Spatial characterization of climatic variables for Arica-Parinacota and Tarapacá, Chile using topoclimatic analysis
DOI:
https://doi.org/10.18172/cig.5473Keywords:
Atacama Desert, Spatial characterization, topoclimatic analysisAbstract
In the present study, models were developed to determine the monthly and annual spatio-temporal variation of temperature, precipitation, and solar radiation based on topoclimatic analysis of Arica-Parinacota and Tarapacá in northern Chile. To construct the equations of the topoclimatic model, the data from meteorological stations and physiographic factors (latitude, longitude, altitude, and distance to bodies of water) obtained from a digital terrain model with a resolution of 90 m were compiled in a database. The equations of the topoclimatic model were generated by a stepwise regression with a backward selection technique. The equations for average monthly temperature, precipitation, and solar radiation were determined by linear combinations. The results were statistically significant with coefficients of determination greater than 90%, in addition to being greater than the existing climate databases for this area.
Downloads
References
Aceituno, P., 1996. Elementos del clima en el Altiplano Sudamericano. Rev. Geofísica 44, 37–55.
Alvarez-Garreton, C., Mendoza, P.A., Boisier, J.P., Addor, N., Galleguillos, M., Zambrano-Bigiarini, M., Lara, A., Puelma, C., Cortes, G., Garreaud, R., McPhee, J., Ayala A., 2018. The CAMELS-CL dataset: catchment attributes and meteorology for large sample studies–Chile dataset. Hydrology and Earth System Sciences 22(11), 5817–5846. http://doi.org/10.5194/hess-22-5817-2018
Boisier, J.P., Alvarez-Garretón, C., Cepeda, J., Osses, A., Vásquez, N., Rondanelli, R., 2018. CR2MET: A high-resolution precipitation and temperature dataset for hydroclimatic research in Chile. In EGU General Assembly Conference Abstracts, p. 19739.
Burkhard, B., Maes, J., 2017. Mapping Ecosystem Services. In: B Burkhard, J. Maes, Eds.) Advanced Books (Vol. 1). Pensoft Publishers.
Canessa, F., 2006. Evaluación de los recursos climáticos de la IV Región de Coquimbo, mediante la utilización de Topoclimatología e imágenes NOAA-AVHRR. Universidad de Chile, Facultad de Cs. Agronómicas, Chile.
Cereceda, P., Osses, P., Larrain, H., Farías, M., Lagos, M., Pinto, R., Schemenauer, R.S., 2002. Advective, orographic and radiation fog in the Tarapacá region, Chile. Atmospheric Research 64(1–4), 261–271. http://doi.org/10.1016/S0169-8095(02)00097-2
Cortez, D., Herrera, S., Araya-Osses, D., Caroca, C., Padilla, R., Uribe, J., Paneque, M., 2021. Topoclimatic zoning of continental Chile. Journal of Maps 17(2), 114–124. https://doi.org/10.1080/17445647.2021.1886188
Daly, C., Halbleib, M., Smith, J.I., Gibson, W.P., Doggett, M.K., Taylor, G.H., Curtis, J., Pasteris, P.P., 2008. Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States. International Journal of Climatology 28(15), 2031–2064. http://doi.org/10.1002/joc.1688
Diaz, D., Morales, L., Castellaro, G., Neira, F., 2010. Topoclimatic Modeling of Thermopluviometric Variables for the Bío Bío and La Araucanía Regions, Chile. Chilean Journal of Agricultural Research 70(4), 604–615. [En línea]. https://oes.chileanjar.cl/files/V70_I4_2010_ENG_DiegoDiazM.pdf (Last access: 29/11/2022).
Dirección General de Aguas (DGA), 2010. Plan de Acción Estratégico para el Desarrollo Hídrico de la región de Arica y Parinacota. Ministerio de Obras Púbicas, Gobierno de Chile, 90.
Dirección Meteorológica de Chile (DMC), 2018. Anuarios Decadales.
Eastman, J.R., 2006. IDRISI Andes: Guide to GIS and Image Processing. Worcester: Clark Labs, Clark University.
Fick, S.E., Hijmans, R.J., 2017. WorldClim 2: new 1‐km spatial resolution climate surfaces for global land areas. International Journal of Climatology 37(12), 4302–4315. https://doi.org/10.1002/joc.5086
Florinsky, I.V., 1998. Combined analysis of digital terrain models and remotely sensed data in landscape investigations. Progress in Physical Geography: Earth and Environment 22(1), 33–60. http://doi.org/10.1177/030913339802200102
Fredericksen, N., 2010. Estimación de la capacidad de carga de los tipos vegetacionales con aptitud pastoral destinados al manejo de Vicuña (Vicugna vicugna Mol.), en el Altiplano de la Provincia de Parinacota, Región de Arica y Parinacota. Universidad de Chile. Available at: https://repositorio.uchile.cl/handle/2250/112244 (Last access: 29/11/2022).
Garreaud, R., 2011. The Climate of Northern Chile: mean state, variability and trends. “Astronomical Site Testing Data Conference in Chile.” Revista Mexicana de Astronomía y Astrofísica (SC) 41, 5–11.
Garreaud, R., Aceituno, P., 2001. Interannual Rainfall Variability over the South American Altiplano. Journal of Climate 14(12), 2779–2789. http://doi.org/10.1175/1520-0442(2001)014<2779:IRVOTS>2.0.CO;2
Garreaud, R., Vuille, M., Clement, A.C., 2003. The climate of the Altiplano: Observed current conditions and mechanisms of past changes. Palaeogeography, Palaeoclimatology, Palaeoecology 194, 5–22). http://doi.org/10.1016/S0031-0182(03)00269-4
Gesch, D. B., Oimoen, M.J., Evans, G.A., 2014. Accuracy assessment of the US Geological Survey National Elevation Dataset, and comparison with other large-area elevation datasets: SRTM and ASTER (Vol. 1008). US Department of the Interior, US Geological Survey. https://doi.org/10.3133/ofr20141008
Gordon, H.B., O’Farrell, S., Collier, M., Dix, M., Rotstayn, L., Kowalczyk, E., Hirst, T., Watterson, I., 2010. The CSIRO Mk3. 5 climate model (Vol. 74). CSIRO and Bureau of Meteorology. Available at: http://www.bom.gov.au/research/publications/cawcrreports/CTR_021.pdf (Last access: 29/11/2022).
Grunwald, S., 2009. Multi-criteria characterization of recent digital soil mapping and modeling approaches. Geoderma 152(3), 195–207. https://doi.org/10.1016/j.geoderma.2009.06.003
Grunwald, S., Thompson, J.A., Boettinger, J.L., 2011. Digital Soil Mapping and Modeling at Continental Scales: Finding Solutions for Global Issues. Soil Science Society of America Journal 75(4), 1201–1213. http://doi.org/https://doi.org/10.2136/sssaj2011.0025
Harris, I., Jones, P., Osborn, T., Lister, D., 2014. Updated high‐resolution grids of monthly climatic observations–the CRU TS3. 10 Dataset. International Journal of Climatology 34(3), 623–642. https://doi.org/10.1002/joc.3711
Hijmans, R., Cameron, S., Parra, J., Jones, P., Jarvis, A., 2005. Very high-resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25(15), 1965–1978. https://doi.org/10.1002/joc.1276
Huber, A., 1977. Aporte a la climatología y climaecología de Chile. I: Radiación Potencial. II: Radiación Efectiva. Medio Ambiente 3(1), 3–14.
Hunter, R., Meentemeyer, R., 2005. Climatologically aided mapping of daily precipitation and temperature. Journal of Applied Meteorology 44(10), 1501–1510. https://doi.org/10.1175/JAM2295.1
Kaminski, A., Radosz, J., 2005. Topoclimatic mapping on 1:50000 scale, the map sheet of Bytom. Available at: http://meteo.geo.uni.lodz.pl/icuc5/text/P_8_1.pdf (Last access: 29/11/2022).
Karger, D.N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R.W., Zimmermann, N.E., Linder, H.P., Kessler, M., 2017. Climatologies at high resolution for the earth’s land surface areas. Scientific Data 4(1), 1–20. https://doi.org/10.5061/dryad.kd1d4
Kaye, N.R., Hartley, A., Hemming, D., 2012. Mapping the climate: guidance on appropriate techniques to map climate variables and their uncertainty. Geoscientific Model Development 5(1), 245–256. http://doi.org/10.5194/gmd-5-245-2012.
Kriticos, D.J., Webber, B.L., Leriche, A., Ota, N., Macadam, I., Bathols, J., Scott, J.K., 2012. CliMond: global high‐resolution historical and future scenario climate surfaces for bioclimatic modelling. Methods in Ecology and Evolution 3(1), 53–64. https://doi.org/10.1111/j.2041-210X.2011.00134.x
Luebert, F., Pliscoff, P., 2006. Sinopsis bioclimática y vegetacional de Chile. Editorial Universitaria.
Luebert, F., Pliscoff, P., 2018. Sinopsis bioclimática y vegetacional de Chile (Second). Santiago: Editorial Universitaria.
Matsuura, K., Willmott, C.J., 2009. Terrestrial air temperature: 1900–2008 gridded monthly time series. Center for Climatic Research, Dep. Of Geography, University of Delaware, Newark. Available at: http://climate.geog.udel.edu/~climate/html_pages/Global2_Ts_2009/README.global_t_ts_2009.html (Last access: 29/11/2022).
Matsuura, K., Willmott, C.J., 2012. Terrestrial precipitation: 1900-2010 gridded monthly time series. Available at: http://climate.geog.udel.edu/~climate/html_pages/Global2011/Precip_revised_3.02/README.GlobalTsP2011.html (Last access: 29/11/2022).
Minvielle, M., Garreaud, R., 2011. Projecting rainfall changes over the South American Altiplano. Journal of Climate 24(17), 4577–4583. http://doi.org/10.1175/JCLI-D-11-00051.1
Montecinos, A., Purca, S., Pizarro, O., 2003. Interannual-to-interdecadal sea surface temperature variability along the western coast of South America. Geophysical Research Letters 30(11). http://doi.org/10.1029/2003GL017345
Morales, L., 1997. Evaluación y zonificación de riesgos de heladas mediante modelación topoclimática. Universidad de Concepción.
Morales, L., Canessa M.F., Mattar, C., Orrego, R., Matus, F., 2006. Caracterización y Zonificación Edáfica y Climática de la Región de Coquimbo, Chile. Revista de La Ciencia Del Suelo y Nutrición Vegetal.
Morales, L., Acevedo, E., Castellaro, G., Roman, L., Morales-Inostroza, J., Alonso, M., 2015. A simple method for estimating suitable territory for bioenergy species in Chile. Ciencia e Investigación Agraria 42(2), 227–242. http://doi.org/10.4067/S0718-16202015000200009
Pliscoff, P., Luebert, F., Hilger, H., Guisan, A., 2014. Effects of alternative sets of climatic predictors on species distribution models and associated estimates of extinction risk: A test with plants in an arid environment. Ecological Modelling 288, 166–177. https://doi.org/10.1016/j.ecolmodel.2014.06.003
Programa de Desarrollo de Naciones Unidas (PNUD) and Gobierno de Chile, 1964. Gobierno de Chile. Proyecto Hidrometeorológico. Climatología en Chile. Fascículo I. Valores normales de 36 estaciones seleccionadas. Período 1916-1945. s.e. Santiago de Chile. s.p.
Qiyao, L., Jingming, Y., Baopu, F., 2007. A method of agrotopoclimatic division and its practice in China. International Journal of Climatology 11, 85–96. http://doi.org/10.1002/joc.3370110107
R Core Team, 2020. R: A language and environment for statistical computing.
Romero, H., Smith, P., Mendonça, M., Méndez, M., 2013. Macro y mesoclimas del altiplano andino y desierto de Atacama: desafíos y estrategias de adaptación social ante su variabilidad. Revista de Geografía Norte Grande 55, 19–41. http://doi.org/10.4067/S0718-34022013000200003
Santibañez, F., 1982. Zonificación de los recursos climáticos de la I Región. Capítulo I. Análisis de los ecosistemas de la Primera Región de Chile. In: F. Santibañez, M. Etienne and S. Lailhacar (Edrs.). Delimitación y caracterización de los ecosistemas de la I región de Chile. Santiago, Chile: Sociedad Agrícola CORFO-SACOR.
Sarricolea, P., Romero, H., 2015. Variabilidad y cambios climáticos observados y esperados en el Altiplano del norte de Chile. Revista de geografía Norte Grande 62, 169–183. http://doi.org/10.4067/S0718-34022015000300010
Sarricolea, P., Meseguer Ruiz, O., Romero-Aravena, H., 2017. Tendencias de la Precipitación en el Norte Grande de Chile y su relación con las Proyecciones de Cabio Climático. Diálogo Andino 54, 41–50. http://doi.org/http://dx.doi.org/10.4067/S0719-26812017000300041
Schulz, N., Boisier, J.P., Aceituno, P., 2012. Climate change along the arid coast of northern Chile. International Journal of Climatology 32(12), 1803–1814. http://doi.org/10.1002/joc.2395
Skirvin, S.M., Marsh, S.E., McClaran, M.P., Meko, D.M., 2003. Climate spatial variability and data resolution in a semi-arid watershed, south-eastern Arizona. Journal of Arid Environments 54(4), 667–686. http://doi.org/10.1006/jare.2002.1086
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Luis Morales-Salinas, Giorgio Castellaro, Nora Frederiksen, Luis F. Román, José Neira-Román, Guillermo Fuentes Jaque, Cristian Escobar Avaria, Felipe Morales

This work is licensed under a Creative Commons Attribution 4.0 International License.
The authors retain copyright of articles and authorize Cuadernos de Investigación Geográfica / Geographical Research Letters the first publication. They are free to share and redistribute the article without obtaining permission from the publisher as long as they give appropriate credit to the editor and the journal.
Self-archiving is allowed too. In fact, it is recommendable to deposit a PDF version of the paper in academic and/or institutional repositories.
It is recommended to include the DOI number.
This journal is licensed under a Creative Commons Attribution 4.0 International License