Little Ice Age glaciers and climate in the Mediterranean mountains: a new analysis

Authors

DOI:

https://doi.org/10.18172/cig.3362

Keywords:

very small glaciers, glacierets, niche glaciers, cirque glaciers, glacier sensitivity, melting snow, sublimation, climate change, Dinaric Alps, Pindus Mountains, High Atlas

Abstract

Glaciers were common across the Mediterranean mountains during the Little Ice Age. In parts of Turkey some glaciers were several kilometres longer than they are today, whilst in the Pyrenees glaciers were up to several hundred metres longer. In the wettest Mediterranean mountains, such as the Dinaric Alps, many small glaciers and perennial snow patches would have been present. Even in driest and most southerly mountains, such as the High Atlas, small glaciers and perennial snowfields were present. This paper examines the evidence from these two contrasting regions (the western and southern Balkans and the High Atlas) and the climatic significance of glaciers in these areas during the Little Ice Age. Particular focus is given on the climatological controls on glacier mass balance in different climatic conditions. Glaciers in cold and dry climates exhibit different sensitivity to regional climate change compared with glaciers in cold and wet climates. In addition, the factors controlling ablation of glaciers in different climatic regimes can differ considerably, especially the relative contributions and effects of melting and sublimation. All Mediterranean mountain glaciers were strongly controlled by local topoclimatic factors. Avalanche-fed glaciers have proven to be the most resilient to climate change and dramatically increased accumulation from avalanching snow explains the surviving glaciers in the Dinaric Alps and the semi-perennial snow fields of the High Atlas. In addition, geology as well as landscape morphology inherited from Pleistocene glaciations plays a role in explaining the patterns of Little Ice Age glacier distribution and especially the patterns of retreat and survival of these glaciers. The resilience of some of the last remaining Mediterranean glaciers, in the face of warming climate, presents a contradiction and comparisons between glaciers gone and those that remain provides important insight into the future of similar glaciers globally.

Downloads

Download data is not yet available.

References

Allix, A. 1930. Formes glaciares sur calcaire à plis autochtones. Annales de Géographie 39, 299-305.

Azzioni, R.S., Zerboni, A., Pelfini, M., Garzioni, C.A., Cioni, R., Meraldi, E., Smiraglia, C., Diolaiuti, G.A. 2017. Geomorphology of Mount Ararat/Aǧri Daǧi (Aǧri Daǧi Milli Parki, Eastern Anatolia, Turkey). Journal of Maps 13, 182-190. http://doi.org/10.1080/17445647.2017.1279084.

Ballantyne, C.K. 1994. Glaciological constraints on protalus rampart development. Permafrost and Periglacial Processes 5, 145-143. http://doi.org/10.1002/ppp.3430050304.

Barbier, A., Cailleux, A. 1950. Glaciaire et périglaciaire dans le Djurdjura occidental (Algérie). Comptes Rendus des Séances de l’Académie des Sciences, Paris. Juillet-Décembre 1950, 365-366.

Barsch, D. 1996. Rock Glaciers: Indicators for the present and former Geoecology in High Mountain environments. Springer Verlag, Berlin.

Bathrellos, G.D., Skilodimou, H.D., Maroukian, H. 2017. The significance of tectonism in the glaciations of Greece. In: P.D. Hughes, J.C.Woodward (Eds.), Quaternary Glaciation in the Mediterranean Mountains. Geological Society, London, Special Publications 433, 237-250.

Berthling, I. 2011. Beyond confusion: Rock glaciers as cryo-conditioned landforms. Geomorphology 131, 98-106. https://doi.org/j.geomorph.2011.05.002.

Bradley, R.S., Jones, P.D. 1993. ‘Little Ice Age’ summer temperature variations: their nature and relevance to recent global warming trends. The Holocene 3, 367-376. http://doi.org/10.1177/095968369300300409.

Braithwaite, R.J. 2008. Temperature and precipitation climate at the equilibrium-line altitude of glaciers expressed by the degree-day factor for melting snow. Journal of Glaciology 54, 437-444. http://doi.org/10.3189/002214308785836968.

Braithwaite, R.J., Raper, S.C.B. 2007. Glaciological conditions in seven contrasting regions estimated with the degree-day model. Annals of Glaciology 46, 297-302. http://doi.org/10.3189/172756407782871206.

Chardon, M., Riser, J. 1981. Formes et processus géomorphologiques dans le Haut-Atlas marocain. Revue de Géographie Alpine 69, 561-582.

Cheng, G. 1983. Vertical and horizontal zonation of high-altitude permafrost. Fourth International Conference on Permafrost, Proceedings, pp. 136-141.

Chueca Cía, J., Julián Andrés, A., Saz Sánchez, M.A., Creus Novau, C., López Moreno, J.I. 2005. Responses to climatic changes since the Little Ice Age on Maladeta Glacier (Central Pyrenees). Geomorphology 68, 167-182. https://doi.org/10.1016/j.geomorph.2004.11.012.

Çiner, A. 2004. Turkish Glaciers and Glacial Deposits. In: J. Ehlers, P.L. Gibbard (Eds.), Quaternary Glaciations - Extent and Chronology. Part I: Europe. Amsterdam, Elsevier, pp. 419-429.

Colucci, R.R. 2016. Geomorphic influence on small glacier response to post-Little Ice Age warming: Julian Alps, Europe. Earth Surface Processes and Landforms 41, 1227-1240. http://doi.org/10.1002/esp.3908.

Colucci, R.R., Guglielmin, M. 2015. Precipitation-temperature changes and evolution of a small glacier in the southeastern European Alps during the last 90 years. International Journal of Climatology 35, 2783-2797. http://doi.org/10.1002/joc.4172

Colucci, R., Forte, E., Boccali, C., Dossi, M., Lanza, L., Pipan, M., Gugielmin, M. 2015. Evaluation of internal structure, volume and mass of glacial bodies by integrated LiDAR and ground penetrating radar surveys: The case study of Canin Eastern Glacieret (Julian Alps, Italy). Surveys in Geophysics 36, 231-252.

Delhaye, T.J. 1938. La carte du massif du Toubkal au 1/20 000. Hespéris, pp. 181-198.

Djurović, P. 2013. The Debeli Namet glacier from the second half of the 20th Century to the present. Acta Geographica Slovenica 52 (2), 277-301.

Dresch, J. 1941. Recherches sur l’évolution du relief dans le Massif Central du Grand Atlas le Haouz et le Sous. Arrault et Cie, Maitres Imprimeurs, Tours. 653 pp.

Dusserre, A. 2009. Une étape de la mise en carte de la montagne marocaine (137): le massif du Toubkal au 1/20000. http://mappemonde.mgm.fr/num21/articles/art09105.html.

Esper, J., Frank, D., Büntgen, U., Verstege, A., Luterbacher, J., Xoplaki, E. 2007. Long-term drought severity variations in Morocco. Geophysical Research Letters 34, L17702. http://doi.org/10.1029/2007GL030844.

Evans, I.S. 2006. Glacier distribution in the Alps: Statistical modelling of altitude and aspect. Geografiska Annaler 88A, 115-133. http://doi.org/10.1111/j.0435-3676.2006.00289.x.

Fink, D., Hughes, P., Fenton, C. 2012. Extent, timing and palaeoclimatic significance of glaciation in the High Atlas, Morocco. 21st International Radiocarbon Conference, Paris, July 2012. Abstract Booklet, Abstract S18-P-348, p. 558. http://www.radiocarbon.org/Info/RC_2012_ABSTRACTS_BOOK.pdf. https://www.escholar.manchester.ac.uk/api/datastream?publicationPid=uk-ac-man-scw:218044&datastreamId=FULL-TEXT.PDF.

Gachev, E. 2011. Inter-annual size variations of the Snezhnika glacieret (the Pirin Mountains, Bulgaria in the last ten years). Studia Geomorphologica Carpatho-Balcanica 45, 7-19.

Gachev, E., Stoyanov, K. 2012. Present day small perennial firn-like patches in the mountains of the western Balkan peninsula. Studia Geomorphologica Carpatho-Balcanica 46, 51-70. http://doi.org/10.2478/v10302-012-0004-0.

Gachev, E., Stoynaov, K., Gikov, A. 2016. Small glaciers on the Balkan Peninsula: State and changes in the last several years. Quaternary International 415, 33-54. https://doi.org/10.1016/j.quaint.2005.10.042.

García-Ruiz, J.M., Palacios, D., Andrés, N. de, Sanjuán, Y. 2014. Holocene and ‘Little Ice Age’ glacial activity in the Marboré Cirque, Monte Perdido Massif, Central Spanish Pyrenees. The Holocene 24, 1439-1452. https://doi.org/10.1177/0959683614544053.

Goerhring, B.M., Schaefer, J.M., Schlücter, C., Lifton., N., Finkel, R.C., Jull, A.J.T., Akçar, N., Alley, R.B. 2011. The Rhone Glacier was smaller than today for most of the Holocene. Geology 39, 679-682. https://doi.org/10.1130/G32145.1.

Gómez-Ortiz, A., Palacios, D., Schulte, L., Salvador-Franch, F., Plana, J.A. 2009. Evidences from historical documents of landscape evolution after Little Ice Age of a Mediterranean high mountain area, Sierra Nevada, Spain (eighteenth to twentieth centuries). Geografiska Annaler 91A, 279-289. http://doi.org/10.1111/j.1468-0459.2009.00370.x.

Gómez-Ortiz, A., Oliva, M., Salvador-Franch, F., Salvà-Catarineu, M., Palacios, D., Sanjosé, J.J., Tanarro, L., Galindo-Zaldívar, J., Sanz de Galdeano, C. 2014. Degradation of buried ice and permafrost in the Veleta cirque (Sierra Nevada, Spain) from 2006-2013. Solid Earth 5, 979-993. https://doi.org/10.5194/se-5-979-2014.

Gómez Ortiz, A., Palacios, D., Palade, B., Vázquez-Selem, L., Salvador-Franch, F., Tanarro, L., Oliva, M. 2013. La evolución glaciar de Sierra Nevada y la formación de glaciares rocosos. Boletín de la Asociación de Geógrafos Españoles 61, 139-162.

González García, M., Serrano Cañadas, E., Sanjosé Blasco, J.J., González Trueba, J.J. 2016. Surface dynamic of a protalus lobe in the temperate high mountain. Western Maladeta, Pyrenees. Catena 149, 689-700. https://doi.org/10.1016/j.catena.2016.08.011.

González-Trueba, J.J., Martin Moreno, R., Martínez de Pisón, E., Serrano, E. 2008. Little Ice Age glacier advance and current glaciers in the Iberian Peninsula. The Holocene 18, 551-568. https://doi.org/10.1177/0959683608089209.

Grove, A.T. 2001. The Little Ice Age and its geomorphological consequences in Mediterranean Europe. Climatic Change 48, 121-136.

Grove, J.M. 2004. Little Ice Ages: Ancient and Modern. Volumes I and II. Routledge, London.

Grunewald, K., Weber, C., Scheithauer, J., Haubold, F. 2006. Mikrogletscher im Piringebirge (Bulgarien). Zeitschrift für Gletscherkunde und Glazialmorphologie 39, 99-114.

Grunewald, K., Scheithauer, J. 2008. Bohrung in einen Mikrogletscher. Zeitschrift für Gletscherkunde und Glazialmorphologie 42, 3-18.

Grunewald, K., Scheithauer, J. 2010. Europe’s southernmost glaciers: response and adaptation to climate change. Journal of Glaciology 42, 3-18.

Gurgiser, W., Marzeion, B., Nicholson, L., Ortner, M., Kaser, G. 2013. Modeling energy and mass balance of Shallap Glacier, Peru. The Cryosphere 7, 1787-1802. https://doi.org/10.5194/tc-7-1787-2013.

Haeberli, W. 1985. Creep of mountain permafrost: internal structure and flow of alpine rock glaciers. Mitteilungen der Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie 77, 142 pp.

Hannah, G., Hughes, P.D., Gibbard, P.L. 2017. Pleistocene plateau ice fields in the High Atlas, Morocco. In: P.D. Hughes, J.C. Woodward (Eds.), Quaternary glaciation in the Mediterranean Mountains. Geological Society of London Special Publications 433, 25-53.

Hock, R. 2003. Temperature index melt modelling in mountain areas. Journal of Hydrology 282, 104-115. https://doi.org/10.1016/S0022-1694(03)00257-9.

Hormes, A., Müller, B.U., Schlüchter, C. 2001. The Alps with little ice: evidence for eight Holocene phases of reduced glacier extent in the central Swiss Alps. The Holocene 11, 255-265. https://doi.org/10.1191/095968301675275728.

Hughes, P.D. 2004. Quaternary glaciation in the Pindus Mountains, Northwest Greece. PhD thesis, University of Cambridge, 341 pp.

Hughes, P.D. 2007. Recent behaviour of the Debeli Namet glacier, Durmitor, Montenegro. Earth Surface Processes and Landforms 10, 1593-1602. http://doi.org/10.1002/esp.1537.

Hughes, P.D. 2008. Response of a Montenegro glacier to extreme summer heatwaves in 2003 and 2007. Geografiska Annaler 90A, 259-267. http://doi.org/10.1111/j.1468-0459.2008.00344.x.

Hughes, P.D. 2010. Little Ice Age glaciers in Balkans: low altitude glaciation enabled by cooler temperatures and local topoclimatic controls. Earth Surface Processes and Landforms 5, 229-241. http://doi.org/10.1002/esp.1916.

Hughes, P.D. 2009. Twenty-first Century Glaciers in the Prokletije Mountains, Albania. Arctic, Antarctic and Alpine Research 41, 455-459. http://doi.org/10.1657/1938-4246-41.4.455.

Hughes, P.D. 2013. Quaternary-Pleistocene glacial and periglacial environments. In: J. Schroder, R. Giardino, J. Harbor (Eds.), Treatise on Geomorphology. Volume 8 – Glacial and Periglacial Geomorphology. San Diego, Academic Press, pp. 30-44.

Hughes, P.D. 2014. Little Ice Age glaciers in the Mediterranean mountains. Mediterranée 122, 63-79.

Hughes, P.D., Braithwaite, R.J. 2008. Application of a degree-day model to reconstruct Pleistocene glacial climates. Quaternary Research 69, 110-116. https://doi.org/10.1016/j.yqres.2007.10.008.

Hughes, P.D., Woodward, J.C. 2017. Quaternary Glaciation in the Mediterranean Mountains: A New Synthesis. In: P.D. Hughes, J.C. Woodward (Eds.), Quaternary glaciation in the Mediterranean Mountains. Geological Society of London Special Publications 433, 1-23.

Hughes, P.D., Woodward, J.C., Gibbard, P.L. 2006a. Quaternary glacial history of the Mediterranean Mountains. Progress in Physical Geography 30, 334-364. https://doi.org/10.1191/0309133306pp481ra.

Hughes, P.D., Woodward, J.C., Gibbard, P.L. 2006b. The last glaciers of Greece. Zeitschrift für Geomorphologie 50, 37-61. http://doi.org/10.1127/zfg/50/2006/37.

Hughes, P.D., Gibbard, P.L., Woodward, J.C. 2007. Geological controls on Pleistocene glaciation and cirque form in Greece. Geomorphology 88, 242-253. https://doi.org/j.geomorph.2006.11.008.

Hughes, P.D., Fenton, C.R., Gibbard, P.L. 2011a. Quaternary glaciations of the Atlas Mountains, North Africa. In: J. Ehlers, P.L. Gibbard, P.D. Hughes (Eds.), Quaternary Glaciations - Extent and Chronology, Part IV - A Closer Look. Amsterdam, Elsevier, pp. 1071-1080.

Hughes, P.D., Woodward, J.C., van Calsteren, P.C., Thomas, L.E. 2011b. The glacial history of the Dinaric Alps, Montenegro. Quaternary Science Reviews 30, 3393-3412. https://doi.org/10.1016/j.quascirev.2011.08.016.

Hughes, P.D., Fink, D., Fletcher, W.J., Hannah, G. 2014. Catastrophic rock avalanches in a glaciated valley of the High Atlas, Morocco: 10Be exposure ages reveal a 4.5 ka seismic event. Geological Society of America Bulletin 126, 1093-1104. http://doi.org/10.1130/B30894.1.

Huss, M., Fischer, M. 2016. Sensitivity of very small glaciers in the Swiss Alps to future climate change. Frontiers in Earth Science 4 (34). http://doi.org/10.3389/feart.2016.00034

IPCC (Intergovernmental Panel on Climate Change) 2013. Summary for Policymakers. In: T.F. Stocker, D. Qin, G.K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, P.M. Midgley (Eds.), Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, NY, USA, Cambridge University Press, 27 pp.

Jones, P.D., Bradley, R.S. 1992. Climatic variations over the last 500 years. In: R.S. Bradley, P.D. Jones (Eds.), Climate since AD 1500. London and New York, Routledge, pp. 649-665.

Kędzia, S. 2015. The occurrence of glaciers in the Polish Tatra Mountains during the Little Ice Age. Zeitschrift für Geomorphologie NF 59, 229-241. http://doi.org/10.1127/zfg/2014/0150.

Kirkbride, M., Everest, J., Benn, D., Gheorghiu, D., Dawson, A. 2014. Late-Holocene and Younger Dryas glaciers in the northern Cairngorm Mountains, Scotland. The Holocene 24, 141-148. https://doi.org/10.1177/0959683613516171.

Klippel, L., Krusic, P.J., Brandes, R., Hartl-Meier, C., Trouet, V., Meko, M., Esper, J. 2017. High-elevation inter-site differences in Mount Smolikas tree-ring width data. Dendrochronologia 44, 164-173. https://doi.org/j.dendro.2017.05.006.

Kuhn, M. 1995. The mass balance of very small glaciers. Zeitschrift für Gletscherkunde und Glazialgeologie 31, 171-179.

Kumar, R. 2011. Glacieret. In: V.P. Singh, P. Singh, U.K. Haritashya (Eds.), Encyclopedia of Snow, Ice and Glaciers. Springer, p. 436.

Lamb, H.H. 1972. The cold Little Ice Age climate of about 1550 to 1800. Climate: past, present and future. Methuen, London.

Lliboutry, L. 1954. The origin of penitents. Journal of Glaciology 2, 331-338.

Luterbacher, J., Xoplaki, E., Dietrich, D., Jones, P.D., Davies, T.D., Portis, D., Gonzalez-Rouco, J.F., Storch, H von, Gyalistras, D., Casty, C., Wanner, H. 2001. Extending North Atlantic oscillation reconstructions back to 1500. Atmospheric Science Letters 2, 114-124. http://doi.org/10.1006/asle.2002.0047.

Mann, M.E. 2003. Little Ice Age. In: M.C. MacCracken, J.S. Perry (Eds.), Volume 1, The Earth system: physical and chemical dimensions of global environmental change. Encyclopedia of Global Environmental Change, John Wiley & Sons, pp. 504-509.

Matthes, F. 1939. Report of Committee on Glaciers. Transactions, American Geophysical Union 20, 518-535.

Matthews, J.A., Briffa, K.R. 2005. The ‘Little Ice Age’: re-evaluation of an evolving concept. Geografiska Annaler 87, 17-36. http://doi.org/10.1111/j.0435-3676.2005.00242.x.

Matthews, J.A., Owen, G. 2010. Schmidt hammer exposure-age dating: developing linear age-calibration curves using Holocene bedrock surfaces from the Jotunheimen-Jostedalsbreen regions of southern Norway. Boreas 39, 105-115. http://doi.org/10.1111/j.1502-3885.2009.00107.x.

Messerli, B. 1967. Die eiszeitliche und die gegenwartige Vertgletscherung im Mittelemeeraum. Geographica Helvetica 22, 105-228.

Milivojević, M., Menković, L., Ćalić, J. 2008. Pleistocene glacial relief of the central part of Mt. Prokletije (Albanian Alps). Quaternary International 190, 112-122. https://doi.org/10.1016/J.quaint.2008.04.006.

Ministere de l'Agriculture et de la Mise en Valeur Agricole, 1994. Jbel Toubkal. Feuille NH-29-XXIII-1a.

Morris, S.E., Olyphant, G.A. 1990. Alpine lithofacies variation: Working towards a physically-based model. Geomorphology 3, 73-90. https://doi.org/0169-555X(90)90033-M.

Nicod, J. 1968. Premières recherches de morphologie karstique dans le massif du Durmitor (Crna Gora: Montenegro). Meditérraneé 3, 187-216.

Ohmura, A., Kasser, P., Funk, M. 1992. Climate at the equilibrium line of glaciers. Journal of Glaciology 38, 397-411. https://doi.org/10.1017/S0022143000002276.

Oliva, M., Serrano, E., Gómez-Ortiz, A., González-Amuchastegui, M.J., Nieuwendam, A., Palacios, D., Pellitero-Ondicol, R., Pérez-Alberti, A., Ruiz-Fernández, J., Valcárcel, M., Vieira, G., Antoniades, D. 2016. Spatial and temporal variability of periglaciation of the Iberian Peninsula. Quaternary Science Reviews 137, 176-199. https://doi.org/10.1016/j.quascirev.2016.02.017.

Palade, B., Palacios Estremera, D., Gómez Ortiz, A. 2011. Los glaciares rocosos de Sierra Nevada y su significado paleoclimático. Una primera aproximación. Cuadernos de Investigación Geográfica 37, 95-118. http://doi.org/10.18172/cig.1258.

Peyron, M. 1980. Les chutes de neige dans l‘Atlas marocain. Revue de Géographie Alpine 68, 237-254.

Pope, R.J., Hughes, P.D., Skourtsos, E. 2017. Glacial history of Mt Chelmos, Peloponnesus, Greece. In: P.D. Hughes, J.C. Woodward (Eds.), Quaternary glaciation in the Mediterranean Mountains. Geological Society of London Special Publications 433, 211-236.

Raub, W.B., Post, A., Brown, C.S., Meier, M.F. 1980. Perennial ice massess of the Sierra Nevada, California. World Glacier Inventory. Proceedings of the Riederalp Workshop, September 1978. IAHS-AISH Publication 126, 33-34.

Raub, W., Brown, C.S., Post, A. 2006. Inventory of glaciers in the Sierra Nevada, California. US. Geological Survey Open-File report 2006-1239, 232 pp.

Roth von Telegd, K. 1923. Das albanisch-montenegrinische Grenzgebiet bei Plav (Mit besonderer Berücksichtigung der Glazialspuren). In: E. Nowack (Ed.), Beiträge zur Geologie von Albanien. Stuttgart, Schweizerbart, Neues Jahrbuch für Mineralogie, Geologie und Paläontologie, vol. 1, pp. 422-494.

Sarıkaya, M.A., Tekeli, A.E. 2014. Satellite inventory of glaciers in Turkey. In: J.S. Kargel, G.J. Leonard, M.P. Bishop, A. Kääb, B.H. Raup (Eds.), Global Land Ice Measurements from Space. Springer Praxis, pp. 465-480.

Schimmelpfennig, I., Schaefer, J.M., Akçar, N., Koffman, T., Ivy-Ochs, S., Schwartz, R., Finkel, R.C., Zimmerman, S., Schlüchter, C. 2014. A chronology of Holocene and Little Ice Age glacier culminations of the Steingletscher, Central Alps, Switzerland, based on high-sensitivity beryllium-10 moraine dating. Earth and Planetary Science Letters 393, 220-230. https://doi.org/10.1016/j.epsl.2014.02.046.

Serrano, E., González-Trueba, J.J., Sanjosé, J.J., Del Río, L.M. 2011. Ice patch origin, evolution and dynamics in a temperate high mountain environment: the Jou Negro, Picos de Europa (NW Spain). Geografiska Annaler A 93, 57-70. http://doi.org/10.1111/j.1468-0459.2011.00006.x.

Shakesby, R.A., Matthews, J.A. 1993. Loch Lomond Stadial glacier at Fan Hir, Mynydd Du (Brecon Beacons), South Wales: critical evidence and palaeoclimatic implications. Geological Journal 28, 69-79.

Schulz, O., de Jong, C. 2004. Snowmelt and sublimation: field experiments and modelling in the High Atlas Mountains of Morocco. Hydrology and Earth System Sciences 8, 1076-1089. https://doi.org/10.5194/hess-8-1076-2004.

Shakesby, R.A., Matthews, J.A., McCarroll, D. 1995. Pronival (‘protalus‘) ramparts in the Romsdalsalpane, Souhtern Norway: Forms, terms, subnival processes, and alternative mechanisms of formation. Arctic and Alpine Research 27, 271-282. http://doi.org/10.2307/1551958.

Smith, G.W., Nance, R.D., Genes, A.N. 1997. Quaternary glacial history of Mount Olympus, Greece. Geological Society of America Bulletin 109, 809-824.

Smith, K. 2004. Trekking in the Atlas Mountains. Cicerone Press, 160 pp.

Styllas, M.N., Schimmelpfennig, I., Ghilardi, M., Benedetti, L. 2016. Geomorphic and palaeoclimatic evidence of Holocene glaciation on Mount Olympus, Greece. The Holocene 26, 709-721. https://doi.org/10.1177/0959683615618259.

Thomson, J. 1889. The ascent of Tizi Likump. Travels in the Atlas and southern Morocco. A narrative of exploration. Chapter XXX, pp. 456-467.

Tomkins, M., Dortch, J., Hughes, P.D. 2016. Schmidt Hammer exposure dating (SHED): Establishment and implications for the retreat of the last British Ice Sheet. Quaternary Geochronology 33, 46-60. https://doi.org/10.1016/j.quageo.2016.02.002.

US Army Map Service 1943. Tahanout. Sheet 19. 1:125,000. Compiled from Service Géographique du Maroc 1:100,000, 1937 to 1940.

Vieira, G., Mora, C., Faleh, A. 2017. Ground surface temperatures indicate the presence of permafrost in North Africa (Djebel Toubkal, High Atlas, Morocco). The Cryosphere 11, 1691-1705. https://doi.org/10.5194/tc-11-1691-2017.

Wagnon, P., Ribstein, P., Francou, B., Pouyard, B. 1999. Annual cycle of energy balance of Zongo Glacier, Cordillera Real, Bolivia. Journal of Geophysical Research 104, 3907-3923. http://doi.org/10.1029/1998JD200011.

Wilkinson, R. 2011. Late Holocene environmental change in the Prokletije Mountains, Montenegro and Albania. PhD thesis, The University of Manchester. 414 pp.

World Meteorological Organisation. 1998. 1961-1990 global climate normals. Electronic resource. National Climatic Data Center, US: Asheville, NC. (CD-ROM)

Woodward, J.C., Hamlin, R.H.B., Macklin, M.G., Hughes, P.D., Lewin, J. 2008. Glacial activity and catchment dynamics in northwest Greece: Long-term river behaviour and the slackwater sediment record for the last glacial to interglacial transition. Geomorphology 101, 44-67. https://doi.org/10.1016/j.geomorph.2008.05.018.

Downloads

Published

20-02-2018

How to Cite

1.
Hughes P. Little Ice Age glaciers and climate in the Mediterranean mountains: a new analysis. CIG [Internet]. 2018 Feb. 20 [cited 2024 Apr. 26];44(1):15-4. Available from: https://publicaciones.unirioja.es/ojs/index.php/cig/article/view/3362

Issue

Section

Articles