Methodological proposal for the analysis of the evolution of glaciers since the Little Ice Age and its application in the Tröllaskagi Peninsula (northern Iceland)

Authors

  • J.M. Fernández-Fernández Universidad Complutense de Madrid
  • N. Andrés Universidad Complutense de Madrid

DOI:

https://doi.org/10.18172/cig.3392

Keywords:

glaciers, climatic change, paleoclimatic reconstruction, Little Ice Age, Tröllaskagi, Iceland

Abstract

In this paper we propose a methodological sequence for the study of glaciers and climate change, and for the use of glaciers as indicators of climatic evolution. Our proposal includes different techniques focused on: mapping glacier extents at different dates, measuring front variations, calculating areas and volumes, analyzing glacier Equilibrium-Line Altitudes (ELA), statistical treatment of climate series, and the application of glacier-climate models that relate temperature and precipitation and enable paleoclimate reconstruction. This methodology was tested by remote monitoring of three highly sensitive debris-free glaciers in the Tröllaskagi peninsula (northern Iceland) since the end of the Little Ice Age (LIA), and the results show an average retreat of 1.3 km as well as a reduction in area and volume of 25% and 33% as a result of the warming that began at the end of the LIA. The application of the glacier-climate models suggests a climate that was up to 49% less humid at the LIA maximum. The bibliographic review of the methods utilized enables us to validate our methodological proposal and the results obtained, and ensures its application in different areas of study.

Downloads

Download data is not yet available.

References

Adhikari, S., Marshall, S.J. 2012. Glacier volume-area relation for high-order mechanics and transient glacier states. Geophysical Research Letters 39 (16), L16505. http://doi.org/10.1029/2012GL052712.

Ahlmann, H.W. 1924. Le niveau de glaciation comme fonction de l’accumulation d’humidité sous forme solide. Méthode pour le calcul de l’humidité condensée dans la haute montagne et pour l’étude de la fréquence des glaciers. Geografiska Annaler 6 (3-4), 223-272. http://doi.org/10.2307/519625.

Andrés, N., Tanarro, L.M., Fernández, J.M., Palacios, D. 2016. The origin of glacial alpine landscape in Tröllaskagi Peninsula (North Iceland). Cuadernos de Investigación Geográfica 42 (2), 341-368. http://doi.org/10.18172/cig.2935.

Bahr, D.B. 1997. Global distributions of glacier properties: A stochastic scaling paradigm. Water Resources Research 33 (7), 1669-1679. http://doi.org/10.1029/97WR00824.

Bahr, D.B., Meier, M.F., Peckham, S.D. 1997. The physical basis of glacier volume-area scaling. Journal of Geophysical Research: Solid Earth 102 (B9), 20355–20362. http://doi.org/10.1029/97JB01696.

Bahr, D.B., Pfeffer, W.T., Kaser, G. 2015. A review of volume-area scaling of glaciers. Reviews of Geophysics 53 (1), 95-140. http://doi.org/10.1002/2014RG000470.

Bahuguna, I.M., Kulkarni, A.V., Nayak, S., Rathore, B.P., Negi, H.S., Mathur, P. 2007. Himalayan glacier retreat using IRS 1C PAN stereo data. International Journal of Remote Sensing 28 (2), 437-442. http://doi.org/10.1080/01431160500486674.

Ballantyne, C.K. 1989. The Loch Lomond Readvance on the Isle of Skye, Scotland: Glacier reconstruction and palaeoclimatic implications. Journal of Quaternary Science 4 (2), 95-108. http://doi.org/10.1002/jqs.3390040201.

Benn, D.I., Hulton, N.R.J. 2010. An ExcelTM spreadsheet program for reconstructing the surface profile of former mountain glaciers and ice caps. Computers and Geosciences 36 (5), 605-610. http://doi.org/10.1016/j.cageo.2009.09.016.n

Benn, D.I., Lehmkuhl, F. 2000. Mass balance and equilibrium-line altitudes of glaciers in high-mountain environments. Quaternary International 65-66, 15-29. https://doi.org/10.1016/S1040-6182(99)00034-8.

Björnsson, H. 1971. Bægisarjökull, North Iceland. Results of glaciological investigations 1967-68. Part I. Mass balance and general meteorology. Jökull 21, 1-23.

Bradwell, T. 2004. Annual moraines and summer temperatures at Lambatungnajökull, Iceland. Arctic, Antarctic, and Alpine Research 36 (4), 502-508. https://doi.org/10.1657/1523-0430(2004)036[0502:AMASTA]2.0.CO;2.

Bradwell, T., Dugmore, A.J., Sudgen, D.E. 2006. The Little Ice Age glacier maximum in Iceland and the North Atlantic Oscillation: evidence from Lambatungnajökull, southeast Iceland. Boreas 35 (1), 61-80. http://doi.org/10.1111/j.1502-3885.2006.tb01113.x.

Bradwell, T., Sigurđsson, O., Everest, J. 2013. Recent, very rapid retreat of a temperate glacier in SE Iceland. Boreas 42 (4), 959-973. http://doi.org/10.1111/bor.12014.

Braithwaite, R.J. 2008. Temperature and precipitation climate at the equilibrium-line altitude of glaciers expressed by the degree-day factor for melting snow. Journal of Glaciology 54 (186), 437-444. https://doi.org/10.3189/002214308785836968.

Braithwaite, R.J., Raper, S.C.B., Chutko, K. 2006. Accumulation at the equilibrium-line altitude of glaciers inferred from a degree-day model and tested against field observations. Annals of Glaciology 43, 329-334. https://doi.org/10.3189/172756406781812366.

Brückner, E. 1886. Die Hohern Tauern und ihre Eisbedeckung. Zeitschrift des Deutsch-Österreichische Alpenvereins 17, 163-187. http://www.literature.at/viewer.alo?objid=1026566&viewmode=fullscreen&rotate=&scale=3.33&page=173.

Brückner, E. 1887. Die Höhern der Schneelinie und ihre Bestimmung. Meteorologische Zeitschrift 4, 31-32.

Brugger, K.A. 2006. Late Pleistocene climate inferred from the reconstruction of the Taylor River glacier complex, southern Sawatch Range, Colorado. Geomorphology 75 (3-4), 318-329. http://doi.org/10.1016/j.geomorph.2005.07.020.

Brynjólfsson, S., Schomacker, A., Ingólfsson, Ó., Keiding, J.K. 2015. Cosmogenic 36Cl exposure ages reveal a 9.3 ka BP glacier advance and the Late Weichselian-Early Holocene glacial history of the Drangajökull region, northwest Iceland. Quaternary Science Reviews 126, 140-157. http://doi.org/10.1016/j.quascirev.2015.09.001.

Carr, S., Coleman, C. 2007. An improved technique for the reconstruction of former glacier mass-balance and dynamics. Geomorphology 92 (1-2), 76-90. https://doi.org/10.1016/j.geomorph.2007.02.008.

Carr, S.J., Lukas, S., Mills, S.C. 2010. Glacier reconstruction and mass-balance modelling as a geomorphic and palaeoclimatic tool. Earth Surface Processes and Landforms 35 (9), 1103-1115. http://doi.org/10.1002/esp.2034.

Caseldine, C., Stötter, J. 1993. “Little Ice Age” glaciation of Tröllaskagi peninsula, northern Iceland: climatic implications for reconstructed equilibrium line altitudes (ELAs). The Holocene 3 (4), 357-366. https://doi.org/10.1177/095968369300300408.

Caseldine, C.J. 1983. Resurvey of the Margins of Gljúfurárjökull and the Chronology of recent Deglaciation. Jökull 33, 111-118.

Caseldine, C.J. 1985a. The extent of some glaciers in northern Iceland during the Little Ice Age and the nature of recent deglaciation. Geographical Journal 151 (2), 215-227. http://doi.org/10.2307/633535.

Caseldine, C.J. 1985b. Survey of Gljúfurárjökull and features associated with a glacier burst in Gljúfurárdalur, Northern Iceland. Jökull 35, 61-68.

Caseldine, C.J. 1987. Neoglacial glacier variations in northern Iceland: Examples from the Eyjafjörður area. Arctic and Alpine Research 19 (3), 296-304. http://doi.org/10.2307/1551365.

Caseldine, C.J., Cullingofrd, R.A. 1981. Recent Mapping of Gljúfurárjökull and Gljúfurárdalur. Jökull 31, 11-22.

Chandler, B.M.P., Evans, D.J.A., Roberts, D.H. 2016. Recent retreat at a temperate Icelandic glacier in the context of the last ~80 years of climate change in the North Atlantic region. Arktos 2, 24. https://doi.org/10.1007/s41063-016-0024-1.

Chandler, B.M.P., Lukas, S. 2017. Reconstruction of Loch Lomond Stadial (Younger Dryas) glaciers on Ben More Coigach, north-west Scotland, and implications for reconstructing palaeoclimate using small ice masses. Journal of Quaternary Science 32 (4), 475-492. http://doi.org/10.1002/jqs.2941.

Chen, J., Ohmura, A. 1990. Estimation of Alpine glacier water resources and their change since the 1870s. In: H. Lang, A. Musy, Hydrology in Mountainous Regions I. IAHS Publication 193, 127-135. http://hydrologie.org/redbooks/a193/iahs_193_0127.pdf.

Church, J.A., Gregory, J.M., Huybrechts, P., Kuhn, M., Lambeck, K., Nhuan, M.T., Qin, D., Woodworth, P.L. 2001. Changes in sea level. In: J.T. Houghton, Y. Ding, D.J. Griggs, M. Noguer, P.J. Van der Linden, X. Dai, K. Maskell, C.A. Johnson (Eds.), Climate Change 2001: The Scientific Basis. Cambridge University Press, Cambridge, pp. 639-693. http://homepages.vub.ac.be/~phuybrec/pdf/IPCC.Ch11.2001.pdf.

Cogley, J.G., Hock, R., Rasmussen, L.A., Arendt, A.A., Bauder, A., Braithwaite, R.J., Jansson, P., Kaser, G., Möller, M., Nicholson, L., Zemp, M. 2011. Glossary of glacier mass balance and related terms. IHP-VII Technical Documents in Hydrology 86, IACS Contribution 2, UNESCO-IHP, Paris. http://unesdoc.unesco.org/images/0019/001925/192525e.pdf.

Colucci, R.R. 2016. Geomorphic influence on small glacier response to post-Little Ice Age climate warming: Julian Alps, Europe. Earth Surface Processes and Landforms 41 (9), 1227-1240. http://doi.org/10.1002/esp.3908.

Colucci, R.R., Žebre, M. 2016. Late Holocene evolution of glaciers in the southeastern Alps. Journal of Maps 12, 289-299. http://doi.org/10.1080/17445647.2016.1203216.

Crochet, P., Jóhannesson, T., Jónsson, T., Sigurðsson, O., Björnsson, H., Pálsson, F., Barstad, I. 2007. Estimating the spatial distribution of precipitation in Iceland using a linear model of orographic precipitation. Journal of Hydrometeorology 8, 1285-1306. https://doi.org/10.1175/2007JHM795.1.

D’Agata, C., Zanutta, A. 2007. Reconstruction of the recent changes of a debris-covered glacier (Brenva Glacier, Mont Blanc Massif, Italy) using indirect sources: Methods, results and validation. Global and Planetary Change 56 (1-2), 57-68. https://doi.org/10.1016/j.gloplacha.2006.07.021.

Dahl, S.O., Nesje, A. 1992. Paleoclimatic implications based on equilibrium-line altitude depressions of reconstructed Younger Dryas and Holocene cirque glaciers in inner Nordfjord, western Norway. Palaeogeography, Palaeoclimatology, Palaeoecology 94, 87-97. https://doi.org/10.1016/0031-0182(92)90114-K.

Diolaiuti, G., D’Agata, C., Meazza, A., Zanutta, A., Smiraglia, C. 2009. Recent (1975-2003) changes in the Miage debris-covered glacier tongue (Mont Blanc, Italy) from analysis of aerial photos and maps. Geografia Fisica e Dinamica Quaternaria 32 (1), 117-127. http://hdl.handle.net/2434/152059.

Einarsson, M.A.1991. Temperature conditions in Iceland 1901-1990. Jökull 41, 1–20. https://www.researchgate.net/publication/291794533_Temperature_conditions_in_Iceland_1901-1990.

Etzelmüller, B., Farbrot, H., Guðmundsson, Á., Humlum, O., Tveito, O.E., Björnsson, H. 2007. The regional distribution of mountain permafrost in Iceland. Permafrost and Periglacial Processes 18 (2), 185-199. http://doi.org/10.1002/ppp.583.

Eyþórsson, J. 1931. On the present position of the glaciers in Iceland: some preliminary studies and investigations in the summer 1930. Vísindafélag Isl, Rit, p 10, Reykjavik.

Eyþórsson, J. 1935. On the Variations of Glaciers in Iceland. Some Studies Made in 1931. Geografiska Annaler 17, 121. Doi:10.2307/519954

Farinotti, D., Huss, M., Bauder, A., Funk, M., Truffer, M. 2009. A method to estimate ice volume and ice thickness distribution of alpine glaciers. Journal of Glaciology 55 (191), 422-430. https://doi.org/10.3189/002214309788816759.

Fernández-Fernández, J.M., Andrés, N., Sæmundsson, Þ., Brynjólfsson, S., Palacios, D. 2017. High sensitivity of North Iceland (Tröllaskagi) debris-free glaciers to climatic change from the “Little Ice Age” to the present. The Holocene 27 (8), 1187-1200. https://doi.org/10.1177/0959683616683262.

Francou, B., Vincent, C. 2007. Les glaciers à l’épreuve du climat, IRD Editions. http://books.openedition.org/irdeditions/9972.

Gabbud, C., Micheletti, N., Lane, S.N. 2016. Response of a temperate alpine valley glacier to climate change at the decadal scale. Geografiska Annaler: Series A, Physical Geography 98 (1), 81-95. http://doi.org/10.1111/geoa.12124.

Gachev, E., Stoyanov, K., Gikov, A. 2016. Small glaciers on the Balkan Peninsula: State and changes in the last several years. Quaternary International 415, 33-54. http://doi.org/10.1016/j.quaint.2015.10.042.

Geirsdóttir, Á., Miller, G.H., Axford, Y., Ólafsdóttir, S. 2009. Holocene and latest Pleistocene climate and glacier fluctuations in Iceland. Quaternary Science Reviews 28 (21-22), 2107-2118. https://doi.org/10.1016/j.quascirev.2009.03.013.

Gjermundsen, E.F., Mathieu, R., Kääb, A., Chinn, T., Fitzharris, B., Hagen, J.O. 2011. Assessment of multispectral glacier mapping methods and derivation of glacier area changes, 1978–2002, in the central Southern Alps, New Zealand, from ASTER satellite data, field survey and existing inventory data. Journal of Glaciology 57 (204), 667-683. https://doi.org/10.3189/002214311797409749.

Glenn, J.W. 1958. The flow law of ice: A discussion of the assumptions made in glacier theory, their experimental foundations and consequences, in: International Association of Scientific Hydrology. International Association of Scientific Hydrology Publication 47 (Symposium at Chamonix 1958 - Physics of the Movement of the Ice), pp. 171-183. http://go.owu.edu/~chjackso/Climate/papers/Glen_1958_The%20flow%20law%20of%20ice.pdf.

Häberle, T. 1991. Holocene Glacial History of the Hörgárdalur Area, Tröllaskagi, Northern Iceland. In: J.K. Maizels, C. Caseldine (Eds.), Environmental Change in Iceland: Past and Present. Springer Netherlands, Dordrecht, pp. 193-202. http://doi.org/10.1007/978-94-011-3150-6_13.

Hannesdóttir, H., Björnsson, H., Pálsson, F., Aðalgeirsdóttir, G., Guðmundsson, S. 2015. Variations of southeast Vatnajökull ice cap (Iceland) 1650-1900 and reconstruction of the glacier surface geometry at the Little Ice Age maximum. Geografiska Annaler: Series A, Physical Geography 97 (2), 237-264. http://doi.org/10.1111/geoa.12064.

Holmlund, P. 1987. Mass Balance of Storglaciaren during the 20th Century. Geografiska Annaler. Series A, Physical Geography 69 (3-4), 439. http://doi.org/10.2307/521357.

Houghton, J.T., Meira Filho, L.G., Callander, B.A., Harris, N., Kattenberg, A., Maskell, K. 1996. Climate Change 1995: The Science of Climate Change. Contribution of Working Group I to the Second Assessment Report of the Intergovernmental Panel on Climate Change. Published for the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, 572 pp.

Hughes, P.D. 2008. Response of a Montenegro glacier to extreme summer heatwaves in 2003 and 2007. Geografiska Annaler: Series A, Physical Geography 90, 259-267. http://doi.org/10.1111/j.1468-0459.2008.00344.x.

Hughes, P.D. 2009a. Loch Lomond Stadial (Younger Dryas) glaciers and climate in Wales. Geological Journal 44 (4), 375-391. http://dx.doi.org/10.1002/gj.1153

Hughes, P.D. 2009b. Twenty-first century glaciers and climate in the Prokletije Mountains, Albania. Arctic, Antarctic, and Alpine Research 41 (4), 455-459. https://doi.org/10.1657/1938-4246-41.4.455.

Hughes, P.D., Braithwaite, R.J. 2008. Application of a degree-day model to reconstruct Pleistocene glacial climates. Quaternary Research 69 (1), 110-116. https://doi.org/10.1016/j.yqres.2007.10.008.

Hughes, P.D., Woodward, J.C., Gibbard, P.L. 2006. Late Pleistocene glaciers and climate in the Mediterranean. Global and Planetary Change 50 (1-2), 83-98. https://doi.org/10.1016/j.gloplacha.2005.07.005.

Hughes, P.D., Woodward, J.C., van Calsteren, P.C., Thomas, L.E., Adamson, K.R. 2010. Pleistocene ice caps on the coastal mountains of the Adriatic Sea. Quaternary Science Reviews 29 (27-28), 3690-3708. https://doi.org/10.1016/j.quascirev.2010.06.032.

Icelandic Glaciological Society, 2017. Glacier termini variations data. Available at: http://spordakost.jorfi.is (last access: 27/06/2017).

Icelandic Meteorological Office, 2017. Climatological data. Available at: http://en.vedur.is/climatology/data/ (last access: 29/06/2017).

Icelandic Road and Coastal Administration, 2017. Climatological data. Available at: http://www.road.is/ (last access: 29/06/2017).

Institute of Marine Research, Norway, 2017. Available at: http://www.imr.no/en/imr (last access: 20/06/2017).

Jóhannesson, H., Sæmundsson, K. 1989. Geological map of Iceland. 1:500.000. Bedrock. Icelandic Institute of Natural History, Reykjavik. http://en.ni.is/geology/geological-maps/maps-geology-600000.

Jóhannesson, T., Sigurðsson, O, 1998. Interpretation of glacier variations in Iceland 1930-1995. Jökull 45, 27-34. http://www.jokulljournal.is/40-49/J45p27-34.pdf

Kääb, A. 2005. Remote sensing of mountain glaciers and permafrost creep. Schriftenreihe Physische Geographie 48, 266 pp. http://folk.uio.no/kaeaeb/publications/habil_screen.pdf.

Kääb, A., Huggel, C., Fischer, L., Guex, S., Paul, F., Roer, I., Salzmann, N., Schlaefli, S., Schmutz, K., Schneider, D., Strozzi, T., Weidmann, Y. 2005. Remote sensing of glacier- and permafrost-related hazards in high mountains: an overview. Natural Hazards and Earth System Science 5, 527-554. https://doi.org/10.5194/nhess-5-527-2005.

Kaldybayev, A., Chen, Y., Vilesov, E. 2016. Glacier change in the Karatal river basin, Zhetysu (Dzhungar) Alatau, Kazakhstan. Annals of Glaciology 57 (71), 11-19. https://doi.org/10.3189/2016AoG71A005.

Kern, Z., László, P. 2010. Size specific steady-state accumulation-area ratio: An improvement for equilibrium-line estimation of small palaeoglaciers. Quaternary Science Reviews 29 (19-20), 2781-2787. https://doi.org/10.1016/j.quascirev.2010.06.033.

Kirkbride, M.P. 2002. Icelandic Climate and glacier fluctuations through the termination of the “Little Ice Age”. Polar Geography 26 (2), 116-133. http://dx.doi.org/10.1080/789610134.

Klein, A.G., Isacks, B.L. 1998. Alpine glacial geomorphological studies in the central Andes using Landsat Thematic Mapper images. Glacial Geology and Geomorphology rp01. http://www.ibrarian.net/navon/paper/ALPINE_GLACIAL_GEOMORPHOLOGICAL_STUDIES_IN_THE_CE.pdf?paperid=2546002.

Koblet, T., Gärtner-Roer, I., Zemp, M., Jansson, P., Thee, P., Haeberli, W., Holmlund, P. 2010. Reanalysis of multi-temporal aerial images of Storglaciären, Sweden (1959-99) - Part 1: Determination of length, area, and volume changes. The Cryosphere 4, 333-343. https://doi.org/10.5194/tc-4-333-2010.

Kugelmann, O. 1991. Dating Recent glacier advances in the Svarfadardalur-Skíđadalur area of Northern Iceland by means of a new lichen curve. In: J.K. Maizels, C. Caseldine (Eds.), Environmental Change in Iceland: Past and Present. Springer Netherlands, Dordrecht, pp. 203-217. https://doi.org/10.1007/978-94-011-3150-6_14.

Lie, O., Dahl, S.O., Nesje, A. 2003. A Theoretical Approach to Glacier Equilibrium-Line Altitudes Using Meteorological Data and Glacier Mass-Balance Records from Southern Norway. The Holocene 13 (3), 365-372. https://doi.org/10.1191/0959683603hl629rp.

Liestøl, O. 1967. Storbreen glacier in Jotunheimen, Norway. Norsk Polarinstitutt Skrifter nr. 141, 1-63.

Mal, S., Singh, R.B., Schickhoff, U. 2016. Estimating Recent Glacier Changes in Central Himalaya, India, Using Remote Sensing Data. In: Climate Change, Glacier Response, and Vegetation Dynamics in the Himalaya. Springer International Publishing, Cham, pp. 205-218. https://doi.org/10.1007/978-3-319-28977-9_11.

Martin, H.E., Whalley, W.B., Caseldine, C. 1991. Glacier Fluctuations and Rock Glaciers in Tröllaskagi, Northern Iceland, with Special Reference to 1946–1986. In: J.K. Maizels, C. Caseldine (Eds.), Environmental Change in Iceland: Past and Present. Springer Netherlands, Dordrecht, pp. 255-265. https://doi.org/10.1007/978-94-011-3150-6_17.

Meier, M.F., Bahr, D.B. 1996. Counting Glaciers: Use of Scaling Methods to Estimate the Number and Size Distribution of the Glaciers of the World. In: S.C. Colbeck (Ed.), Glaciers Ice Sheets and Volcanoes A Tribute to Mark F Meier. pp. 89-94.

Meyer, V.D., Barr, I.D. 2017. Linking glacier extent and summer temperature in NE Russia – Implications for precipitation during the global Last Glacial Maximum. Palaeogeography, Palaeoclimatology, Palaeoecology 470, 72-80. https://doi.org/10.1016/j.palaeo.2016.12.038.

Mills, S.C., Grab, S.W., Rea, B.R., Carr, S.J., Farrow, A. 2012. Shifting westerlies and precipitation patterns during the Late Pleistocene in southern Africa determined using glacier reconstruction and mass balance modelling. Quaternary Science Reviews 55, 145-159. https://doi.org/10.1016/j.quascirev.2012.08.012.

Möller, M., Schneider, C. 2010. Calibration of glacier volume–area relations from surface extent fluctuations and application to future glacier change. Journal of Glaciology 56, 33-40. https://doi.org/10.3189/002214310791190866.

Nesje, A. 1992. Topographical effects on the equilibrium-line-altitude on glaciers. GeoJournal 27 (4), 383-391. https://doi.org/10.1007/BF00185102.

Oerlemans, J. 2005. Extracting a climate signal from 169 glacier records. Science 308 (5722), 675-677. https://doi.org/10.1126/science.1107046.

Ohmura, A., Kasser, P., Funk, M. 1992. Climate at the Equilibrium Line of Glaciers. Journal of Glaciology 38 (130), 397-411. https://doi.org/10.3189/S0022143000002276.

Osmaston, H. 2005. Estimates of glacier equilibrium line altitudes by the area×altitude, the area×altitude balance ratio and the area×altitude balance index methods and their validation. Quaternary International 138-139, 22-31. https://doi.org/10.1016/j.quaint.2005.02.004.

Pellika, P., Rees, W.G. 2009. Remote Sensing of Glaciers: Techniques for topographic, spatial and thematic mapping of glaciers. Taylor & Francis. http://doi.org/10.1201/b10155.

Pellitero, R. 2013. Evolución finicuaternaria del glaciarismo en el macizo de Fuentes Carrionas (Cordillera Cantábrica), propuesta cronológica y paleoambiental. Cuaternario y Geomorfología 27, 71-90. https://recyt.fecyt.es//index.php/CUGEO/article/view/20179.

Pellitero, R., Rea, B.R., Spagnolo, M., Bakke, J., Hughes, P., Ivy-Ochs, S., Lukas, S., Ribolini, A. 2015. A GIS tool for automatic calculation of glacier equilibrium-line altitudes. Computers & Geosciences 82, 55-62. https://doi.org/10.1016/j.cageo.2015.05.005.

Pellitero, R., Rea, B.R., Spagnolo, M., Bakke, J., Ivy-Ochs, S., Frew, C.R., Hughes, P., Ribolini, A., Lukas, S., Renssen, H. 2016. GlaRe, a GIS tool to reconstruct the 3D surface of palaeoglaciers. Computers and Geosciences 94, 77-85. https://doi.org/10.1016/j.cageo.2016.06.008.

Qureshi, M.A., Yi, C., Xu, X., Li, Y. 2017. Glacier status during the period 1973-2014 in the Hunza Basin, Western Karakoram. Quaternary International 444, 125-136. https://doi.org/10.1016/j.quaint.2016.08.029.

Rabatel, A., Bermejo, A., Loarte, E., Soruco, A., Gomez, J., Leonardini, G., Vincent, C., Sicart, J.E. 2012. Can the snowline be used as an indicator of the equilibrium line and mass balance for glaciers in the outer tropics? Journal of Glaciology 58 (212), 1027–1036. http://doi.org/10.3189/2012JoG12J027.

Rabatel, A., Dedieu, J.P., Christian, V. 2016. Spatio-temporal changes in glacier-wide mass balance quantified by optical remote sensing on 30 glaciers in the French Alps for the period 1983–2014. Journal of Glaciology 62, 1153-1166. https://doi.org/10.1017/jog.2016.113.

Radić, V., Hock, R., Oerlemans, J. 2007. Volume-area scaling vs flowline modelling in glacier volume projections. Annals of Glaciology 46, 234-240. https://doi.org/10.3189/172756407782871288.

Rea, B.R. 2009. Defining modern day Area-Altitude Balance Ratios (AABRs) and their use in glacier-climate reconstructions. Quaternary Science Reviews 28 (3-4), 237-248. https://doi.org/10.1016/j.quascirev.2008.10.011.

Rodríguez-Rodríguez, L., Jiménez-Sánchez, M., Domínguez-Cuesta, M.J., Rinterknecht, V., Pallàs, R., Bourlès, D. 2016. Chronology of glaciations in the Cantabrian Mountains (NW Iberia) during the Last Glacial Cycle based on in situ-produced 10Be. Quaternary Science Reviews 138, 31-48. https://doi.org/10.1016/j.quascirev.2016.02.027.

Sæmundsson, K., Kristjansson, L., McDougall, I., Watkins, N.D. 1980. K-Ar dating, geological and paleomagnetic study of a 5-km lava succession in northern Iceland. Journal of Geophysical Research: Solid Earth 85 (B7), 3628-3646. http://doi.org/10.1029/JB085iB07p03628.

Sagredo, E.A., Lowell, T. V., Kelly, M.A., Rupper, S., Aravena, J.C., Ward, D.J., Malone, A.G. 2017. Equilibrium line altitudes along the Andes during the Last millennium: Paleoclimatic implications. The Holocene 27 (7), 1019-1033. https://doi.org/10.1177/0959683616678458.

Santos-González, J., Redondo-Vega, J.M., González-Gutiérrez, R.B., Gómez-Villar, A. 2013. Applying the AABR method to reconstruct equilibrium-line altitudes from the last glacial maximum in the Cantabrian Mountains (SW Europe). Palaeogeography, Palaeoclimatology, Palaeoecology 387, 185-199. https://doi.org/10.1016/j.palaeo.2013.07.025.

Schilling, D.H., Hollin, J. 1981. Numerical reconstructions of valley glaciers and small ice caps. In: T. Hughes, G.H. Denton (Eds.), The Last Great Ice Sheets. John Wiley and Sons, New York, pp. 207-220.

Sigurðsson, O. 1998. Glacier variations in Iceland 1930-1995. Jökull 45, 3-25. http://www.jokulljournal.is/40-49/J45p3-25.pdf.

Sigurđsson, O., Jónsson, T., Jóhannesson, T. 2007. Relation between glacier-termini variations and summer temperature in Iceland since 1930. Annals of Glaciology 46, 170-176. https://doi.org/10.3189/172756407782871611.

Sissons, J.B. 1974. A late glacial ice cap in the Central Grampians, Scotland. Transactions of the Institute of British Geographers 62, 95-114. http://dx.doi.org/10.2307/621517.

Sissons, J.B., Sutherland, D.G. 1976. Climatic inferences from former glaciers in the south-east Grampian Highlands, Scotland. Journal of Glaciology 17 (76), 325-346. https://doi.org/10.3189/S0022143000013617.

Stötter, J. 1990. Geomorphologische und landschaftsgeschichtliche Untersuchungen im Svarfaðardalur-Skiðadalur, Tröllaskagi, N-Island. Münchener Geographische Abhandlungen 9, 1-166.

Styllas, M.N., Schimmelpfennig, I., Ghilardi, M., Benedetti, L. 2016. Geomorphologic and paleoclimatic evidence of Holocene glaciation on Mount Olympus, Greece. The Holocene 26 (5), 709-721. https://doi.org/10.1177/0959683615618259.

Sutherland, D.G. 1984. Modern glacier characteristics as a basis for inferring former climates with particular reference to the Loch Lomond Stadial. Quaternary Science Reviews 3 (4), 291-309. https://doi.org/10.1016/0277-3791(84)90010-6.

Tanarro, L.M., Palacios, D., Andrés, N., Fernández, J.M., Zamorano, J.J. 2017. Surface morphology and dynamic of debris-covered and rock glaciers in the Tröllaskagi Peninsula (northern Iceland). Geophysical Research Abstracts 19, EGU2017-10534. http://meetingorganizer.copernicus.org/EGU2017/EGU2017-10534.pdf.

Thompson, D., Tootle, G., Kerr, G., Sivanpillai, R., Pochop, L. 2011. Glacier Variability in the Wind River Range, Wyoming. Journal of Hydrologic Engineering 16 (10), 798-805. http://doi.org/10.1061/(ASCE)HE.1943-5584.0000384.

Úbeda, J. 2011. El impacto del cambio climático en los glaciares del complejo volcánico Nevado Coropuna, (Cordillera Occidental de los Andes Centrales). PhD Thesis. Universidad Complutense de Madrid, Servicio de Publicaciones, Madrid, 583 pp. http://eprints.ucm.es/12076/1/T32668.pdf.

Van de Wal, R.S.W., Wild, M. 2001. Modelling the response of glaciers to climate change by applying volume-area scaling in combination with a high resolution GCM. Climate Dynamics 18 (3-4), 359-366. https://doi.org/10.1007/s003820100184.

Veettil, B.K., Wang, S., Bremer, U.F., de Souza, S.F., Simões, J.C. 2017. Recent trends in annual snowline variations in the northern wet outer tropics: case studies from southern Cordillera Blanca, Peru. Theoretical and Applied Climatology 129, 213-227. https://doi.org/10.1007/s00704-016-1775-0.

Downloads

Published

20-02-2018

How to Cite

1.
Fernández-Fernández J, Andrés N. Methodological proposal for the analysis of the evolution of glaciers since the Little Ice Age and its application in the Tröllaskagi Peninsula (northern Iceland). CIG [Internet]. 2018 Feb. 20 [cited 2024 Mar. 29];44(1):69-97. Available from: https://publicaciones.unirioja.es/ojs/index.php/cig/article/view/3392

Issue

Section

Articles