Features of weather types involving heavy rainfall along the southern Spanish Mediterranean

José María Senciales-González, José D. Ruiz-Sinoga

Abstract


Heavy rainfall events in the Mediterranean can be of high intensity, commonly exceeding 100 mm day-1, and have irregular spatio-temporal distribution. Such events can have significant impacts both on soils and human structures. The aim of this paper is to highlight a systematic comparison of synoptic conditions with heavy rainfall events in Mediterranean Southern Spain, assessing the weather types responsible for meteorological risk in specific locations of this mountainous region. To do this, we analyzed the maximum intensity of rainfall in observational periods ranging from 10 min to 24 h using a database from 132 rain gauge stations across the study area since 1943; then, the heavy rain has been associated with the weather type which triggers it. This analysis identified a pattern of heavy rainfall which differs from that previously reported in the Mediterranean area. Thus, in this research, the maximum number of heavy rainfall events uses to come from a dominant pattern of low pressures associated to front systems and East-Northeast winds; but the maximum volumes use to be associated to Cold Drops and the same winds; in addition, there are differences throughout the territory, showing several patterns and seasonal incidence when analyzing sub-zones, which may be related with different erosive conditions according to its position with respect to Atlantic or Mediterranean sea, and the entity of its relief.


Keywords


Heavy rainfall; Mediterranean; Synoptic Weather Situation; Climate Change

Full Text:

PDF

References


Albentosa Sánchez, L. 1991. El clima y las aguas. Col. Geografía de España. Ed. Síntesis. Madrid. 240 pp.

AEMET. 2013. Breve guía descriptiva de los fenómenos meteorológicos recogidos en el Sistema de notificación de observaciones atmosféricas singulares, SINOBAS. In Agencia Estatal de Meteorología (Eds.). Ministerio de Agricultura, Alimentación y Medio Ambiente, Madrid.

Alpert P., Ben-Gai T., Baharad A., Benjamini Y., Diodato L., Ramis C., Homar V., Romero R., Michaelides S., Manes A. 2002. The paradoxical increase of Mediterranean extreme daily rainfall in spite of decrease in total values. Geophys. Res. Lett. 29 (10), 1536. https://doi.org/10.1029/2001GL013554.

Bacchini, M., Zannoni, A. 2003. Relations between rainfall and triggering of debrisflow: case study of Cancia (Dolomites, Northeastern Italy). Nat. Hazards Earth Syst. Sci. 3, 71e79.

Beguería, S., Vicente-Serrano, S., López-Moreno, J. I., García-Ruíz, J. M., 2009. Annual and seasonal mapping of peak intensity, magnitude and duration of extreme precipitation events across a climatic gradient, northeast Spain. Int. J. Climatol. 29, 1759-1779. https://doi.org/10.1002/joc.1808.

Beniston, M., Stephenson, D. B., Christensen, O. B., Ferro, C. A. T., Frei, C. Goyette, S., Woth, K. 2007. Future extreme events in European climate: an exploration of regional climate model projections. Climatic Change 81, 71-95. https://doi.org/10.1007/s10584-006-9226-z .

Bengtsson, L., Milloti, S. 2010. Extreme storms in Malmö, Sweden. Hydrol. Process. 24, 3462-3475. https://doi.org/10.1002/hyp.7768.

Blashfield R. K. 1976. Mixture model test of cluster analysis: accuracy of four agglomerative hierarchical methods. Psychol. Bull. 83, 377-388. https://doi.org/10.1037/0033-2909.83.3.377.

Bracken, L. J., Cox, N.J., Shannon, J. 2008. The relationship between rainfall inputs and flood generation in south-east Spain. Hydrol. Process. 22, 683-696. https://doi.org/10.1002/hyp.6641.

Bracken, L.J., Wainwright, J., Ali, G.A., Tetzlaff, D., Smith, M.W., Reaney, S.M., Rou, A.G. 2013. Concepts of hydrological connectivity: research approaches, pathways and future agendas. Earth-Science Reviews. 119, 17-34. https://doi.org/10.1016/j.earscirev.2013.02.001.

Broer, M., Spira, Y. 2018. Scoping study. Existing approaches and methods for heavy rain modelling, mapping and risk assessment. Interreg Central Europe, Rainman. Environment Agency Austria, 48 pp.

Butzer, K.W. 2005. Environmental history in the Mediterranean world: cross-disciplinary investigation of cause-and-effect for degradation and soil erosion. J. Archaeol. Sci. 32, 1773-1800. https://doi.org/10.1016/j.jas.2005.06.001.

Camarasa, A. M. 1994. La intensitat de la precipitació. In: A. Pérez Cueva (Edr.). Atlas climátic de la Comunitat Valenciana, C.O.P.U.T., Valéncia, pp. 100-101.

Camarasa, A. M., Segura, F., 2001. Flood events in Mediterranean ephemeral streams (ramblas) in Valencia region, Spain, Catena 45, 229-249. https://doi.org/10.1016/S0341-8162(01)00146-1.

Camarasa Belmonte, A. M., Soriano García, J., López-García, M. J. 2010. The effect of observation timescales on the characterization of extreme Mediterranean precipitation. Advances in Geoscience 26, 61-64. http://doi.org/10.5194/adgeo-26-61-2010.

Camarasa Belmonte, A. M., Soriano, J., 2014. Empirical study of extreme rainfall intensity in a semi-arid environment at different time scale. J. Arid Environ. 100-101, 63-71. https://doi.org/10.1016/j.jaridenv.2013.10.008.

Camarasa Belmonte, A.M., Caballero López, M.P., Iranzo García, E. 2018. Cambios de uso del suelo, producción de escorrentía y pérdida de suelo. Sinergias y compensaciones en una rambla mediterránea. Bol. As. Geógrafos Españoles 78, 127-153. https://doi.org/10.21138/bage.2714.

Camarasa Belmonte, A., Rubio, M., Salas, J., 2020. Rainfall events and climate change in Mediterranean environments: an alarming shift from resource to risk in Eastern Spain. Natural Hazards. https://doi.org/10.1007/s11069-020-03994-x.

Cammeraat, E. 2004. Scale dependent thresholds in hydrological and erosion response of a semi-arid catchment in southeast Spain. Agr. Ecosyst. Environ. 104, 317-332. https://doi.org/10.1016/j.agee.2004.01.032.

Capel Molina, J.J. 2000. El clima de la Península Ibérica. Ariel Geografía. Barcelona, 281 pp.

Conesa García, C. 2005. Les ‘ramblas’ du Sud-est Espagnol: systèmes hydromorphologiques en milieu méditerranéen. Z. Geomorphol. 49, 205-224.

Coscarelli, R., Caloiero, T. 2012. Analysis of daily and monthly rainfall concentration in Southern Italy, Calabria region. Journal of Hidrology, 416-417, 145-156. https://doi.org/10.1016/j.jhydrol.2011.11.047.

De Luis, M., González-Hidalgo, J. C., Raventós, J., Sánchez, J. R., Cortina, J. 1997. Distribución espacial de la concentración y agresividad de la lluvia en el territorio de la comunidad Valenciana. Cuaternario y Geomorfologia, 11 (3-4), 33-44.

De Luis, M., Brunetti, M., Gonzalez-Hidalgo, J.C., Longares, L.A., Martin-Vide, J. 2010. Changes in seasonal precipitation in the Iberian Peninsula during 1946-2005. Glob. Planet Change 74, 27-33. https://doi.org/10.1016/j.gloplacha.2010.06.006.

Elías Castillo, F., Ruiz Beltrán, F. 1979. Precipitaciones máximas en España. Ministerio Agricultura. Madrid. 545 pp.

Dunkerley, D. 2008. Identifying individual rain events from pluviograph records: a review with analysis of data from an Australian dryland site. Hydrol. Process. 22, 5024-5036. https://doi.org/10.1002/hyp.7122.

Egozcue, J.J., Pawlowsky-Glahn, V., Ortego, M.I., Tolosana-Delgado, R. 2006. The effect of scale in daily precipitation hazard assessment. Nat. Hazards Earth Syst. Sci. 6, 459-470.

Estrela M.J., Miró, J.J., Millán, M. 2006. Análisis de la tendencia de la precipitación por situaciones convectivas de la Comunidad Valenciana (1959-2004). Clima Soc Medio Ambiente Pub AEC Ser A 5, 125-136.

European Environment Agency. 2018. River floods, climate change adaptation. Water and Marine Environments. https://www.eea.europa.eu/data-and-maps/indicators/river-floods-3/assessment. Accessed 10 Jun 2019.

European Environment Agency (2018b). Heavy precipitation, climate change adaptation. Water and Marine Environments. https://www.eea.europa.eu/data-and-maps/indicators/precipitation-extremes-in-europe-3/assessment. Accessed 10 Jun 2019.

Ferrari, E., Caloiero T., Coscarelli, R. 2013. Influence of the North Atlantic Oscillation on winter rainfall in Calabria (southern Italy). Theoretical and Applied Climatology 114, 479-494. http://dx.doi.org/10.1007/s00704-013-0856-6 .

Font Tullot, I. 1983. Climatología de España y Portugal. Instituto Nacional de Meteorología, Madrid.

Gil Olcina, A. 1989. Causas climáticas de las riadas. Avenidas fluviales e inundaciones en la cuenca del mediterráneo. Instituto Universitario de Geografía de la Universidad de Alicante y Caja de Ahorros del Mediterráneo, 15-30, 1989.

Guijarro Pastor, J.A. 2002. Tendencias de la precipitación en el litoral mediterráneo español. In: J. A. Guijarro, M. Grimalt, M. Laita, S. Alonso (Eds.), El Agua y el Clima, AEC, Serie A, 3, pp. 427-436, Palma de Mallorca.

Hartmann, D.L., Klein Tank, A.M.G., Rusticucci, M., Alexander, L.V., Brönnimann, S., Charabi, Y.A.R., Dentener, F.J., Dlugokencky, E.J., Easterling, D.R., Kaplan, A., Soden, B.J., Thorne, P.W., Wild, M., Zhai, P. 2013, Observations: Atmosphere and surface. In Climate Change 2013 the Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. vol. 9781107057999, Cambridge University Press, pp. 159-254. https://doi.org/10.1017/CBO9781107415324.008.

Hartung, K., Shepherd, T.G., Hoskins, B.J., Methven, J., Svensson, G. 2019. Diagnosing topographic forcing in an atmospheric dataset: the case of the North American Cordillera. Quaterly Journal of the Royal Meteorological Society 146, 726. https://doi.org/10.1002/qj.3677 .

Hennessey, K. J., Pittock, A. B. 1995. Greenhouse warming and threshold temperature events in Victoria, Australia. International Journal of Climatology 15, 591-612. http://dx.doi.org/10.1002/joc.3370150602 .

IPCC. 2001. Climate change 2001: the scientific basis. In J. T. Houghton, Y., Ding, D. J. Griggs, M., Noguer, P. J., van der Linden, X. Dai, K. Maskell, C. A. Johnson (Eds.), Contribution of working group I to third assessment report of the intergovernmental panel on climate change, Cambridge University Press. pp. 881, United Kingdom and New York, NY, USA: .

IPCC. 2007. Climate change 2007: the physical science basis. In: S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor, H.L. Miller (Eds.), Contribution of Working Group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge.

IPCC. 2014. Fifth Assessment Report. IPCC. Retrieved from http://ipcc.ch/report/ar5/.

IPCC. 2019. Climate Change and Land. An IPCC Special Report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems. Summary for policymakers. WMO-UNEP, 41 pp.

Jebari, S., Berndtsson, R., Uvo, C., Bahri, A. 2007. Regionalizing fine time-scale rainfall affected by topography in semi-arid Tunisia. Hydrol. Sci. J. 52, 1199e1215. https://doi.org/10.1623/hysj.52.6.1199.

Katz, R., Brush, G., Parlange, M. 2005. Statistics of extremes: Modeling ecological distur- bances. Ecology 86, 1124-1134. https://doi.org/10.1890/04-0606 .

Lana, X., Burgueño, A., Martínez, M.D., Serra, C. 2009. Una revisión de los análisis estadísticos de las precipitaciones diarias y mensuales en Cataluña. Tethys 6, 15-30.

Lemus Canovas, M., López Bustins, J. 2016. Variabilidad espacio-temporal de la precipitación en el sur de Cataluña y su relación con la oscilación del mediterráneo occidental (WEMO). In Actas del X Congreso Internacional AEC: Clima, sociedad, riesgos y ordenación del territorio. Alicante, October, 5-8. http://doi.org/10.14198/XCongresoAECAlicante2016-21 .

Llasat, M. C. 2001. An objective classification of rainfall events on the basis of their convective features: application to rainfall intensity in the northeast of Spain. Int. J. Climatol. 21, 1385-1400. https://doi.org/10.1002/joc.692.

Llasat, M.C., Barriendos, M., Barrera, A., Rigo, T. 2005. Floods in Catalonia (NE Spain) since the 14th century. Climatological and meteorological aspects from historical documentary sources and old instrumental records. Journal of Hydrology 313, 32-47. https://doi.org/10.1016/j.jhydrol.2005.02.004.

López Gómez, A. 1969. El supuesto monzón de la Península Ibérica. En: Aportación española al XXI Congreso Geográfico Internacional. Instituto Geográfico y Catastral. Madrid. pp. 72-88.

López Gómez, A. 1983. Las lluvias catastróficas mediterráneas. Estudios Geográficos 44, 170/171, 11-29.

Martín Vide, J. 1989. Precipitaciones torrenciales en España. Revista geográfica. Norba 6-7, 63-70.

Martín Vide, J., Llasat, M. C. 2000. Las precipitaciones torrenciales en Cataluña. Serie Geográfica 9, 17-26.

Martín Vide, J. 2004. Spatial distribution of a daily precipitation concentration index in Peninsular Spain. International Journal of Climatology 24, 959-971. https://doi.org/10.1002/joc.1030.

Martín Vide, J., Sánchez-Lorenzo, A., López Bustins, J. A., Cordobilla, M. J., García Manuel, A., Raso, J. M. 2008. Torrential rainfall in northeast of the Iberian Peninsula: synoptic patterns and WeMO influence. Advances in Science and Research 2, 99-105. http://doi.org/10.5194/asr-2-99-2008.

Martín, M.L., Santos-Muñoz, D., Morata, A, Luna, M.Y., Valero, F. 2006. An objectively selected case study of a heavy rain event in the Mediterranean Basin: A diagnosis using numerical simulation. Atmospheric Research 81, 187-205. https://doi.org/10.1016/j.atmosres.2005.12.002.

Martínez Navarro, J. M. 2018. Gestión territorial del riesgo antrópico de ignición forestal en Castilla-La Mancha. Resumen de la tesis doctoral. Boletín de la Asociación de Geógrafos Españoles 76, 571-576.

Millán, M., Estrela, M. J., Miró, J. J. 2005. Rainfall components: variability and spatial distribution in a Mediterranean área (Valencia Region). J. Clim. 18 (14), 2682-2705. https://doi.org/10.1175/JCLI3426.1.

Miró, J. J., Estrela, M. J., Olcina, J. (2015). Statistical downscaling and attribution of air temperature change patterns in the Valencia Region (1948-2011). Atmos. Res. 156, 189-212. https://doi.org/10.1016/j.atmosres.2015.01.003.

Monjo, R. 2016. Measure of rainfall time structure using the dimensionless n-index. Clim. Res. 67, 71-86. https://doi.org/10.3354/cr01359.

Negri, D.H., Gollehon, N.R., Aillery, M.P. 2005. The effects of climatic variability on US irrigation adoption. Climatic Change 69, 299-323. https://doi.org/10.1007/s10584-005-1817-6 .

Neppel, L., Arnaud, P., Lavabre, J. 2007. Connaissance régionale des pluies extrêmes. Comparaison de deux approches appliquées en milieu méditerranéen. C.R. Geosciences 339, 820-830.

Olcina Cantos, J. 2017. Incremento de episodios de inundación por lluvias de intensidad horaria en el sector central del litoral mediterráneo español: análisis de tendencias en Alicante. Sémata. Ciencias Sociais e Humanidades 29, 143-163.

Olcina Cantos, J., Rico Amorós, A. M. 2000. Estudios sobre lluvias torrenciales e inundaciones en la provincia de Alicante (1982-1999). Serie Geográfica 9, 71-93.

Palmer, T.N., Ralsanen, J. 2002. Quantifying the risk of extreme seasonal precipitation events in a changing climate. Nature 415 (31), 512-514. https://doi.org/10.1038/415512a .

Pascual Aguilar, J.A., Año Vidal, C., Sánchez Díaz, J., Masiá Mira, F. J., Arnau Rosalén, E. (2001). Valoración de la idoneidad de los índices PCI y MFI para estimar la concentración y agresividad de las precipitaciones en la Comunidad Valenciana. Cuaternario y Geomorfología 15 (3-4), 77-88.

Peña-Angulo, D., Nadal-Romero, E., González-Hidalgo, J. C., Albaladejo, J., Andreu, V., Barhi, H., Bernal, S., Biddoccu, M., Bienes, R., Campo, J., Campo-Bescó, M.A., Canatário-Duarte, A., Cantón, S., Casali, J., Castillo, V., Cavallo, E., Cerdà, A., Cid, P., Cortesi, N., Desir, G., Díaz-Pereira, E., Espigares, T., Estrany, J., Farguell, J., Fernández-Raga, M., Ferreira, C.S., Ferro, V., Gallart, F., Giménez, R., Gimeno, E., Gómez, J.A., Gómez-Gutiérrez, A., Gómez-Macpherson, A., González-Pelayo, O., Kairis, O., Karatzas, G.P., Keesstra, S., Klotz, S., Kosmas, C., Lana-Renault, N., Lasanta, T., Latron, J., Lázaro, R., Le Bissonnais, Y., Le Bouteiller, C., Licciardello, F., López-Tarazón, J.A., Lucía, A., Marín-Moreno, V.M., Marín, C., Marqués, M.J., Martínez-Fernández, J., Martínez-Mena, M., Mateos, L., Mathys, N., Merino-Martín, L., Moreno-de las Heras, M., Moustakas, N., Nicolau, J.M., Pampalone, V., Raclot, D., Rodríguez-Blanco, M.L., Rodrigo-Comino, J., Romero-Díaz, A., Ruiz-Sinoga, J.D., Rubio, J.L., Schnabel, S., Senciales-González, J.M., Solé -Benet, A., Taguas, E.V., Taboada-Castro, M.T., Taboada-Castro, M.M., Todisco, F., Úbeda, X., Varouchakis, E.A., Wittenberg, L., Zabaleta, A., Zorn, M. 2020. Relationship of Weather Types on the Seasonal and Spatial Variability of Rainfall, Runoff, and Sediment Yield in the Western Mediterranean Basin. Atmosphere 11, 609. https://doi.org/10.3390/atmos11060609.

Peñarrocha, D., Estrela, M. J., Millán, M. 2002. Classification of daily rainfall patterns in a Mediterranean area with extreme intensity levels: the Valencia region. Int. J. Climatol, 22, 677-695. https://doi.org/10.1002/joc.747.

Pons Marti, V., Soriano Soto, M. D. 1994. Valores de torrencialidad R. Su cálculo y distribución en la provincia de Alicante. Cuadernos de Geografía 56, 163-174.

Rodrigo, F. S., Barriendos, M. 2008. Reconstruction of seasonal and annual rainfall variability in the Iberian Peninsula (16th-20th centuries) from documentary data. Global and Planetary Change 63, 243-257. https://doi.org/10.1016/j.gloplacha.2007.09.004.

Rodrigo Comino, J., Iserloh, T., Lassu, T., Cerdà, A., Keestra, S. D., Prosdocimi, M., Brings, C., Marzen, M., Ramos, M. C., Senciales, J. M., Ruiz Sinoga, J. D., Seeger, M., Ries, J. B. 2016. Quantitative comparison of initial soil erosion processes and runoff generation in Spanish and German vineyards. Science of The Total Environment 565, 1165-1174. https://doi.org/10.1016/j.scitotenv.2016.05.163.

Rodrigo-Comino, J., Senciales, J. M., Sillero-Medina, J. A., Gyasi-Agyei, Y., Ruiz-Sinoga, J. D., Ries, J. B. 2019. Analysis of Weather-Type-Induced Soil Erosion in Cultivated and Poorly Managed Abandoned Sloping Vineyards in the Axarquía Region (Málaga, Spain). Air, Soil and Water Research 12, 1-11. https://doi.org/10.1177/1178622119839403.

Rodrigo-Comino, J., Senciales-González, J. M., Terol, E., Mora-Navarro, G., Gyasi-Agyei, Y., Cerdà, A. 2020. Impacts of Weather Types on Soil Erosion Rates in Vineyards at “Celler Del Roure” Experimental Research in Eastern Spain. Atmosphere 11 (6), 551. https://doi.org/10.3390/atmos11060551.

Romero, R., Ramis, C., Guijarro, J. A. 1999. Daily rainfall patterns in the Spanish Mediterranean area: an objective classification. Int. J. Climatol. 19, 95-112. https://doi.org/10.1002/(SICI)1097-0088(199901)19:1<95::AID-JOC344>3.0.CO;2-S.

Rusjan, S., Kobold, M., Mikos, M. 2009. Characteristics of the extreme rainfall event and consequent flash floods in W Slovenia in September 2007. Nat. Hazards Earth Syst. Sci. 9, 947e956.

Ruiz Sinoga, J.D., Hueso González, P., Sillero Medina, J.A., Romero Díaz, M.A. 2019. Impact on soil degradation factors of changes in rain intensity patterns in southern Spain. Ecodesert Symposium, section 1: effects of abiotic factors on ecosystems. 20-22 Feb. 2019.

Ruti, P.M., Somot, S., Giorgi, F., Dubois, C., Flaounas, E., Obermann, A., Dell’Aquila, A., Pisacane, G., Harzallah, A., Lombardi, E., Ahrens, B., Akhtar, N., Alias, A., Arsouze, T., Aznar, R., Bastin, S., Bartholy, J., Béranger, K., Beuvier, J., Bouffies-Cloché, S., Brauch, J., Cabos, W., Calmanti, S., Calvet, J., Carillo, A., Conte, D., Coppola, E., Djurdjevic, V., Drobinski, P., Elizalde-Arellano, A., Gaertner, M., Galàn, P., Gallardo, C., Gualdi, S., Goncalves, M., Jorba, O., Jordà, G., L’Heveder, B., Lebeaupin-Brossier, C., Li, L., Liguori, G., Lionello, P., Maciàs, D., Nabat, P., Önol, B., Raikovic, B., Ramage, K., Sevault, F., Sannino, G., Struglia, M.V., Sanna, A., Torma, C., Vervatis, V. 2016. Med-CORDEX initiative for Mediterranean climate studies. Bull. Am. Meteorol. Soc. 97, 1187-1208. https://doi.org/10.1175/BAMS-D14-00176.1.

Salson-Casado, S., García-Bartual, R. 1998. Desagregación de lluvias para aplicaciones en simulación de sistemas de recursos hidráulicos. Rev. Obras Públicas 78, 25e35.

Santos Deltell, M. J. 1991. Estudio de las precipitaciones extraordinarias (100 mm 24 h-1) en la provincia de Alicante, 1914-1989. En: Sociedad y Territorio XII Congreso Nacional de Geografía. Universidad de Valencia y Asociación de Geógrafos Españoles, pp. 205-214, Valencia.

Santos Muñoz, D., Morata, A, Martín, M. L., Valero, F. 2006. Simulación numérica de un episodio de precipitación intensa en el Mediterráneo Occidental. Actas de la Asociación Meteorológica Española 29, 1-7.

Schumm, S.A. 1980. Some applications of the concept of geomorphic thresholds. In D. A. Coates, J. D. Vitek (Eds.). Thresholds in Geomorphology. Allen & Unwin, pp. 472-485, London.

Senciales González, J. M., Ruiz Sinoga, J. D. 2013. Análisis espacio-temporal de las lluvias torrenciales en la ciudad de Málaga. Boletín de la Asociación de Geógrafos Españoles 61, 7-24. http://dx.doi.org/10.21138/bage.1533.

Seo, J.H., Lee, Y.H, Kim, Y-H. 2014. Feature Selection for very short-term heavy rainfall prediction using evolutionary computation. Advances in Meteorology, Article ID 2035452014. https://doi.org/10.1155/2014/203545.

Sillero-Medina, J. A., Hueso-González, P., Ruiz-Sinoga, J. D. 2019. La precipitación geomorfológica como elemento clave en el modelado del paisaje mediterráneo. Boletín de la Asociación de Geógrafos Españoles 82, 1-40. https://doi.org/10.21138/bage.2780.

Turco, M., Llasat, M.C., 2011. Trends in indices of daily precipitation extremes in Catalonia (NE Spain), 1951-2003. Natural Hazards and Earth System Sciences 11, 3213-3226. http://doi.org/10.5194/nhess-11-3213-2011.

Trenberth, K. E., Fasullo, J. T., Shepherd, T. G. 2015. Attribution of climate extreme events. Nature Climate Change 5, 725-730. https://doi.org/10.1038/nclimate2657.

Valdés, J.B., Rodríguez-Iturbe, I., Gupta, V.K. 1985. Approximations of temporal rainfall from a multidimensional model. Water Resour. Res. 21 (8), 1259-1270. https://doi.org/10.1029/WR021i008p01259.

Waymire, E., Gupta, V.K. 1981. The mathematical structure of rainfall representations 1. A review of the stochastic rainfall models. Water Resour. Res. 17 (5), 1261-1272. https://doi.org/10.1029/WR017i005p01261.

Xoplaki, E., Trigo, R.M., García-Herrera, R., Barriopedro, D., D’Andrea, F., Fischer, E.M., Gimeno, L., Gouveia, C., Hernández, E., Kuglitsch, F.G., Mariotti, A., Nieto, R., Pinto, J.G., Pozo-Vázquez, D., Saaroni, H., Toreti, A., Trigo, I.F., Vicente-Serrano, S.M., Yiou, P., Ziv, B. 2012. 6-Large-scale atmospheric circulation driving extreme climate events in the Mediterranean and its related impacts. In: P. Lionello (Edr). The climate of the Mediterranean region. Elsevier, pp. 347-417. https://doi.org/10.1016/B978-0-12-416042-2.00006-9.

Yair, A., Lavee, H. 1985. Runoff generation in arid and semi-arid zones. MG. Anderson and T.P. Burt (Edrs.). Hydrological Forecasting, 1, 183-220.

Yair, A., Kossovosky, A., 2002. Climate and surface properties: hydrological response of small arid and semi-arid watersheds. Geomorphology 42, 43-57. https://doi.org/10.1016/S0169-555X(01)00072-1.

Zipser, E. J. 1982. Use of a conceptual model of the life-cycle of mesoscales convective systems to improve very-short range forecasts. In: K. Browning (Edr.), Nowcasting. Academic Press, 191-204, New York.




DOI: https://doi.org/10.18172/cig.4765

Copyright (c) 2021 José María Senciales-González, José D. Ruiz-Sinoga

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

© Universidad de La Rioja, 2013

ISSN 0211-6820

EISSN 1697-9540