Application of a distributed 2D overland flow model for rainfall/runoff and erosion simulation in a Mediterranean watershed

Authors

  • C. Juez Laboratory of Hydraulic Constructions (LCH), École Polytechnique Fédérale de Lausanne (EPFL)
  • A. Tena Universidad de Lérida
  • J. Fernández-Pato Universidad de Zaragoza
  • R.J. Batalla Universidad de Lérida
  • P. García-Navarro Universidad de Zaragoza

DOI:

https://doi.org/10.18172/cig.3320

Keywords:

soil erosion, 2D overland modeling, Mediterranean watershed, calibration, finite volume

Abstract

Soil erosion has reemerged as an environmental problem associated with climate change that requires the help of simulation tools for forecasting future consequences. This topic becomes even more relevant in Mediterranean catchments due to the highly variable and irregular rainfall regime. Hence, an approach that includes the rainfall/runoff and erosion phenomena is required for quantifying the amount of soil the catchments are transferring to the rivers. As the calibration process of the infiltration and erosion parameters can become cumbersome in terms of iterations to the optimal values to fit experimental data, a Simplified Catchment Model (SCM) is introduced as a first approach. The set of tuning constants that provides the best fit are used as input for re-calibrating the parameters by means of the simulation of the real catchment. The modeling effort here presented opens its application to the analysis of the hydro-sedimentary processes at larger temporal and spatial scales.

Downloads

Download data is not yet available.

References

Aksoy, H., Kavvas, M. 2005. A review of hillslope and watershed scale erosion and sediment transport model. Catena 64 (2-3), 247-271. https://doi.org/10.1016/j.catena.2005.08.008.

Aldridge, B., Garrett, J. 1973. Roughness coefficients for stream channels in Arizona. Agency Report, U.S. Geological Survey.

Batalla, R.J., Sala, M. 1996. Impact of land use practices on the sediment yield of a partially disturbed Mediterranean catchment. Zeitschrift für Geomorphologie 107, 79-93.

Brace, W. F. 1980. Permeability of crystalline and argillaceous rocks. International Journal of Rock Mechanics and Mining Sciences 17, 241-251. https://doi.org/10.1016/0148-9062(80)90807-4.

Brath, A., Montanari, A., Toth, E. 2004. Analysis of the effects of different scenarios of historical data availability on the calibration of a spatially-distributed hydrological model. Journal of Hydrology 291 (3-4), 232-253. https://doi.org/10.1016/j.jhydrol.2003.12.044.

Brierley, G.J., Fryirs, KA. 2008. River Futures - An integrative scientific approach to river repair. Island Press, Washington, 328 pp.

Bronstert, A. De Araújo J.C., Batalla R.J., Cunha-Costa, A., Delgado J.M., Francke, T., Foerster, S., Guentner A., López-Tarazón, J.A., Mamede, G.L., Medeiros, P.H., Mueller, E., Vericat, D. 2014. Process-based modelling of erosion, sediment transport and reservoir siltation in mesoscale semi-arid catchments. Journal of Soils and Sediments, Special Issue on Analysis and Modelling of Sediment Transfer in Mediterranean River Basins 14, 2001-2018. http://doi.org/10.1007/s11368-014-0994-1.

Buendía, C., Gibbins, C.N., Vericat, D., Batalla, R.J. 2014. Effects of flow and fine sediment dynamics on the turnover of stream invertebrate assemblages. Ecohydrology 7 (4), 1105-1123. http://doi.org/10.1002/eco.1443.

Buendia, C., Herrero, A., Sabater, S., Batalla, RJ. 2016. An appraisal of the sediment yield in Western Mediterranean basins. Science of the Total Environment 572, 538-553. http://doi.org/10.1016/j.scitotenv.2016.08.065.

Bussi, G., Francés, F., Horel, E., López-Tarazón, J.A., Batalla, R.J. 2014. Modelling the impact of climate change on sediment yield in a highly erodible Mediterranean catchment. Journal of Soils and Sediments 14, 1921-1937. http://doi.org/10.1007/s11368-014-0956-7.

Bussi, G., Francés, F., Montoya, J., Julien, P. 2014. Distributed sediment yield modelling: Importance of initial sediment conditions. Environmental Software and Modelling 58, 58-70. https://doi.org/10.1016/j.envsoft.2014.04.010.

Caviedes-Voullième, D., García-Navarro, P., Murillo, J. 2012. Influence of mesh structure on 2D full shallow water equations and SCS Curve Number simulation of rainfall/runoff events. Journal of Hydrology 448-449, 39-59. https://doi.org/10.1016/j.jhydrol.2012.04.006.

Chow, V. 1959. Open-channel hydraulics. McGraw-Hill, 680 pp.

Conacher A.J., Sala, M. 1998. (Eds.). Land Degradation in Mediterranean Environments of the World: Nature and Extent, Causes and Solutions, Wiley, Chichester, 1998.

CORINE - Land Cover Manual 1995. CORINE. Environment Agency Report, European General Survey for the Environment.

Costabile, P., Costanzo, C., Macchione, F. 2012. Comparative analysis of overland flow models using finite volume schemes. Journal of Hydroinformatics 14 (1), 122-135. http://doi.org/10.2166/hydro.2011.077.

Davis, S. N. 1969. Porosity and permeability of natural materials. In: R. De Wiest (Ed.), Flow Through Porous Media. Academic Press, New York, pp. 54-90.

Delgado, J., Llorens, P., Nord, G., Calder I.R., Gallart F. 2010. Modelling the hydrological response of a Mediterranean medium-sized headwater basin subject to land cover change: The Cardener River basin (NE Spain). Journal of Hydrology 383, 125-134. https://doi.org/10.1016/j.jhydrol.2009.07.024.

Feng, K., Molz, F. 1997. A 2-D diffusion-based, wetland flow model. Journal of Hydrology 196, 230-250. https://doi.org/10.1016/S0022-1694(96)03282-9.

Fernández-Pato, J., Caviedes-Voullième, D., García-Navarro, P. 2016. Rainfall/runoff simulation with 2D full shallow water equations: Sensitivity analysis and calibration of infiltration parameters. Journal of Hydrology 9, 496-513. https://doi.org/10.1016/j.jhydrol.2016.03.021.

Francke, T., López-Tarazón J.A., Vericat, D. Bronstert, A., Batalla, R.J. 2008. Flood-based analysis of high-magnitude sediment transport using a non-parametric method. Earth Surface Processes and Landforms 33 (13), 2064-2077. http://doi.org/10.1002/esp.1654.

Freeze, R., Cherry, J. 1979. Groundwater. Prentice-Hall, Englewood Cliffs; NJ.

Gallart, F., Amaxidis, Y., Botti, P., Cane, G., Castillo, V., Chapman, P., Froebrich, J., Garcíıa-Pintado, J., Latron, J., Llorens, P., Lo Porto, A., Morais, M., Neves, R., Ninov, P., Perrin, J., Ibarova, I., Skoulikidis, N., Tournoud, M. 2008. Investigating hydrological regimes and processes in a set of catchments with temporary waters in Mediterranean Europe. Hydrological Sciences Journal 53, 618-628. https://doi.org/10.1623/hysj.53.3.618.

Gallart, F., Latron, J., Llorens, P. Beven, K.J. 2008. Upscaling discrete internal observations for obtaining catchment-averaged TOPMODEL parameters in a small Mediterranean mountain basin. Physics and Chemistry of the Earth 33, 17-18. https://doi.org/10.1016/j.pce.2008.03.003.

García-Ruiz, J.M. 2010. The effects of land uses on soil erosion in Spain: a review, Catena 81, 1-11. https://doi.org/10.1016/j.catena.2010.01.001.

García-Ruiz, J.M. Poesen, J. 2007. Introduction. Soil erosion and sediment transport under different land use/land cover scenarios. Catena 71 (1), 1. https://doi.org/10.1016/j.catena.2006.05.012.

Gumière, S.J., Bailly, J., Cheviron, B., Raclot, D., Le Bissonnais, Y., Rousseau, A.N. 2014. Evaluating the Impact of the Spatial Distribution of Land Management Practices on Water Erosion: Case Study of a Mediterranean Catchment. Journal of Hydrologic Engineering 20 (6). http://doi.org/10.1061/(asce)he.1943-5584.0001076.

Harmon, R., Doe III, W. 2001. Landscape Erosion and Evolution Modelling. Kluwer Academic, New York.

Herrero, A., Buendía C., Bussi, G., Sabater, S., Vericat, D., Palau, A. Batalla, R.J. 2017. Modelling the hydrosedimentary response of a large Pyrennean catchment to global change. Journal of Soils and Sediments 17, 2677-2690. http://doi.org/10.1007/s11368-017-1684-6.

Jetten, V., de Roo, A., Favis-Mortlock, D. 1999. Evaluation of field-scale and catchment-scale soil erosion models. Catena 37 (3-4), 521-541. https://doi.org/10.1016/S0341-8162(99)00037-5.

Juez, C., Murillo, J., García-Navarro, P. 2014. A 2D weakly-coupled and efficient numerical model for transient shallow flow and movable bed. Advances in Water Resources 71, 93-109. https://doi.org/10.1016/j.advwatres.2014.05.014.

Lane, L., Nichols, M., Paige, G. 1995. Modelling erosion on hillslopes: Concepts, theory and data. Catena 1, 1-7.

Lehner, B., Doll, P., Alcamo, J., Henrichs, T., Kaspar, F. 2006. Estimating the impact of global change on flood and drought risks in Europe: A continental integrated analysis. Climatic Change 75, 273-299. http://doi.org/10.1007/s10584-006-6338-4.

LeVeque, R. J. 2002. Finite Volume Methods for Hyperbolic Problems. Cambridge University Press, New York.

Manning, R. 1895. On the flow of water in open channels and pipes. Transactions of the Institution of Civil Engineers of Ireland 20, 161-207.

Mariani, L., Parisi, S.G. 2014. Extreme rainfalls in the Mediterranean area. In: N. Diodato, G. Bellocchi (Eds.), Storminess and environmental change, advances in natural and technological hazards research 39. Springer, Dordrecht, pp. 17-37.

Merritt, W., Letcher, R., Jakeman, A. 2003. A review of erosion and sediment transport models. Environmental Modelling and Software 18 (8), 761-799. https://doi.org/10.1016/S1364-8152(03)00078-1.

Molina-Navarro, E., Martínez-Pérez, S., Sastre-Merlín, A., Bienes-Allas, R. 2014. Hydrologic modeling in a small Mediterranean Basin as a tool to assess the feasibility of a limno-reservoir. Journal of Environmental Quality 43 (1), 121-131. http://doi.org/10.2134/jeq2011.0360.

Mullan, D., Favis-Mortlock, D., Fealy, R. 2012. Addressing key limitations associated with modelling soil erosion under the impacts of future climate change. Agricultural and Forest Meteorology 156, 18-30. https://doi.org/10.1016/j.agrformet.2011.12.004.

Murillo, J., García-Navarro, P. 2010. Weak solutions for partial differential equations with source terms: Application to the shallow water equations. Journal of Computational Physics 229, 4327-4368. https://doi.org/10.1016/j.jcp.2010.02.016.

Murillo, J., García-Navarro, P. 2011. Improved Riemann solvers for complex transport in two-dimensional unsteady shallow flow. Journal of Computational Physics 230, 7202-7239. https://doi.org/10.1016/j.jcp.2011.05.022.

Nadal-Romero, E., González-Hidalgo, J.C., Cortesi, N., Desir, G., Gómez, J.A., Lasanta, T., Lucía, A., Marín, C., Martínez-Murillo, J.F., Pacheco, E., Rodríguez-Blanco, M.L., Romero Díaz, A., Ruiz-Sinoga, J.D., Taguas, E.V., Taboada-Castro, M.M., Taboada-Castro, M.T., Úbeda, X., Zabaleta, A. 2015. Relationship of runoff, erosion and sediment yield to weather types in the Iberian Peninsula. Geomorphology 228, 372-381. https://doi.org/10.1016/j.geomorph.2014.09.011.

Nord, G., Esteves M. 2010. The effect of soil type, meteorological forcing, and slope gradient on the internal erosion processes at the local scale. Hydrological Processes 24 (13), 1766-1780. http://doi.org/10.1002/hyp.7613.

Owens, P. 2005. Conceptual models and budgets for sediment management at the river basin scale. Journal of Soils and Sediments 5, 201-212. https://doi.org/10.1065/jss2005.05.133.

Ponce, V. 1986. Diffusion wave modeling of catchment dynamics. Journal of Hydraulic Engineering 112, 716–727. https://doi.org/10.1061/(ASCE)0733-9429(1986)112:8(716).

Rai, R.K., Mathur, B.S. 2007. Event-Based Soil Erosion Modeling of Small Water sheds. Journal of Hydrologic Engineering 12 (6), 559-572. https://doi.org/10.1061/(ASCE)1084-0699(2007)12:6(559).

Rovira, A., Batalla, R. 2006. Temporal distribution of suspended sediment transport in a Mediterranean basin: the Lower Tordera (NE SPAIN). Geomorphology 79, 58-71. https://doi.org/10.1016/j.geomorph.2005.09.016.

Sarkar, R., Dutta, S., Panigrahy, S. 2008. Characterizing overland flow on a preferential infiltration dominated hillslope: Case study. Journal of Hydrologic Engineering 13 (7), 563-569. https://doi.org/10.1061/(ASCE)1084-0699(2008)13:7(563).

Schleiss, A.J., Franca, M.J., Juez, C., De Cesare, G. 2016. Reservoir sedimentation. Journal of Hydraulic Research 54, 595-614. https://doi.org/10.1080/00221686.2016.1225320.

Shyrley, E., Lane, L. 1978. A sediment yield equation from an erosion model. Meetings of AZ Section of the American Water Resources Association and the Hydrology.

Tena, A., Batalla, R., Vericat, D., López-Tarazón, J. 2011. Suspended sediment dynamics in a large regulated river over a 10–year period (the lower Ebro, NE Iberian Peninsula). Geomorphology 125, 73-84. https://doi.org/10.1016/j.geomorph.2010.07.029.

USDA 1986. Urban hydrology for small watersheds. Environment Agency Report, United States Department of Agriculture (USDA).

Verdú, J.M., Batalla, R.J., Poch, R.M. 2000. Dinámica erosiva y aplicabilidad de modelos físicos de erosión en una cuenca de montaña Mediterránea (Ribera Salada, cuenca del Segre). Pirineos 155, 37-57. http://doi.org/10.3989/pirineos.2000.v155.87.

Wigmosta, M., Lane, L., Tagestad, J., Coleman, A. 2009. Hydrological and erosion models to assess land use and management practices affecting soil erosion. Journal of Hydrologic Engineering 14 (1), 27-41. https://doi.org/10.1061/(ASCE)1084-0699(2009)14:1(27).

Downloads

Published

29-06-2018

How to Cite

1.
Juez C, Tena A, Fernández-Pato J, Batalla R, García-Navarro P. Application of a distributed 2D overland flow model for rainfall/runoff and erosion simulation in a Mediterranean watershed. CIG [Internet]. 2018 Jun. 29 [cited 2024 Mar. 29];44(2):615-40. Available from: https://publicaciones.unirioja.es/ojs/index.php/cig/article/view/3320

Issue

Section

Articles