Little Ice Age glacier extension and retreat in Spitsbergen Island (High Arctic, Svalbard Archipelago)

Raúl Martín-Moreno, Fernando Allende-Álvarez

Abstract


The influence of the Little Ice Age on the glaciers of Spitsbergen has been well documented by many investigations since long time. This paper studies, measures and presents new data on the Little Ice Age maximum glacier extension and retreat by aerial photo interpretation and Geographic Information Systems (GIS) tools use. It also elaborates cartography where all the results are expressed in greater detail. During the LIA maximum the Island of Spitsbergen was covered with a 7.34% more of ice than today. After the Little Ice Age, the total glacier area loss was 13.84%, which means a total of 2769.8 Km2 over the 20,008.7 Km2 of the total glaciated in the current context. The analysis of the maximum Little Ice Age glacier extension in the major drainage basins brings important differences among them; hardly 100 years ago some basin drainage increased the glacier area more than 24% (in the western and central region of Spitsbergen), while others less than 5% (in the northeast region of the Island). The greatest retreats are found in the tidewater glaciers that extend into the sea, which we explain due to different factors: their glacier front beds are found below the sea level, the intense ablation of the calving process, the fact that their tidewater fronts are thin and temperate (which make them more dynamic and very sensitive to climate fluctuations), and that the advances of these glaciers may correspond with surges, which means that the rapid retreats are motivated by the post-surging phases as well. The conclusions of the present research point out a very important ice loss in the whole Island since the Little Ice Age, and the high vulnerability of this Arctic Archipelago to global warming.

Keywords


glacier retreat; aerial photo interpretation; GIS; Little Ice Age; Spitsbergen

Full Text:

PDF

References


ACIA 2005. Arctic Climate Impact Assessment. Cambridge University Press, Cambridge, 1460 pp.

Ai, S.T., Wang, Z.M., Tan, Z., Che, E.D., Ming, Y. 2013. Mass change study on Arctic glacier Pedersenbreen, during 1936-1990-2009. Chinese Science Bulletin 58 (25), 31483154.

Alhmam, H.W. 1948. Glaciological research on the North Atlantic coasts. Royal Geographical Society Research Series 1, 83 pp.

Bartkowiak, Z., Lankauf, K.R., Sobota, I., Zawicki, R. 2004. Wstępne wyniki zastosowania technik GPS w pomiarach geodezyjnych na lodowcu Waldemara (NW Spitsbergen), Polish Polar Studies XXX International Polar Symposium, 21–27.

Błaszczyk, M., Jania, J. A., Hagen, J.O. 2009. Tidewater glaciers of Svalbard: Recent changes and estimates of calving fluxes. Polish Polar Research 30 (2), 85-142.

Bate, S. 2008. A Reconstruction Of Equilibrium Line Altitudes Of The Little Ice Age. Glaciers In Linnédalen, Western Spitsbergen, Svalbard. Term Project AG-212 Autumn 2008. 19 pp.

Cwiakala, J., Moskalik, M., Rodzik, J., Zagórski, P. 2015. The Glacial History of the Svalberd Archipelago from Late Vistulian to the Present Time / Historia zlodowacenia archipelagu Svalbard od późnego vistulianu do współczesności. Annales UMCS, Geographia, Geologia, Mineralogia et Petrographia 69 (2), 27–52.

Dahl. S.O., Nesje. A. l994. Holocene glacier fluctuations at Hardangerjokulen, Central Norway: a high resolution composite chronology from lacustrine and terrestrial deposits. The Holocene 4, 269-277.

Dowdeswell, J.A., Drewry, D.J., Liestøl, 0., Orheim, 0. 1984. Radio-echo sounding of Spitsbergen glaciers: problems in the interpretation of layer and bottom returns. Journal of Glaciology 30 (104), 16-21.

Dowdeswell, J.A, 1989. On the nature of Svalbard ieebergs. Journal of Glaciology 35 (120), 224-234.

Dowdeswell, J.A., Hamilton, G., Hagen, J.O. 1991. The duration of the active phase on surge−type glaciers: contrasts between Svalbard and other regions. Journal of Glaciology 37 (127), 86–98.

Dowdeswell, J.A., Hamilton, G.S., Hagen, J.O. 1991: The duration of the active phase on surge-type glaciers: contrasts between Svalbard and other region. Journal of Glaciology 37, 388–400.

Eckerstorfer, M., Neumann, U., Christiansen, H.H. 2008. High arctic avalanche monitoring in maritime Svalbard. Proceedings of the International Snow Science Workshop 2008. Whistler, Canada, 784-791.

Elverhøi, A., Liestøl., Ø., Nagy, J. 1980. Glacial erosion, sedimentation and microfauna in the inner part of Kongsfjorden, Spitsbergen. Nor. Polarinst. Skr., 172, 33–61.

Førland, E., Hanssen-Bauer, I., Nordli, P. 1997. Climate Statistics and longterm series of temperatures and precipitation at Svalbard and Jan Mayen. Norwegian Meteorological Institute, Report 21/97, 1-72.

Glasser, N.F., Hambrey, H.J. 2006. Ice-marginal terrestrial landsystems: Svalbard polythermal glaciers, In J.A.D. Evans (ed.), Glacial Landsystems, Arnold, pp. 65-88.

Grove, J.M., 2004. Little Ice Ages: Ancient and Modern, (2 volumes). Routledge, London, 718 pp.

Hagen, J.O., Liestøl, O. 1990. Long-term glacier mass-balance investigations in Svalbard, 1950–88. Annals of Glaciology, 14, 102–106.

Hagen, J.O., Saetrang, A. 1991. Radio-echo sounding of sub-polar glaciers with low-frequency radar. Polar Research 9, 99-107.

Hagen, J.O., Liestøl, O., Roland, E., Jørgensen, T. 1993. Glacier Atlas of Svalbard and Jan Mayen. Norsk Polarinstitutt Meddelelser 129, Oslo, 141 pp.

Hagen, J.O., Kohler, J., Melvold, K., Winther, J.G. 2003. Glaciers in Svalbard: Mass balance, runoff and freshwater flux. Polar Research 22 (2), 145–159.

Hisdal, V. 1985. Geography of Svalbard. Polarhandbook No. 2, Norsk Polarinstitutt, 79 pp.

Houghton, J.T., Ding, Y., Griggs, D.J., Noguer, M., van der Linden, P.J., Dai, X., Maskell, K., Johnson, C.A. 2001. Climate change 2001: the scientific basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, Cambridge University Press, 881 pp.

Humlum, O., Instanes, A., Sollid, J.L. 2003. Permafrost in Svalbard: a review of research history, climatic background and engineering challenges. Polar Research 22 (2), 191-215.

Humlum, O. 2005. Holocene permafrost aggradation in Svalbard. In: C. Harris, J.B. Murton (eds.), Cryospheric Systems: Glaciers and Permafrost. Geological Society, London, Special Publication, 242, 119-130.

Humlum, O., Elberling, B., Hormes, A., Fjordheim, K., Hansen, O.H., Heinemeier, J. 2005. Late-Holocene glacier growth in Svalbard, documented by subglacial relict vegetation and living soil microbes. The Holocene, 15 (3), 396-407.

IPCC 2007. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment. Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, United Kingdom and New York, 996 pp.

Isaksen, K., Sollid, J., Holmlund, P., Harris, C. 2007. Recent warming of mountain permafrost in Svalbard and Scandinavia, Journal of Geophysical Research: Earth Surface (2003-2012) 112 (F2).

Jania, J., Mochnacki, D., Ggdek, B. 1996. The thermal structure of Hansbreen, a tidewater glacier in southern Spitsbergen, Svalbard. Polar Research 15 (1), 53-66.

Jiskoot, H., Boyle, P., Murray, M. 1998. The incidence of glacier surging in Svalbard: results from multivariate statistics. Computers and Geosciences 24 (4), 387-399.

Jiskoot, H., Murray, T. Boyle, P. 2000. Controls on the distribution of surge−type glaciers in Svalbard. Journal of Glaciology 46 (154), 412–422.

Kohler, J. 2009. How close should boats come to the fronts of Svalbard’s calving glaciers? Research Report. Norsk Polarinstitutt. http://hdl.handle.net/11250/173175 (access 12/09/2015).

König, M., Christopher Nuth, C., Jack Kohler, J., Moholdt, G., Pettersen, R. A. 2014. Digital glacier database for Svalbard. In Global Land Ice Measurements from Space, J.S. Kargel, G.J. Leonard, M.P. Bishop, A. Kääb, B.H. Raup, (eds.), Springer Praxis Books, 229-239 pp.

Lamb, H.H. 1977. Climate: present, past and future. Volume 2. Climatic history and the future. London, Methuen, 835 pp.

Lankauf, K.R. 1999. Retreat of the Aavatsmark Glacier (Kaffiöyra Region, Oscar II Land) in XX century. In: Polish Polar Studies. XXVI Polar Symposium. Lublin, pp. 134–151

Lapazarán, J., Petlicki, M., Navarro, F., Machío, F., Puczko, D., Glowacki, P. Nawrot, A. 2013. Ice volume changes (1936-1990-2007) and ground-penetrating radar studies of Ariebreen, Hornsund, Spitsbergen. Polar Research 32, 4-82.

Lefauconnier, B., Hagen, J.O. 1990. Glaciers and Climate in Svalbard, statistical analysis and reconstruction of the Brøgger glacier mass balance for the last 77 years. Annals of Glaciology 14, 148–152.

Lefauconnier, B., Hagen, J.O. 1991. Surging and calving glaciers in Eastern Svalbard. Norsk Polarinstitutt Meddelelser 116, Oslo, 130 pp.

Liestøl O. 1969. Glacier surges in West Spitsbergen. Canadian Journal of Earth Sciences 6 (4), 895–987.

Liestøl, O. 1980. Permafrost conditions in Spitzbergen. Frost i Jord 21, 23– 28.

Liestøl, O. 1993. Glaciers of Europe, Glaciers of Svalbard, Norway Satellite Image Atlas of Glaciers of The World. In: R.S. Williams, J.G. Ferrigno (eds.), U.S. Geological Survey Professional Paper 1386-E-5.

Lukas, S., Nicholson, L.I., Ross, F.H., Humlum, O. 2005. Formation, meltout processes and landscape alteration of high-arctic ice-cored moraines — examples from Nordenskiöld Land, central Spitsbergen. Polar Geography 29, 157–187.

Lukas, S., Nicholson, L.I., Humlum, O. 2007. Comment on Lønne and Lyså (2005): “Deglaciation dynamics following the Little Ice Age on Svalbard: Implications for shaping of landscapes at high latitude, Geomorphology 72, 300-319”. Geomorphology, 84, 145-149.

Lyså, A., Lønne, I. 2001. Moraine development at a small High-Arctic valley glacier: Rieperbreen, Svalbard. Journal of Quaternary Science, 16, 519–529.

Lønne, I., Lyså, A. 2005. Deglaciation dynamics following the Little Ice Age on Svalbard: implications for shaping of landscapes at high latitudes. Geomorphology 72, 300–319.

Lønne, I. 2007. Reply to Lukas, S., Nicholson, L. I. and Humlum, O. 2006. “Comment on Lønne and Lyså (2005): Deglaciation dynamics following the Little Ice Age on Svalbard: Implications for shaping of landscapes at high latitude, Geomorphology 72, page 300-319”. Geomorphology 86, 217-218.

Mangerud J., Svendsen J.I. 1990. Deglaciation chronology inferred from marine sediments in a proglacial lake basin, western Spitsbergen, Svalbard. Boreas 19, 249–272.

Mann, M. (2002). Little Ice Age. In: M.C. McCracken, J.S. Perry (eds.), The Earth system: physical and chemical dimensions of global environmental change. Encyclopedia of Global Environmental Change, 504-509.

Martín-Moreno, R. Serrano-Cañadas, E. 2013. Evolución del manto de nieve en el Alto Ártico, Nordenskiöld Land (Spitsbergen, Svalbard). Boletín de la Asociación de Geógrafos Españoles, 61, 409-414.

Martín Moreno, R. Serrano Cañadas, E. 2015. Observaciones geomorfológicas sobre icings y ampollas de hielo en Reindalen (78ºN), Nordenskjöld Land, Svalbard. In: M. Valcárcel (edr.), Monografías del grupo de investigación “Ciencia do Sistema Terra (GI-1553)-USC”. Aportaciones al conocimiento de los ambientes fríos (2009-2011), pp. 13-36.

Navarro, F.J., Glazovsky, A.F., Macheret, Y., Vasilenko, E. V., Corcuera, M. I., and Cuadrado, M. L. 2005. Ice-volume changes (1936–1990) and structure of Aldegondabreen, Spitsbergen, Annals of Glaciology 42 (1), 158–162.

Norwegian Polar Institute. 2014a. Kartdata Svalbard 1:100 000 (S100 Kartdata). Tromsø, Norway: Norwegian Polar Institute. https://data.npolar.no/dataset/645336c7-adfe-4d5a-978d-9426fe788ee3

Norwegian Polar Institute. 2014b. Terrengmodell Svalbard (S0 Terrengmodell). Tromsø, Norway: Norwegian. https://data.npolar.no/dataset/dce53a47-c726-4845-85c3-a65b46fe2fea

Nutch, C., Moholdt, G., Kohler, G.J., Hagen, J.O. Kääb, A. 2010. Svalbard glacier elevation changes and contribution to sea level rise. Journal of Geophysical Research 115, F01008.

Pälli, A., Moore, J.C., Jania, J., Glowacki, P. 2003. Glacier changes in southern Spitsbergen, Svalbard, 1901–2000. Annals of Glaciology 37,219–225.

Pithan, F., Mauritsen, T. 2014. Arctic amplification dominated by temperature feedbacks in contemporary climate models. Nature Geoscience 7, 181-184.

Rachlewicz, G., Szczuciński, W., Ewertowski, M. 2007. Post−“Little Ice Age” retreat of glaciers around Billefjorden in central Spitsbergen, Svalbard. Polish Polar Research 28, 159–186.

Rasmussen, S.H. 2006. Deglaciation dynamics following the Little Ice Age on Svalbard: Implication of debris-covered glaciers dynamic and morphological setting Term project, The Quaternary history of Svalbard, AG 210. The University Centre of Svalbard. Autumn 2006, 15 pp.

Snyder, J.A., Werner, A., Miller, G.H. 2000. Holocene cirque glacier activity in western Spitsbergen, Svalbard: sediment records from proglacial Linnevatnet. Holocene 10, 555-563.

Sobota, I., Lankauf K.R. 2010. Recession of Kaffiøyra region glaciers, Oscar II Land, Svalbard. Bulletin of Geography–Physical Geography Series 3/2010, 27–45.

Sund, M., Lauknes, T. R., Eiken, T. 2014. Surge dynamics in the Nathorstbreen glacier system, Svalbard. The Cryosphere 8, 623-638.

Svendsen, J.I., Mangerud, J. 1997. Holocene glacial and climatic variations on Spitsbergen, Svalbard. The Holocene 7, 45-57.

Szczucinski, W., Zajaczkowski, M., Scholten, J. 2009. Sediment accumulation rates in subpolar fjords – impact of post-Little Ice Age glaciers retreat Billefjorden Svalbard. Estuarine and Coastal Shelf Science 85:345–356

Torkildsen, T. 1984. Svalbard: vårt nordligste Norge. Oslo, Forlaget Det Beste.

Ziaja, W. 1994. Environmental Changes of the Eastern Sørkapp Land, Spitsbergen, after the Little Ice Age. Scripta Fac. Sci. Nat. Univ. Masaryk. Brun. 24, 85-88.

Ziaja, W. 2001. Glacial recession in Sørkappland and Central Nordenskioldland, Spitsbergen, Svalbard, during the 20th century. Arctic, Antarctic, and Alpine Research 33 (1), 36-41.

Ziaja, W. 2005. Response of the Nordenskiöld Land (Spitsbergen) glaciers Grumantbreen, Håbergbreen and Dryadbreen to the climate warming after the Little Ice Age. Annals of Glaciology 42, 189–194.

Ziaja, W., Pipała, R. 2007. Glacial recession 2001-2006 and its landscape effects in the Lindströmfjellet-Håbergnuten mountain ridge, Nordenskiöld Land, Spitsbergen. Polish Polar Research 28 (4), 237-247.




DOI: https://doi.org/10.18172/cig.2919

Copyright (c) 2016 Raúl Martín-Moreno, Fernando Allende-Álvarez

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

© Universidad de La Rioja, 2013

ISSN 0211-6820

EISSN 1697-9540