An interdisciplinary tillage erosion experiment: establishing a field in grassland with reconstructed ard plough of the Bronze Age-Iron Age


  • J. Pavelka Institute of Archaeology, Silesian University Opava Masarykova třída 37, 746 01 Opava, Czech Republic
  • A. Smetanová ​1. RG Ecohydrology and Landscape Evaluation, Institute of Ecology, TU Berlin, Ernst-Reuter-Platz 1, Room 805, 10587, Berlin, Germany 2. INRA, Laboratoire d'Etude des Interactions entre Sol-Agrosystème-Hydrosystème, UMR LISAH, 2 Place Pierre Viala, 34060, Montpellier, France
  • J. Rejman Institute of Agrophysics, Polish Academy of Sciences, Ulica Doświadczalna 4, P.O. Box 201, 20290, Lublin, Poland
  • P. Kováčik 1. Institute of Archaeology, Silesian University Opava Masarykova třída 37, 746 01 Opava, Czech Republic 2. Archaia Olomouc o. p. s., Panská 4, 779 00 Olomouc, Czech Republic



tillage erosion, ard, archaeological experiment, Bronze Age, environmental impact, interdisciplinary approach


Despite recognising the role of tillage erosion in landforms evolution, little research has documented its effects in prehistoric times. Herein, an interdisciplinary archaeological-geomorphological experiment with reconstructed tillage tools and management was conducted in order to measure tillage erosion when a new field in grasslands was established in the Bronze Age-Iron Age. Three wooden ards were reconstructed based on archaeological findings. They were tested in a cross-tillage experiment, consisting of a tillage pass perpendicular to the primary slope (6.5-9.7%), and a second tillage pass parallel to the primary slope of a convex-convex ridge with mowed grass (0.2 m high, vegetation cover >90%). The standard sole ard proved to be the most effective, with a mean tillage depth of ~0.12 m, a mean tillage speed of 3.8 km h-1, and a mean distance between furrows of 0.20-0.25 m. Only 13% of the 264 tracers placed on 6 transects were displaced, and the mean tracers displacement parallel to the primary slope was 0.04 ± 0.17 m. Contour tillage perpendicular to primary slope created V or U shaped furrows with a mean depth of 0.1-0.12 m, a mean width of 0.05-0.1 m, and incision under the main root zone. Only soil in direct contact with the ard was displaced, with a mean translocation distance of 0.06 ± 0.2 m parallel and 0.06 ± 0.3 m perpendicular to the primary slope. During tillage parallel to slope, soil clods of ~0.20 x 0.25 x 0.10 m were created and slightly disturbed or turned over one another. The tracers moved within the furrows and with the soil clods. Loose soil, resembling a seedbed, was not covered by soil clods. Mean displacement during the second pass was 0.03 ± 0.19 m parallel and 0.00 ± 0.15 m perpendicular to primary slope. The displacement from cross-tillage with a wooden ard in permanent grasslands was lower than many previously measured values of traditional animal-powered metal ploughs in permanent fields. No relationship between mean soil displacement and slope gradient was found. Dense vegetation and root structure influenced ard soil-penetration, its movement within the soil, and the displacement of tracers packed between the roots. Cross-tillage with a wooden ard proved to be insufficient for seedbed preparation. The results suggest that grazing or fire management, followed by repeated tillage with ard or hoe in order to destroy soil clods were necessary to establish a new field in grasslands during the Bronze Age-Iron Age.


Download data is not yet available.


Aberg, F.A., Bowen, H.C. 1960. Ploughing experiments with a reconstructed Donneruplund ard. Antiquity 34, 144-147.

Bac, S. 1928. Przyczynek do badań nad zmianą położenia ornych gruntów loessowych. Roczniki nauk rolniczych i lesnych 19 (1), 461-490.

Barneveld, R., Bruggeman, A., Sterk, G., Turkelboom, F. 2009. Comparison of two methods for quantification of tillage erosion rates in olive orchards of north-west Syria. Soil & Tillage Research 103, 105-112.

Beranová, M. 1993. Versuche zur vorgeschichtlichen und frühmittelalterlichen Landwirtschaft. Památky archeologické 84, 97-119.

De Alba, S., Borselli, L., Torri, D., Pellegrini, S., Bazzoffi, P. 2006. Assessment of tillage erosion by mouldboard plough in Tuscany (Italy). Soil & Tillage Research 85 (1-2), 123-142. Doi: 10.1016/j.still.2004.12.002

Brentjes, B. 1956. Der Schuhleistenkeil - Pflugschar oder Holzbearbeitungsgerät? Germania 34, 144-147.

Dercon, G., Govers, G., Poesen, J., Sánchez, H., Rombaut, K., Vandenbroeck, E., Loaiza, G., Deckers, J. 2007. Animal-powered tillage erosion assessment in the southern Andes region of Ecuador. Geomorphology 87 (1–2), 4-15. Doi: 10.1016/j.geomorph.2006.06.045.

Dotterweich, M. 2013. The history of human-induced soil erosion: Geomorphic legacies, early descriptions and research, and the development of soil conservation—A global synopsis. Geomorphology 201 (1), 1-34. Doi: 10.1016/j.geomorph.2013.07.021.

Dupin, B., De Rouw, A., Phantahvong, K. B., Valentin C. 2009. Assessment of tillage erosion rates on steep slopes in northern Laos. Soil & Tillage Research 103, 1, 119-126. Doi: 10.1016/j.still.2008.10.005.

Follain, S., Walter, C., Bonté, P., Marguerie, D., Lefevre, I. 2009. A-horizon dynamics in a historical hedged landscape. Geoderma 150 (3-4), 334-343. Doi: 10.1016/j.geoderma.2009.02.015.

Glob, P. V. 1951. Ard og plov i Nordens Oldtid. Jysk Arkaeologisk Selskab, 24.

Govers, G., Vandaele, K., Desmet, P., Poesen, J., Bunte, K. 1994. The role of tillage in soil redistribution on hillslopes. European Journal of Soil Science 45, 469-478. Doi: 10.1111/j.1365-2389.1994.tb00532.x.

Graves, R. 1960. The Greek Myths. Volume 2, London, 412 p.

Hansen, H.O. 1969. Experimental ploughing with a Døstrup ard replica. Tools and Tillage 1 (2), 67-92.

Hejcman, M., Hejcmanová, P. 2015. Yield and nutritive value of grain, glumes and straw of Triticum dicoccum produced by prehistoric technology in comparison to T. aestivum produced by modern technology. Interdisciplinaria Archaeologica – Natural Sciences in Archaeology 6, 31-45.

Hennig, E. 1965. Bericht über die praktischen Versuche zur funktionellen Deutung der neolithischen Steingeräte. Archeologické rozhledy 17, 682-690 and 699-702.

Houben, P. 2012. Sediment budget for five millennia of tillage in the Rockenberg catchment (Wetterau loess basin, Germany). Quaternary Science Review 52, 12-23. Doi: 10.1016/j.quascirev.2012.07.011.

Houben, P. 2008. Scale linkage and contingency effects of field-scale and hillslope-scale controls of long-term soil erosion: Anthropogeomorphic sediment flux in agricultural loess watersheds of Southern Germany. Geomorphology 101 (1-2), 172-191. Doi: 10.1016/j.geomorph.2008.06.007.

Huisman, D.J., Raemaekers, D.C.M. 2014. Systematic cultivation of the Swifterbant wetlands (The Netherlands). Evidence from Neolithic tillage marks (c. 4300- 4000 cal. BC). Journal of Archaeological Science 49, 572-584. Doi: 10.1016/j.jas.2014.05.018.

IUSS Working Group WRB. 2015. World Reference Base for Soil Resources 2014, update 2015 International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106. FAO, Rome.

Kănčev, K. 1956. Zemledeleski orădija ot neolita i neolita v bălgarskite zemi. Archeologia (Sofia) 9, 3, 50-64.

Kimaro, D.N., Deckers, J.A., Poesen, J., Kilasara, M, Msanya, B.M. 2005. Short and medium term assessment of tillage erosion in the Uluguru Mountains, Tanzania. Soil & Tillage Research 81, 97-108. Doi: 10.1016/j.still.2004.05.006.

Kosmas, C., Gerontidis, S., Marathianou, M., Detsis, B, Zafiriou, T., Van Muysen,W., Govers, G., Quine, T., Van Oost, K. 2001. The effects of tillage displaced soil on soil properties and wheat biomass. Soil & Tillage Research 58 (1-2), 31-44. Doi: 10.1016/S0167-1987(00)00175-6.

Kováčik, P., Veselá, P. 2010. ARO 000/2009 – Opava - "Obchodní a společenské centrum Breda&Weinstein". In P. Kováčik, P. Veselá (eds.), Výroční zpráva za rok 2009 Archaia Olomouc o.p.s., Olomouc, 7.

Kuna, M., Němcová, A., Gentizon Haller, A.L., Haller, M., Hanykýř, V., Kloužková, A., Kočár, P., Kovačiková, L., Malyková, D., Mazač, Z., Slabina, M., Tempír, Z., Vařeka, P., Vlčková, Z., Zemanová, P. 2012. The evidence of settlement discard. Finds from the Final Bronze Age at Roztoky and the depositional analysis of archaeological context. Prague, 358 pp.

Lemmen, C., Gronenborn, D., Wirtz, K.W. 2011. A simulation of the Neolithic transition in Western Eurasia. Journal of Archaeological Science 38 (12), 3459-3470. Doi: 10.1016/j.jas.2011.08.008.

Lerche, G. 1986. Ridged fields and profiles of plough-furrows. Ploughing practices in Medieval and post-medieval times. A study in experimental archaeology. Tools and Tillage 5 (3), 131-156.

Lerche, G. 1991. Wear marks produced in plough-furrows and on front of mouldboards. Conclusion based on experiments with replicas of a medieval plough. Archéologie expérimental, 2, 218-222.

Lerche, G. 1994: Ploughing implements and tillage practices in Denmark from the Viking Period to about 1800: experimentally substantiated. Herning, 321pp.

Lerche, G. 2014. An experimental approach to medieval cultivation: The Danish wheel plough and tillage practice, Exploring and Explaining Diversity in Agricultural Technology 2, 46-57.

Li, S., Lobb, D.A., Lindstrom, M.J. 2007. Tillage translocation and tillage erosion in cereal-based production in Manitoba, Canada. Soil & Tillage Research 94 (1), 164-182. Doi: 10.1016/j.still.2006.07.019.

Lindstrom, M.J., Nelson, W.W., Schumachter, T.E. 1992. Quantifying tillage-erosion rates due to moldboard plowing. Soil & Tillage Research 24, 243-255. Doi: 10.1016/0167-1987(92)90090-X.

Lobb, D.A., Kachanoski, R.G., Miller, M.H. 1999. Tillage translocation and tillage erosion in the complex upland landscapes in south-western Ontario, Canada. Soil & Tillage Reasearch 51, 189-209. Doi: 10.1016/S0167-1987(99)00037-9.

Logsdon, S.D. 2013. Depth dependence of chisel plow tillage erosion. Soil & Tillage Research 128, 119-124. Doi: 10.1016/j.still.2012.06.014.

Lüning, J., Meuerees-Balke, J. 1980. Experimenteller Getreideanbau im Hambacher Forst, Gemeinde Elsdorf, Kr. Bergheim/Rheinland. Bonner Jahrbücher 180, 305-344.

Nyssen, J., Poesen, J., Haile, M., Moeyersons, J., Deckers, J., 2000. Tillage erosion on slopes with soil conservation structures in the Ethiopian highlands. Soil & Tillage Research 57, 115-127.

Nyssen, J., Debever, M., Poesen, J., Deckers, J. 2014. Lynchets in eastern Belgium—a geomorphic feature resulting from non-mechanised crop farming. Catena 121, 164-175. Doi: 10.1016/j.catena.2014.05.011.

Podborský, V. 1984. Zpráva o počáteční fázi některých experimentu na neolitické lokalitě v Tešeticích – Kyjovicích. Sborník prací Filozofické fakulty brněnské univerzity:řada E archeologicko-klasická 33, 225-226.

Quente, P. 1914. Steinzeitliche Ackerbaugeräte aus der Ostprignitz, Erdhacken und Pflüge, und ihre Schaftungsmöglichkeit. Prähistorische Zeitschrift 6, 180-187.

Reynolds, P.J. 1979. Iron-Age Farm: The Butser Experiment. London, 108 pp.

Reynolds, P.J. 1988. Ploughs in Prehistory. British Archaeology Magazine 7, 5-7.

Semjonov, S.A. 1974. Proischoždenije zemledelja. Leningrad, 226 pp.

Smetanová, A., Verstraeten, G., Nyens, G., Notebaert, B., Szwarczewski, P., Čurlík, J., Burian, L., Kazeminejad, S.A., Létal, A., Dotterweich, M. 2015. The influence of landscape design on soil erosion in the Chernozem region of the South-West Foreland of the West Carpathians in the Medieval to Modern Times and po-collectivization periods. EGU General Assembly Conference Abstracts, 17, 14121.

Šach, F. 1966. Museum experimenting as a testing method of the productivity of labour in the past. Acta Museorum Agriculturae, 37-41.

Tegtmeier, U. 1993. Neolithische und bronzezeitliche Pflugspuren in Norddeutschland und den Niederlanden. Archäologische Berichte 3, 1-143.

Thapa, B.B., Cassel, D.K., Garrity, D.P. 1999. Assessment of tillage erosion rates on steepland Oxisols in the humid tropics using granite rocks. Soil & Tillage Research 51 (3-4), 233-243. Doi: 10.1016/S0167-1987(99)00040-9

Turkelboom, F., Poesen, J., Ohler, I., Ongprasert, S. 1999. Reassessment of tillage erosion rates by manual tillage on steep slopes in northern Thailand. Soil & Tillage Research 51, 245-259. Doi:

Turkelboom, F., Poesen, J., Ohler, I., Van Keer, K., Ongprasert, S., Vlassak, K. 1997. Assessment of tillage erosion rates on steep slopes in northern Thailand. Catena 29 (1), 29-44. Doi: 10.1016/S0341-8162(96)00063-X.

Van Muysen, W., Govers, G., Van Oost, K. 2002.Identification of important factors in the process of tillage erosion: the case of mouldboard tillage. Soil & Tillage Research 65 (1), 77-93. Doi:

Van Oost, K., Van Muysen, W., Govers, G., Deckers, J., Quine, T.A. 2005. From water to tillage erosion dominated landform evolution. Geomorphology 72, 193-203. Doi:

Van Oost, K., Govers, G., de Alba, S., Quine, T.A. 2006. Tillage erosion: a review of controlling factors and implications for soil quality. Progress in Physical Geography 30, 4, 443-466.

Van Oost, K., Verstraeten, G., Doetterl, S., Notebaert, B., Wiaux, F., Broothaerts, N., Six, J. 2012. Legacy of human-induced C erosion and burial on soil–atmosphere C exchange. PNAS 109, 19492-19497. Doi: 10.1073/pnas.1211162109.

Verril, L., Tipping, R. 2010. A palynological and geoarchaeological investigation into Bronze Age farming at Belderg Beg, Co. Mayo, Ireland. Journal of Archaeological Science 37 (6), 1214-1225.

Wildemeersch, J.C.J., Vermang, J., Cornelis, W.M., Diaz, J., Gabriels, D., Ruiz, M.E. 2014. Tillage erosion and controlling factors in traditional farming systems in Pinar del Río, Cuba. Catena 121, 344-353. Doi: 10.1016/j.catena.2014.05.027.

Zhang, J.H., Lobb, D.A., Li, Y., Liu, G.C. 2004. Assessment of tillage translocation and tillage erosion by hoeing on the steep land in hilly areas of Sichuan, China. Soil & Tillage Research 75, 99-107.




How to Cite

Pavelka J, Smetanová A, Rejman J, Kováčik P. An interdisciplinary tillage erosion experiment: establishing a field in grassland with reconstructed ard plough of the Bronze Age-Iron Age. CIG [Internet]. 2017 Jun. 30 [cited 2024 Feb. 20];43(1):101-18. Available from: