Last Local Glacial Maximum and deglaciation of the Andean Central Volcanic Zone: the case of Hualcahualca volcano and Patapampa Altiplano (Southern Peru)

Authors

  • J. Alcalá-Reygosa Facultad de Filosofía y Letras. Universidad Nacional Autónoma de México. Ciudad Universitaria, 04510 Ciudad de México. México. Research Group of High Mountain Physical Geography. Department of Geography. Complutense University of Madrid, Spain.

DOI:

https://doi.org/10.18172/cig.3231

Keywords:

Cosmogenic Surface Exposure dating, Tropical Glaciation, Last Glacial Maximum, Younger Dryas, Antarctic Cold Reversal, Holocene, Andean Central Volcanic Zone, Southern Peru

Abstract

The aim of this study is to constrain the timing of the deglaciation process since the Last Local Glacial Maximum in HualcaHualca volcano and Patapampa Altiplano, located in the Andean Central Volcanic Zone. Nine 36Cl cosmogenic surface exposure dating of moraine boulders as well as polished and striated bedrock surfaces are presented. The 36Cl cosmogenic exposure ages indicate that the glaciers reached their maximum extent at ~ 17 - 16 ka on the HualcaHualca volcano during the Heinrich 1 event and the Tauca paleolake cycle. Since then glaciers began to retreat until ~ 12 ka, when they went through a phase of readvance or stillstand. The deglaciation of HualcaHualca was constant since ~ 11.5 ka, coinciding with the disappearance of the ice cap from the Patapampa Altiplano. These glacial ages do not corroborate a Last Local Glacial Maximum prior to the global Last Glacial Maximum but they indicate a sensitive reaction of the glacier system to precipitation fluctuations. According to the analysis of cosmogenic exposure ages reported from HualcaHualca, Sajama and Tunupa volcanoes, the onset of deglaciation since Last Local Glacial Maximum occurred at the end of the Heinrich 1 event and the Tauca paleolake cycle in the Andean Central Volcanic Zone. However, the glacier retreat was not continuous because at least one significant readvance or stillstand phase has been reported in most of the volcanoes studied in this region although the ages cannot be clearly related to the Younger Dryas and/or the Antarctic Cold Reversal cold events. After this readvance or stillstand, the glaciers of the Central Volcanic Zone retreated, but at least three clear minor readvances evidence a not homogeneous warm and/or dry climate during the Holocene. Even though in situ cosmogenic exposure provides important glacial chronological data, it is difficult to establish a consistent regional glacial reconstruction and clear connections with the main Late Pleistocene cold episodes due to limitations associated with in situ cosmogenic production rates and the use of different scaling schemes. To reduce the uncertainty and compare the available cosmogenic ages, it would be necessary to determine a precise in situ cosmogenic production rate for each isotope in the Central Andes, a standard scaling scheme and recalculate the published chronological data.

Downloads

Download data is not yet available.

References

Alcalá, J., Palacios, D., Zamorano, J.J. 2010. Glacial recession in the Tropical Andes from the Little Ice Age: the case of Ampato Volcanic Complex (Southern Peru). 6th Alexander von Humboldt International Conference, Mérida, México. AvH6-10, 2010. http://meetingorganizer.copernicus.org/AvH6/AvH6-10.pdf.

Alcalá, J. 2015. La evolución volcánica, glaciar y periglaciar del Complejo Volcánico Ampato (Sur de Perú). Ph.D. Thesis, Complutense University of Madrid, Spain. http://eprints.ucm.es/29492/.

Alcalá-Reygosa, J., Palacios, D., Zamorano Orozco, J.J. 2016. Geomorphology of the Ampato volcanic complex (southern Peru). Journal of Maps 12 (5), 1160-1169. http://doi.org/10.1080/17445647.2016.1142479.

Amman, C., Jenny, B., Kammer, K., Messerli, B. 2001. Late Quaternary glacier response to humidity changes in the arid Andes of Chile (18-29º S). Palaeography, Palaeoclimatology, Palaeoecology 172 (3-4), 313-326. http://doi.org/10.1016/S0031-0182(01)00306-6.

Baker, P.A., Seltzer, G.O., Fritz, S.C., Dunbar, R. B., Grove, M.J., Tapia, P. M., Cross, S. L., Rowe, H.D., Broda, J. P. 2001. The History of South American Tropical Precipitation for the Past 25,000 years. Science 291 (5504), 640-643. https://doi.org/10.1126/science.291.5504.640.

Balco, G., Stone, J. O., Lifton, N. A., Dunai, T. J. 2008. A complete and easily accessible means of calculating surface exposure ages or erosion rates from 10Be and 26Al measurements. Quaternary Geochronology 3 (3), 174-195. http://doi.org/10.1016/j.quageo.2007.12.001.

Blard, P.H., Sylvestre, F., Tripati, A.K., Claude, C., Causse, C., Coudrain, A., Condom, T., Seidel, J.L., Vimeux, F., Moreau, C., Dumoulin, J.P., Lavé, J. 2011. Lake highstands on the Altiplano (Tropical Andes) contemporaneous with Heinrich 1 and the Younger Dryas: new insights from 14C, U-Th dating and δ 18O of carbonates. Quaternary Science Research 30 (27-28), 3973-3989. http://doi.org/10.1016/j.quascirev.2011.11.001.

Blard, P.H., Lave, J., Sylvestre, F., Placzek, C.J., Claude, C., Galy, V., Condom, T., Tibari, B. 2013. Cosmogenic 3He production rate in the high tropical Andes (3800 m, 20ºS): Implications for the local last glacial maximum. Earth and Planetary Science Letters 377-378, 260-275. http://doi.org/10.1016/j.epsl.2013.07.006.

Blard, P.H., Lavé, J., Farley, K.A., Ramirez, V., Jimenez, N., Martin, L., Charreau, J., Tibari, B., Fornari, M. 2014. Progressive glacial retreat in the Southern Altiplano (Uturuncu volcano, 22°S) between 65 and 14 ka constrained by cosmogenic 3He dating. Quaternary Research 82 (1), 209-221. http://doi.org/10.1016/j.yqres.2014.02.002.

Borchers, B., Marrero, S., Balco, G., Caffee, M., Goehring, B., Lifton, N., Nishiizumi, K., Phillips, F., Schaefer, J., Stone, J. 2016. Geological calibration of spallation production rates in the CRONUS-Earth project. Quaternary Geochronology 31, 188-198. http://doi.org/10.1016/j.quageo.2015.01.009.

Bromley G. R.M., Schaefer J.M., Winckler, G., Hall, B.L., Todd, C.E., Rademaker K.M. 2009. Relative timing of last glacial maximum and late-glacial events in the central tropical Andes. Quaternary Science Reviews 28 (23-24), 1-13. http://doi.org/10.1016/j.quascirev.2009.05.012.

Bromley, R.M., Hall, B.L., Schaefer, J.M., Winckler, G., Todd, C.E., Rademaker, K.M. 2011. Glacier fluctuations in the southern Peruvian Andes during the late-glacial period, constrained with cosmogenic 3He. Journal of Quaternary Science 26 (1), 37-43. http://doi.org/10.1002/jqs.1424.

Clapperton, C.M. 1993. Quaternary Geology and Geomorphology of South America. Elsevier, Amsterdam.

Clark, P.U., Dyke, A.S., Shakun, J.D., Carlson, A.E., Clark, J., Wohlfarth, B., Mitrovica, J.X., Hostetler, S.W., McCabe, A.M. 2009. The Last Glacial Maximum. Science 325 (5941), 710-714. https://doi.org/10.1126/science.1172873.

Clayton J.D., Clapperton C.M. 1997. Broad synchrony of Late-glacial glacier advance and the highstand of paleolake Tauca in the Bolivian Altiplano. Journal of Quaternary Science 12 (3), 169-182. http://doi.org/10.1002/(SICI)1099-1417(199705/06)12:3<169::AID-JQS304>3.0.CO;2-S.

Desilets, D., Zreda, M., Almasi, P.F., Elmore, D. 2006. Determination of cosmogenic 36Cl in rocks by isotope dilution: innovations, validation and error propagation. Chemical Geology 233 (3-4), 185-195. http://doi.org/10.1016/j.chemgeo.2006.03.001.

Dornbusch, U. 1998. Current large-scale climatic conditions in Southern Peru and their influence on snowline altitudes. Erdkunde 52 (1), 41-54. http://doi.org/10.3112/erdkunde.1998.01.04.

Dunai, T.J. 2000. Scaling factors for production rates of in situ produced cosmogenic nuclides: a critical reevaluation. Earth and Planetary Science Letters 176 (1), 157-169. http://doi.org/10.1016/S0012-821X(99)00310-6.

Farber, D.L., Hancock, G.S., Finkel, R.C., Rodbell, D.T. 2005. The age and extent of tropical alpine glaciation in the Cordillera Blanca, Peru. Journal of Quaternary Science 20 (7- 8), 759-776. http://doi.org/10.1002/jqs.994.

Fink, D., Vogt, S., Hotchkis, M. 2000. Cross-sections for 36Cl from Ti at Ep =35-150 MeV: applications to in-situ exposure dating. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 172 (1-4), 861-866. http://doi.org/10.1016/S0168-583X(00)00200-7.

Fornace, K.L., Hughen, K.A., Shanahan, T.M., Fritz, S.C., Baker, P.A., Sylva, S.P. 2014. A 60,000-year record of hydrologic variability in the Central Andes from the hydrogen isotopic composition of leaf waxes in Lake Titicaca sediments. Earth and Planetary Science Letters 408, 263-271. http://doi.org/10.1016/j.epsl.2014.10.024.

Glasser, N.F., Clemmens, S., Schnabel, C., Fenton, C.R., McHargue, L. 2009. Tropical glacier fluctuations in the Cordillera Blanca, Peru between 12.5 and 7.6 ka from cosmogenic 10Be dating. Quaternary Science Reviews 28 (27-28), 3448-3458. http://doi.org/10.1016/j.quascirev.2009.10.006.

Hall, S. R, Farber, D.L., Ramage, J.M., Rodbell, D.T., Finkel, R.C., Smith, J.A., Mark, B.G., Kassel, C., 2009. Geochronology of Quaternary glaciations from the tropical Cordillera Huayhuash, Peru. Quaternary Science Reviews 28 (25-26), 2991-3009. http://doi.org/10.1016/j.quascirev.2009.08.004.

Hastenrath, S. L. 1971. On the Pleistocene snow-line depression in the arid regions of the South American Andes. Journal of Glaciology 10 (59), 225-267. http://doi.org/https://doi.org/10.1017/S0022143000013228.

Herreros, J., Moreno, L., Taupin, J. D., Ginot, P., Patris, N., De Angelis, M., Ledru, M.P., Delachaux, F., Schotterer, U. 2009. Environmental records from temperature glacier ice on Nevado Coropuna saddle, southern Peru. Advances in Geosciences 22, 27-34. http://doi.org/10.5194/adgeo-22-27-2009.

Isacks, B. 1988. Uplift of the Central Andes Plateau and bending of the Bolivian Orocline. Journal of Geophysical Research 93 (B4), 3211-3231. http://doi.org/10.1029/JB093iB04p03211.

Jomelli, V., Favier, V., Vuille, M., Braucher, R., Martin, L., Blard, P.H., Colose, C., Brunstein, D., He, F., Khodri, M., Bourlès, D.L., Leanni, I., Rinterknecht, V., Grancher, D., Francou, B., Ceballos, J.L., Fonseca, H., Liu, Z., Otto-Bliesner, B.L. 2014. A major advance of tropical Andean glaciers during the Antarctic cold reversal. Nature 513 (7517), 224-228. http://doi.org/10.1038/nature13546.

Kelly, M.A., Lowell, T.V., Applegate, P.J., Smith, C.A., Phillips, F.M., Hudson, A.M. 2012. Late glacial fluctuations of Quelccaya Ice Cap, southeastern Peru. Geology 40 (11), 991-994. http://doi.org/10.1130/G33430.1.

Klein, A.G., Seltzer, G.O., Isacks, B.L. 1999. Modern and Last Local Glacial Maximum snowlines in the Central Andes of Peru, Bolivia, and Northern Chile. Quaternary Science Reviews 18 (1), 63-84. https://doi.org/10.1016/S0277-3791(98)00095-X. .

Kull, C., Imhof, S., Grosjean, M., Zech, R., Veit, H. 2008. Late Pleistocene Glaciation in the Central Andes: Temperature versus humidity control. -A case study from the eastern Bolivian Andes (17ºS) and regional synthesis. Global and Planetary Change 60 (1-2), 148-164. http://doi.org/10.1016/j.gloplacha.2007.03.011.

Lal, D. 1991. Cosmic ray labeling of erosion surfaces: in situ nuclide production rates and erosion models. Earth and Planetary Science Letters 104 (2-4), 424-439. https://doi.org/10.1016/0012-821X(91)90220-C.

Lifton, N. A., Bieber, J. W., Clem, J. M., Duldig, M. L., Evenson, P., Humble, J. E., Pyle, R. 2005. Addressing solar modulation and long-term uncertainties in scaling secondary cosmic rays for in situ cosmogenic nuclide applications. Earth and Planetary Science Letters 239 (1-2), 140-161.http://doi.org/10.1016/j.epsl.2005.07.001.

Mark, B.G., Seltzer, G.O., Rodbell, D.T., Goodman, A.Y. 2002. Rates of deglaciation during the last glaciation and Holocene in the Cordillera Vilcanota - Quelccaya ice cap region, Southeastern Peru. Quaternary Research 57 (3), 287-298. https://doi.org/10.1006/qres.2002.2320. .

Marrero, M. M., Phillips, F. M., Caffee, M. W., Gosse, J. C. 2016. CRONUS-Earth cosmogenic 36Cl calibration. Quaternary Geochronology 31, 199-219. http://doi.org/10.1016/j.quageo.2015.10.002.

May, J.H., Zech, J., Zech, R., Preusser, F., Argollo, J., Kubik, P.W., Veit, H. 2011. Reconstruction of a complex late Quaternary glacial landscape in the Cordillera de Cochabamba (Bolivia) based on a morphostratigraphic and multiple dating approach. Quaternary Research 76 (1), 106-118. http://doi.org/10.1016/j.yqres.2011.05.003.

Nishiizumi, K., Winterer, E.L., Kohl, C.P., Klein, J., Middleton, R., Lal, D., Arnold, J.R. 1989. Cosmic ray production rates of 10Be and 26Al in quartz from glacially polished rocks. Journal of Geophysical Research 94 (B12), 17907-17915. http://doi.org/10.1029/JB094iB12p17907.

Phillips, F.M., Stone, W.D., Fabryka-Martin, J.T. 2001. An improved approach to calculating low-energy cosmic-ray neutron fluxes near the land/atmosphere interface. Chemical Geology 175 (3-4), 689-701. http://doi.org/10.1016/S0009-2541(00)00329-6.

Phillips, F.M. 2003. Cosmogenic 36Cl ages of Quaternary basalt flows in the Mojave Desert, California, USA. Geomorphology 53 (3-4), 199-208. http://doi.org/10.1016/S0169-555X(02)00328-8.

Placzek, C.J., Quade, J., Patchett, P.J. 2013. A 130 ka reconstruction of rainfall on the Bolivian Altiplano. Earth and Planetary Science Letters 363, 97-108. http://doi.org/10.1016/j.epsl.2012.12.017.

Rodbell, D.T. 1993. The timing of the last deglaciation in Cordillera Oriental, northern Peru based on glacial geology and lake sedimentology. Geological Society of America Bulletin 105 (7), 923-934. http://doi.org/10.1130/0016-7606(1993)105<0923:TTOTLD>2.3.CO;2.

Sagredo, E.A., Lowell, T.V. 2012. Climatology of Andean glaciers: A framework to understand glacier response to climate change. Global and Planetary Change 86-87, 101- 109. http://doi.org/10.1016/j.gloplacha.2012.02.010.

Schimmelpfennig, I. 2009. Cosmogenic 36Cl in Ca and K Rich Minerals: Analytical Developments, Production Rate Calibrations and Cross Calibration with 3He and 21Ne. Ph.D. Thesis, Paul Cezanne Aix-Marseille III University, Aix en Provence, France. https://hal.inria.fr/file/index/docid/468337/filename/PhD_Schimmelpfennig.pdf.

Schimmelpfennig, I., Benedetti, L., Finkel, R., Pik, R., Blard, P.H., Bourlès, D., Burnard, P., Williams, A. 2009. Sources of in-situ 36Cl in basaltic rocks. Implications for calibration of production rates. Quaternary Geochronology 4 (6), 441- 461. http://doi.org/10.1016/j.quageo.2009.06.003.

Schimmelpfennig, I., Benedetti, L., Garreta, V., Pik, R., Blard, P.H., Burnard, P., Bourlès, D., Finkel, R., Ammon, K., Dunai, T. 2011. Calibration of cosmogenic 36Cl production rates from Ca and K spallation in lava flows from Mt. Etna (38ºN, Italy) and Payun Matru (36ºS, Argentina). Geochimica et Cosmochimica Acta 75 (10), 2611-2632. http://doi.org/10.1016/j.gca.2011.02.013.

Schimmelpfennig, I., Schaefer, J.M., Putnam, A.E., Koffman, T., Benedetti, L., Ivy-Ochs, S., Team, A., Schlüchter, Ch. 2014. 36Cl production rate from K-spallation in the European Alps (Chironico landslide, Switzerland). Journal of Quaternary Science 29 (5), 407- 413. http://doi.org/10.1002/jqs.2720.

Seltzer, G., Rodbell, D., Burns, S., 2000. Isotopic evidence for late Quaternary climate change in tropical South America. Geology 28 (1), 35-38. https://doi.org/10.1130/0091-7613(2000)28<35:IEFLQC>2.0.CO;2.

Seltzer, G.O., Rodbell, D.T., Baker, P.A., Fritz, S.C., Tapia, P.M., Rowe, H.D., Dunbar, R. B. 2002. Early Warming of Tropical South America at the Last Glacial- Interglacial Transition. Science 296 (5573), 1.685-1.686. http://doi.org/10.1126/science.1070136.

Smith, J.A., Seltzer, G.O., Farber, D.L., Rodbell, D.T., Finkel, R.C. 2005. Early local Last Glacial Maximum in the tropical Andes. Science 308 (5722), 678-681. https://doi.org/10.1126/science.1107075.

Smith, J.A., Mark, B.G., Rodbell, D.T. 2008. The timing and magnitude of mountain glaciation in the tropical Andes. Journal of Quaternary Science 23, 609-634. http://doi.org/10.1002/jqs.1224.

Smith, C.A., Lowell, T.V., Caffee, M.W. 2009. Late glacial and Holocene cosmogenic surface exposure age glacial chronology and geomorphological evidence for the presence of cold-based glaciers at Nevado Sajama, Bolivia. Journal of Quaternary Science 24 (4), 360-372. http://doi.org/10.1002/jqs.1239.

Smith, C.A., Lowell, T.V., Owen, L.A., Caffe, M.W. 2011. Late Quaternary glacial chronology on Nevado Illimani, Bolivia, and the implications for paleoclimatic reconstructions across the Andes. Quaternary Research 75 (1), 1-10. http://doi.org/10.1016/j.yqres.2010.07.001.

Stansell, N.D., Rodbell, D., Licciardi, J.M., Sedlak, C.M., Schweinsberg, A.D., Huss, E.G., Delgado, G.M., Zimmerman, S.H., Finkel, R.C. 2015. Late Glacial and Holocene glacier fluctuations at Nevado Huaguruncho in the Eastern Cordillera of the Peruvian Andes. Geology 43 (8), 747-750. https://doi.org/10.1130/G36735.1.

Stern, C.R. 2004. Active Andean volcanism: its geologic and tectonic setting. Revista Geológica de Chile 2, 161-206. http://doi.org/10.4067/S0716-02082004000200001.

Stone, J.O., Allan, G.L., Fifield, L.K., Cresswell, R.G. 1996. Cosmogenic Chlorine-36 from calcium spallation. Geochimica et Cosmochimica Acta 60 (4), 679-692. https://doi.org/10.1016/0016-7037(95)00429-7.

Stone, J.O. 2000. Air pressure and cosmogenic isotope production. Journal of Geophysical Research 105 (B10), 23753-23759. http://doi.org/10.1029/2000JB900181.

Stone, J.O., Fifield, K., Vasconcelos, P. 2005. Terrestrial chlorine-36 production from spallation of iron. 10th International Conference on Accelerator Mass Spectrometry. Berkeley, USA. https://llnl.confex.com/llnl/ams10/techprogram/P1397.HTM.

Thompson, L.G., Mosley-Thompson, E., Davis, M.E., Lin, P.N., Henderson, K.A., Coledai, J., Bolzan, J.F., Liu, K.B. 1995. Late glacial stage and Holocene tropical ice core records from Huascarán, Peru. Science 269 (5220), 46-50. https://doi.org/10.1126/science.269.5220.46.

Thompson, L.G., Davis, M.E., Mosley-Thompson, E., Sowers, T.A., Henderson, K.A., Zagorodnov, V.S., Lin, P.N., Mikhalenko, V.N., Campen, R.K., Bolzan, J.F., Cole-Dai, J., Francou, B. 1998. A 25,000-Year Tropical Climate History from Bolivian Ice Cores. Science 282 (5395), 1858-1864. https://doi.org/10.1126/science.282.5395.1858.

Thouret, J. C., Rivera, M., Wörner, G., Gerbe, M. C., Finizola, A., Fornari, M., Gonzales, K. 2005. Ubinas: the evolution of the historically most active volcano in southern Peru. Bulletin of Volcanology 67 (6), 557-589. http://doi.org/10.1007/s00445-004-0396-0.

Úbeda, J., Palacios, D., Vázquez-Selem, L. 2012. Glacial and volcanic evolution on Nevado Coropuna (Tropical Andes) based on cosmogenic 36Cl surface exposure dating. Geophysical Research Abstracts 14, EGU2012-3683-2, 2012. http://meetingorganizer.copernicus.org/EGU2012/EGU2012-3683-2.pdf.

Vermeesch, P. 2007. CosmoCalc: an excel add-in for cosmogenic nuclide calculations. Geochemistry, Geophysics, Geosystems 8 (8), 1525-2027. http://doi.org/10.1029/2006GC001530.

Zech, R., Kull, C.H., Kubik, P.W., Veit, H. 2007a. Exposure dating of Late Glacial and pre-LGM moraines in the Cordon de Doña Rosa, Northern/Central Chile (31º S). Climate of the Past 3 (1), 1-14. http://doi.org/10.5194/cp-3-1-2007.

Zech, R., Kull, C.H., Kubik, P.W., Veit, H. 2007b. LGM and Late Glacial glacier advances in the Cordillera Real and Cochabamba (Bolivia) deduced from 10Be surface exposure dating. Climate of the Past 3 (4), 623-635. http://doi.org/10.5194/cp-3-623-200.

Zreda, M., England, J., Phillips, F.M., Elmore, D., Sharma, P. 1999. Unblocking of the Nares Strait by Greenland and Ellesmere ice-sheet retreat 10,000 years ago. Nature 398, 139-142. http://doi.org/10.1038/18197.

Downloads

Published

15-09-2017

How to Cite

1.
Alcalá-Reygosa J. Last Local Glacial Maximum and deglaciation of the Andean Central Volcanic Zone: the case of Hualcahualca volcano and Patapampa Altiplano (Southern Peru). CIG [Internet]. 2017 Sep. 15 [cited 2024 Mar. 19];43(2):649-66. Available from: https://publicaciones.unirioja.es/ojs/index.php/cig/article/view/3231

Issue

Section

Articles