Deglaciation of the High Tatra Mountains


  • M. Makos



exposure age chronology, deglaciation, glacier-climate modeling, LGM, Lateglacial, High Tatra Mountains.


Investigation on the glaciation of the High Tatra Mountains has an over 200 years long history. The chronology of the last deglaciation of the massif has been based mainly on geomorphologic evidence, thermo-luminiscence (TL) dating and few radiocarbon ages. This study presents the current state of knowledge about the last glacial cycle and its termination in the High Tatra Mountains based on exposure age chronology. 36Cl dating of glacial features applied on both the northern and the southern slope of the range, indicates that the maximum advance (LGM I) occurred in the time range between 25 and 20 ka and the subsequent episode (LGM II) when glaciers were stable, took place at around 18 ka. The mean annual temperature was depressed by 11-12ºC in relation to the modern conditions and precipitation was 40-50% of the present day value. The younger glacier advances or stillstands likely occurred at around 17-16 ka (LG1) and at 15 ka (LG2). Both of them can be correlated with the Greenland Stadial 2a (the Oldest Dryas). Modelled climatic conditions indicate cold and dry climate with 9-10ºC lower temperature and 30-50% lower precipitation. The Lateglacial Interstadial 2 is recorded as fast thinning of glaciers in the upper part of the catchments between 15 and 13 ka. The LG3 glacial episode is marked by well-fomed terminal moraines which were formed at around 12.5 ka. This cooling correlates well with the Younger Dryas (Greenland Stadial 1) when temperature in the Tatra Mountains was lower than today by about 6ºC and precipitation was about 75% of current values.


Download data is not yet available.


Baumgart-Kotarba, M., Kotarba, A. 1995. High Mountain environment of the Tatras in the period of pleistocene and holocene transition. Biuletyn Peryglacjalny 34, 37-51.

Baumgart-Kotarba, M., Kotarba, A. 2002. Deglaciation in the High Tatra Mountains (Bia1a Woda Valley as example). In Proceedings of XVII CBGA Congress, Bratislava, 1e4 September 2002. Geologica Carpathica, p. 53.

Baumgart-Kotarba, M., Kotarba, A. 1997. Würm glaciation in the BiałaWoda Valley, High Tatra Mountains. Studia Geomorphologica Carpatho-Balcanica 31, 57-81.

Baumgart-Kotarba, M., Kotarba, A. 2001. Deglaciation in the Sucha Woda and Panszczyca valleys in the Polish High Tatras. Studia Geomorphologica Carpatho-Balcanica 35, 7-38.

Björck, S., Walker, M.J.C., Cwynar, L.C., Johnsen, S., Knudsen, K.-L., Lowe, J.J., Wohlfarth, B., INTIMATE Members. 1998. An event stratigraphy for the last Termination in the North Atlantic region based on the Greenland ice-core record: a proposal by the INTIMATE group. Journal of Quaternary Science 13, 283-292.

Butrym, J., Lindner, L., Okszos, D. 1990. Formy rzezby, wiek TL osadów i rozwój lodowców ostatniego zlodowacenia w Dolinie Ma1ej qa˛ ki, Tatry Zachodnie. Przegląd Geologiczny 38 (1), 20e26.

Clark, P.U., Dyke, A.S., Shakun, J.D., Carlson, A.E., Clark, J., Wohlfarth, B., Mitrovica, J.X., Hostetler, S.W., McCabe, M. 2009. The Last Glacial Maximum. Science 325, 710-714.

Dzierżek, J., Nitychoruk, J., Zreda-Gostynska, G., Zreda, M.G. 1999. Metoda datowania kosmogenicznym izotopem 36Cl e nowe de do chronologii glacjalnej TatrWysokich. Przegląd Geologiczny 11 (47), 987-992.

Dzierżek, J. 2009. Paleogeografia wybranych obszarów Polski w czasie ostatniego zlodowacenia. Acta Geographica Lodziensia 95, 1-112.

Gądek, B. 2008. The problem of firn-ice patchesin the Polish Tatras as an indicator of climatic fluctuations. Geographia Polonica 81 (1), 41-53.

Hemming, S. 2004. Heinrich events:massive Late Pleistocene detritus layers of the North

Atlantic and their global climate imprint. Reviews of Geophysics 42, 1-43.

Ivy-Ochs, S., Kerschner, H., Kubik, P.W., Schlüchter, C. 2006. Glacier response in the European Alps to Heinrich event 1 cooling: the Gschnitz stadial. Journal of Quaternary Science 21, 115e130.

Ivy-Ochs, S., Kerschner, H., Maisch, M., Christl, M., Kubik, P.W., Schlüchter, C. 2009. Latest Pleistocene and Holocene glacier variation in the European Alps. Quaternary Science Reviews 28, 2137-2149.

Ivy-Ochs, S., Kerschner, H., Reuther, A., Preusser, F., Maisch, M., Kubik, P.W., Schlüchter, C. 2008. Chronology of the last gglacial cycle in the European Alps. Journal of Quaternary Science 23, 559-573.

Ivy-Ochs, S., Schafer, J., Kubik, P.W., Synal, H.-A., Schlüchter, C. 2004. The timing of deglaciation on the northern Alpine foreland (Switzerland). Eclogae Geologicae Helvetiae 97, 47-55.

Kelly, M.A., Kubik, P.W., von Blanckenburg, F., Schlüchter, C. 2006. Surface exposure dating of the Great Aletsch Glacier Egesen moraine system, western Swiss Alps, using the cosmogenic nuclide 10Be. Journal of Quaternary Science 19 (5), 431-441.

Kelly, M.A., Ivy-Ochs, S., Kubik, P.W., von Blanckenburg, F., Schlüchter, C. 2006. Exposure ages of glacial erosional features in the Grimsel Passregion, central Swiss Alps. Boreas 35, 634-643.

Klimaszewski, M. 1988. Rzeźba Tatr Polskich. Warszawa.

Koperowa, W. 1962. Póznoglacjalna i holocenska historia roslinnosci Kotliny Nowotarskiej. Acta Paleobotanica 11 (3), 1-62.

Křížek, M., Mida, P. 2013. The influence of aspect and altitude on the size, shape and spatial distribution of glacial cirques in the High Tatras (Slovakia, Poland). Geomorphology 198, 57-68.

Krupinski, K.M. 1984. Evolution of Late Glacial and Holocene vegetation in the Polish Tatra Mts., based on pollen analysis of sediments of the Przedni StawLake. Bulletin of the Polish Academy of Sciences Earth Sciences 31, 37-48.

Kuhlemann, J., Gachev, E., Gikov, A., Nedkov, S., Krumrei, I., Kubik, P. 2013. Glaciation in the Rila Mountains (Bulgaria) during the Last Glacial Maximum. Quaternary International 293, 51-62.

Kuhlemann, J., Milivojevic, M., Krumrei, I., Kubik, P. 2009. Last glaciation of the Sara Range (Balkan Peninsula): increasing dryness from the LGM to the Holocene. Austrian Journal of Earth Sciences 102, 146-158.

Lindner, L. 1994. Jednostki stadialne i interstadialne ostatniego zlodowacenia (Würm, Vistulian) w Tatrach Polskich i na Podhalu. Acta Geographica Universiti Nicolae Copernici 27, 59-73.

Lindner, L., Dzierżek, J., Marciniak, B., Nitychoruk, J. 2003. Outline of Quaternary glaciations in the Tatra Mountains: their development, age and limits. Geological Quarterly 47 (3), 269-280.

Lowe, J.J., Rasmussen, S.O., Björck, S., Hoek, W.Z., Steffensen, J.P., Walker, M.J.C., Yu, Z.C., The INTIMATE Group. 2008. Synchronisation of palaeoenvironmental events in the North Atlantic region during the Last Termination: a revised protocol recommended by the INTIMATE group. Quaternary Science Reviews 27, 6-17.

Lukniš, M. 1964. The course of Last Glaciation of the Western Carpathians in relation to the Alps, to the glaciation of Northern Europe, and to division of the Central-European Würm into periods. Geografický Casopis 16 (2), 127-142.

Lukniš, M. 1973. Reliéf Vysokých Tatier a ich predpolia. Veda, Bratislava, 375 pp.

Makos, M. 2010. Rekonstrukcja zmian klimatycznych w póznym czwratorzedzie w polskich Tatrach Wysokich na podstawie datowan glacjalnych form erozyjnych. PhD Thesis Arch. Inst. Geol., Warsaw University.

Makos, M., Dzierżek, J., Nitychoruk, J., Zreda, M. 2014. Timing of glacier advances and climate in the High Tatra Mountains (Western Carpathians) during the Last Glacial Maximum. Quaternary Research 82, 1-13.

Makos, M., Nitychoruk, J., Zreda, M. 2013a. Deglaciation chronology and paleoclimate of the Pięciu Stawów Polskich/Roztoki Valley, High Tatra Mountains, Western Carpathians since the Last Glacial Maximum, inferred from 36Cl exposure dating and glacier-climate modeling. Quaternary International 293, 63-78.

Makos, M., Nitychoruk, J., Zreda, M. 2013b. The Younger Dryas climatic conditions in the Za MnichemValley (Polish High TatraMountains) based on exposure-age dating and glacier-climate modeling. Boreas 42 (3), 745-761.

Makos, M., Nitychoruk, J. 2011. Last GlacialMaximumclimatic conditions in the Polish part of theHigh TatraMountains (Western Carpathians). Geological Quarterly 55, 253-268.

Marciniak, B., Ciesla, A., 1983. Badania diatomologiczne i geochemicznepó znoglacjalnych i holoce nskich osadów z Przedniego Stawu w Dolinie Pie˛ciu Stawów Polskich (Tatry). Kwartalnik Geologiczny 27 (1), 123-150.

Niedźwiedź, T. 1992. Climate of the Tatra Mountains. Mountain Research and Development 12, 131-146.

Obidowicz, A. 1996. A Late GlacialeHolocene history of the formation of vegetation belts in the Tatra Mts. Acta Paleobotanica 36 (2), 159-206.

Pallàs, R., Rodés, A., Braucher, R., Carcaillet, J., Ortuno, M., Bordonau, J., Bourlès, D., Vilaplana, J.M., Masana, E., Santanach, P. 2007: Late Pleistocene and Holocene glaciation in the Pyrenees: a critical review and new evidence from 10Be exposure ages, south-central Pyrenees. Quaternary Science Reviews 25, 2937-2963.

Partsch, J. 1923. Die Hohe Tatra zur Eiszeit. Leipzig.

Patzelt, G. 1975. Unterinntal-Zillertal Pinzgau, Kitzbühel. Spät- und post-glaziale Landschaftsenwicklung. Innsbrucker geographishe Stud. 2, 309-329.

Rasmussen, S.O., Andersen, K.K., Svensson, A., Steffensen, J.P., Vinther, B.M., Clausen, H.B., Siggarrd-Andersen, M.-L., Johnsen, S.J., Larsen, L.B., Dahl-Jensen, P., Bigler, M., Rothlisberger Fisher, K., Goto-Azuma, K., Hansson, M.E., Ruth, U. 2006. A newGreenland ice core chronology for the last glacial termination. Journal of GeophysicalResearch 111, 1-15.

Reitner, J. 2007. Glacial dynamics at the beginning of Termination 1 in the Eastern Alps and their stratigraphic implications. Quaternary International 164-165, 64-84.

Reuther, A., Urdea, P., Geiger, C., Ivy-Ochs, S., Niller, H.-P., Kubik, P.W., Heine, K., 2007. Late Pleistocene glacial chronology of the Pietrele Valley, Retezat Mountains, Southern Carpathians constrained by 10Be exposure ages and pedological investigations. Quaternary International 164-165, 151-169.

Rinterknecht, V., Matoshko, A., Gorokhowich, Y., Fabel, D., Xu, S. 2012. Expression of the Younger Dryas cold event in the Carpathian Mountains, Ukraine? Quaternary Science Reviews 39, 106-114.

Romer, E. 1929. Tatrzańska epoka lodowa. Prace Geograficzne - Książnica Polska, Lwów, z. 11, 186 s.

Sarikaya, M.A., Zreda, M., Ciner, A. 2009. Glaciations and paleoclimate of Mount Erciyes, central Turkey, since the Last Glacial Maximum, inferred from 36Cl cosmogenic dating central Turkey, since the Last GlacialMaximum, inferred from 36Cl cosmogenic dating and glacier modeling. Quaternary Science Reviews 28, 2326-2341.

Sarikaya, M.A., Zreda, M., Çiner, A., Zweck, C. 2008. Cold and wet Last Glacial Maximum on Mount Sandıras, SW Turkey, inferred from cosmogenic dating and glacier modeling. Quaternary Science Reviews 27, 769-780.

Solomon, S., Qin, D., Manning, M., Alley, R.B., Berntsen, T., Bindoff, N.L., Chen, Z., Chidaisong, A., Gregory, J.M., Hegerl, G.C., Heimann, M., Hewitson, B., Hoskins, B.J., Joos, F., Jouzel, G., Kattsov, V., Lohmann, U., Matsuno, T., Molina, M., Nicholls, N., Overpeck, J., Raga, V., Ramaswamy, J., Ren, J., Rusticucci, M., Somervile, R., Stocker, T.F., Whetton, P., Wood, R.A., Wratt, D. 2007. Technical Summary. In Climate Change 2007: The Physical Science Basis. Contribution of Working Group I tot he Fourth Assessement Report of t he Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, 1099 pp.

Vitásek, F. 1931. Fysický zempis Tater. Sbírka „Naše Tatry“, Praha, 215 s.

Zasadni J., Kłapyta P. 2014. The Tatra Mountains during the Last Glacial Maximum. Journal of Maps 10 (3), 440-456.

Zasadni, J., K1apyta, P. 2009. An attempt to assess the modern nad Little Ice Age climatic snowline altitude in the Tatra Mountains. Landform Analysis 10, 124-133.




How to Cite

Makos M. Deglaciation of the High Tatra Mountains. CIG [Internet]. 2015 Apr. 21 [cited 2023 Sep. 22];41(2):317-35. Available from: