Ground-penetrating radar studies in Svalbard aimed to the calculation of the ice volume of its glaciers

F. J. Navarro, J. Lapazaran, A. Martín-Español, J. Otero


During the period 1999-2014, the Group of Numerical Simulation in Sciences and Engineering of Universidad Politécnica de Madrid carried out many ground-penetrating radar campaigns in Svalbard, aimed to the study of glacier ice-thickness and the physical properties of glacier ice. The regions covered were Nordenskiöld Land, Wedel Jarlsberg Land, Sabine Land and Nordaustlandet. We here present a review of these works, focused on the aspects related to the estimate of the volume of individual glaciers and its extrapolation to the entire set of Svalbard glaciers, for which the authors estimate a total volume of 6700±835 km3, o 17±2 mm in sea-level equivalent.


Glacier; ground-penetrating radar; Svalbard; ice thickness; volume

Full Text:



Adhikari, S., Marshall, S.J. 2012. Glacier volume-area relation for high-order mechanics and transient glacier states. Geophysical Research Letters 39 (16), L16505. Doi:10.1029/2012GL052712

Arctic Climate Impact Assessment (ACIA) 2005. Arctic Climate Impact Assessment: scientific report. Cambridge University Press, Cambridge.

Arendt, A. more 86 authors. 2015. Randolph Glacier Inventory (RGI), Vers. 5.0: a dataset of Global Glacier Outlines. Global Land Ice Measurements from Space, Boulder, CO. Digital media: (accessed on 31 Dec. 2015).

Berikashvili, V., Vasilenko, E., Macheret, Yu.Ya., Sokolov, V.G. 2006. Ul’sny radar dlya zondirovaniya lednikov s opticheskim kanalom sinkhronizatsii i tifrovoy brabotkoy signalov [Monopulse radar for sounding of glaciers with optical synchronization channel and digital processing of signals]. Radiotekhnika 9, 52-57 [in Russian].

Błaszczyk, M., Jania, J., Hagen, J.O. 2009. Tidewater glaciers of Svalbard. Polish Polar Research 30 (2), 85-142.

Cogley, J.G. 2012. The future of the world’s glaciers. In: Henderson-Sellers, A., McGuffie, K. (eds), The future of the world’s climate. Elsevier, Waltham, MA, pp. 197-222.

Cressie, N. 1993. Statistics for Spatial Data, Revised edition. Wiley, New York, 900 pp.

Dowdeswell, J.A., Drewry, D.J., Liestøl, O., Orheim, O. 1984a. Airborne radio echo sounding of sub-polar glaciers in Spitsbergen. Nor. Polarinst. Skr. 182.

Dowdeswell, J.A., Drewry, D.J., Liestøl, O., Orheim, O. 1984b. Radio echo-sounding of Spitsbergen glaciers: problems in the interpretation of layer and bottom returns. Journal of Glaciology 30 (104), 16-21.

Dunse, T. 2011. Glacier dynamics and subsurface classification of Austfonna, Svalbard: inferences from observations and modelling. PhD thesis, University of Oslo.

D’Errico, J. 2006. Surface fitting using gridfit. MATLAB Central File Exchange. (accessed 31 Dec. 2015).

Farinotti, D., Huss, M. 2013. An upper-bound estimate for the accuracy of glacier volume-area scaling. Cryosphere 7 (6), 1707-1720. Doi:10.5194/tc-7-1707-2013

Glazovskiy, A.F., Macheret, Y., Moskalevskiy, M.Y., Jania, J. 1991. Tidewater glaciers of Spitsbergen. IAHS Publ. 208 (Symposium at St. Petersburg, 1990, Glaciers-Ocean-Atmosphere Interactions), 229-239.

Grabiec, M., Jania, J., Puczko, D., Kolondra, L., Budzik, T. 2012. Surface and Bed Morphology of Hansbreen, a Tidewater Glacier in Spitsbergen. Polish Polar Research 33 (2), 112-138. Doi:10.2478/v10183-012-0010-7

Grinsted, A. 2013. An Estimate of Global Glacier Volume. Cryosphere 7 (1), 141-151. Doi:10.5194/tc-7-141-2013.

Huss, M., Farinotti, D. 2012: Distributed ice thickness and volume of all glaciers around the globe. Journal of Geophysical Research 117 (F4). Doi:10.1029/2012JF002523.

Huss, M., Hock, R. 2015. A new model for global glacier change and sea-level rise. Frontiers in Earth Sciences 3 (54), 1-22. Doi: 10.3389/feart.2015.00054

Jania, J., Macheret, Yu.Ya., Navarro, F. J., Glazovskiy, A.F., Vasilenko, E.V., Lapazaran, J., Glowacki, P., Migala, K., Balut, A., Piwowar, B.A. 2005. Temporal changes in the radiophysical properties of a polythermal glacier in Spitsbergen. Ann. Glaciol. 42, 125-134.

König, M., Nuth, C., Kohler, J., Moholdt, G., Pettersson, R. 2014. A digital glacier database for Svalbard. In: Raup, B.H., Kääb, A., Bishop, M.P., Leonard, G.J., Kargel, J.S. (eds.), Global Land Ice Measurements from Space. Springer-Verlag, Berlin and Heidelberg, 876 pp. Doi: 10.1007/978-3-540-79818-7

Kulnitsky, L.M., Gofman P.A., Tokarev, M. 2000. Matematicheskaya obrabotka dannykh georadiolokatsii i systema RADEXPRO 281 [Mathematical processing of georadar data and RADEXPRO system]. Razv. Okhrana Nedr. 21, 6-11 [In Russian].

Lapazaran, J., Petlicki, M., Navarro, F., Machío, F., Puczko, D., Glowacki, P., Nawrot, A. 2013. Ice volume changes 1936-1990-2007 and ground penetrating radar studies of Ariebreen, Hornsund, Spitsbergen. Polar Research 32, 11068. Doi: 10.3402/polar.v32i0.11068

Macheret, Y., Zhuravlev, A.B., Bobrova, L.I. 1984. Tolshchina, podlednyy rel’yef i ob’’yem lednikov Shpitsbergena po dannym radiozondirovan-iya [Thickness, subglacial relief and volume of Svalbard glaciers from radio echo-sounding data]. Mater. Glyatsiol. Issled. [Data Glaciol. Studies] 51, 49-63 [in Russian with English summary].

Martín-Español, A. 2013. Estimate of the total ice volume of Svalbard glaciers and their potential contribution to sea-level rise. PhD Thesis, Universidad Politécnica de Madrid.

Martín-Español, A., Vasilenko, E.V., Navarro, F.J., Otero, J., Lapazaran, J.J., Lavrentiev, I., Macheret, Y.Y., Machío, F. 2013. Radio-echo sounding and ice volume estimates of western Nordenskiöld Land glaciers, Svalbard. Annals of Glaciology 54 (64), 211-217. Doi: 10.3189/2013AoG64A109

Martín-Español, A., Navarro, F.J., Otero, J., Lapazaran, J.J., Blaszczyk, M. 2015. Estimate of the total volume of Svalbard glaciers, and their potential contribution to sea-level rise, using new regionally-based scaling relationships. Journal of Glaciology 61 (225), 29-41. Doi: 10.3189/2015JoG14J159

Meier, M.F., Dyurgerov, M.B., Rick, U.K., O’Neel, S., Pfeffer, W.T., Anderson, R.S., Anderson, S.P., Glazovsky, A.F.. 2007. Glaciers dominate eustatic sea-level rise in the 21st century. Science 317 (5841), 1064-1067. Doi: 10.1126/science.1143906

Murray, T., Luckman, A., Strozzi, T., Nuttall, A.M. 2003. The initiation of glacier surging at Fridtjovbreen, Svalbard. Annals of Glaciology 36, 110-116. Doi: 10.3189/172756403781816275

Navarro, F., Eisen, O. 2010. Ground-penetrating radar in glaciological applications. In: Pellikka, P., Rees, W.G . (eds). Remote sensing of glaciers: techniques for topographic, spatial and thematic mapping of glaciers. Taylor & Francis, London, pp. 195-229.

Navarro, F.J., Glazovskiy, A.F., Macheret, Y., Vasilenko, E.V., Corcuera M.I., Cuadrado, M.L. 2005. Ice volume changes 1936-1990 and structure of Aldegondabreen, Spitsbergen. Annals of Glaciology 42, 158-162.

Navarro, F.J., Martín-Español, A., Lapazaran, J.J., Grabiec, M., Otero, J., Vasilenko, E.V., Puczko, D. 2014. Ice volume estimates from ground-penetrating radar surveys, Wedel Jarlsberg Land glaciers, Svalbard. Arctic, Antarctic, and Alpine Research 46 (2), 394-406. Doi: 10.1657/1938-4246-46.2.394

Navarro, F.J., Möller, R., Vasilenko, E., Martín-Español, A., Finkelnburg, R., Möller, M. 2015. Ice thickness distribution and hydrothermal structure of Elfenbeinbreen and Sveigbreen, Eastern Spitsbergen, Svalbard. Journal of Glaciology 61 (229), 1015-1018. Doi: 10.3189/2015JoG15J141

Pettersson, R., Christoffersen, P., Dowdeswell, J.A., Pohjola, V.A., Hubbard, A., Strozzi, T. 2011. Ice thickness and basal conditions of Vestfonna Ice Cap, eastern Svalbard. Geografiska Annaler A, 93 (4), 311-322. Doi:10.1111/j.1468-0459.2011.00438.x.

Pfeffer, W.T., Arendt, A.A., Bliss, A., Bolch, T., Cogley, J.G., Gardner, A.S., Hagen, J.O., Hock, R., Kaser, G., Kienholz, C., Miles, E.S., Moholdt, G., Mölg, N., Paul, F., Radić, V., Rastner, P., Raup, B.H., Rich, J., Sharp, M. 2014. The Randolph Glacier Inventory: a globally complete inventory of glaciers. Journal of Glaciology 60 (221), 537-552. Doi: 10.3189/2014JoG13J176

Radić, V., Hock, R. 2010. Regional and global volumes of glaciers derived from statistical upscaling of glacier inventory data. Journal of Geophysical Research 115 (F1). Doi: 10.1029/2009JF001373

Radić, V., Bliss, A., Beedlow, A.C., Hock, R., Miles, E., Cogley, J.G. 2014. Regional and global projections of twenty-first century glacier mass changes in response to climate scenarios from global climate models. Climate Dynamics 42 (1-2), 37-58. Doi: 10.1007/s00382-013-1719-7

Sandmeier Scientific Software. 2012. ReflexW. (accessed on 31 Dec. 2015).

Stocker, T.F. (ed.). 2013. Climate change 2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge and New York, pp. 1-9.

Vasilenko, E.V., Sokolov, V.A., Macheret, Y., Glazovskiy, A.F., Cuadrado, M.L., Navarro, F.J. 2002: A digital recording system for radioglaciological studies, Bulletin of the Royal Society N.Z. 35, 611-618.

Vasilenko, E., Machío, F., Lapazaran, J., Navarro, F.J., Frolovskiy, K. 2011. A compact lightweight multipurpose ground-penetrating radar for glaciological applications. J. Glaciol., 57(206), 1113-1118, doi:10.3189/002214311798843430.

Ya, V., Zhuravlev, A.B. 1982. Radio echo-sounding of Svalbard glaciers. Journal of Glaciology 28 (99), 295-314.

Yilmaz, O. 2001. Seismic Data Analysis: Processing, Inversion and Interpretation of Seismic Data (Vols. 1 & 2). Society of Exploration Geophysicists, Tulsa, Oklahoma, 2027 pp.


© Universidad de La Rioja, 2013

ISSN 0211-6820

EISSN 1697-9540