soil carbon, nitrogen and exchangeable cations under chaparral and pine. Geoderma 65, 121-134. DOI: https://doi.org/10.1016/0016-7061(94)00034-8
Vasander, H., Lindholm, T. 1985. Fire intensities and surface temperatures during prescribed burning. Silva Fennica 19, 1-15. DOI: https://doi.org/10.14214/sf.a15406
Viro, P.J. 1974. Effects of forest fire on soil. In Fire and ecosystems, T.T. Kozlowski, C.E. Ahlgren (eds.), Academic Press, New York, NY. DOI: https://doi.org/10.1016/B978-0-12-424255-5.50007-9
Woods, S.W., Balfour, V.N. 2008. The effect of ash on runoff and erosion after a severe forest wildfire. International Journal of Wildland Fire 17, 535-548. DOI: https://doi.org/10.1071/WF07040
Woods, S.W., Balfour, V.N. 2010. The effects of soil texture and ash thickness on the post-fire hydrological response from ash-covered soils. Journal of Hydrology 393, 274-286. DOI: https://doi.org/10.1016/j.jhydrol.2010.08.025
Zavala, L., M., Jordán, A., Gil, J., Bellinfante, N., Pain, C. 2009. Intact ash and charred litter reduces susceptibility to rain splash erosion post-wildfire. Earth Surface Processes and Landforms 34, 1522-1532. DOI: https://doi.org/10.1002/esp.1837
Zavala, L.M., Granged, A.J.P., Jordán, A., Bárcenas-Moreno, G. 2010. Effect of burning temperature on water repellency and aggregate stability in forest soils under laboratory conditions. Geoderma 158, 366-374. DOI: https://doi.org/10.1016/j.geoderma.2010.06.004
Downloads
Published
How to Cite
Issue
Section
License
The authors retain copyright of articles and authorize Cuadernos de Investigación Geográfica / Geographical Research Letters the first publication. They are free to share and redistribute the article without obtaining permission from the publisher as long as they give appropriate credit to the editor and the journal.
Self-archiving is allowed too. In fact, it is recommendable to deposit a PDF version of the paper in academic and/or institutional repositories.
It is recommended to include the DOI number.
This journal is licensed under a Creative Commons Attribution 4.0 International License