Land cover mapping using remote sensing data in the Apure River Flood Plain (Venezuela)


  • Rosiris Guzmán Universidad de Alcalá de Henares
  • Maximiliano Bezada Minnesota Geological Survey, University of Minnesota, College of Science and Engineering, Minneapolis, 55455, United States
  • Inmaculada Rodríguez-Santalla Departamento de Biología, Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos, Calle Tulipán, Móstoles, 28933, Madrid, España



supervised classification, soil cover, Landsat 8, Sentinel 2


The soil cover is a fundamental indicator to identify the factors that act in the development of the geomorphology of an alluvial plain. This coverage is characterized by the control exercised by the vegetation in the hydromorphological processes, as well as the maintenance and stability of the fluvial channels. A record on the distribution of land cover in the middle course of the anastomosed system of the Apure River is presented. The distribution of geomorphological environments in an area of 65 km2 is analyzed from a combination of data from Landsat-8 and Sentinel-2 images, integrated into a Geographic Information System (GIS). A supervised classification was established using the Support Vector Machine and Maximum Likelihood algorithms. The Landsat image was processed through an atmospheric correction, to later calculate the spectral signatures. Six covers were found: a) wooded savannah, b) forest, c) open savannah, d) crops, e) bodies of water, and f) scrub. There are no substantial differences in the reliability achieved with the Support Vector Machines and Maximum Likelihood classification algorithms. It was shown that the woodland cover is the most representative in the study area with a total extension of 5,717.26 ha (39%), out of 14,658.77 ha. The classification presented a global thematic accuracy of 98.08% and a Kappa index of 0.98. As a result, a soil cover cartography was generated from the best classifier, based on the Kappa index. These findings serve as a reference to increase the records of soil cover characterization and can be useful in studies on management and use of the territory, to identify places more susceptible to degradation and propose measures for the management and conservation of water resources, which can be potentially applicable in similar fluvial environments in other latitudes.


Download data is not yet available.


Adankon, M., Cheriet, M., 2015. Support Vector Machine. En S. Z. Li and A. K. Jain, Encyclopedia of Biometrics, London: Springer.

Allmendinger, N.E., Pizzuto, J.E., Potter Jr. N., Johnson, T.E., Hession, W.C., 2005. The influence of riparian vegetation on stream width, eastern Pennsylvania, USA. Geol. Soc. Am. Bull. 117 (1-2), pp. 229-243.

Andrade, C.W., Montenegro, S.M., Montenegro, A.A., Lima, J.R.D.S., Srinivasan, R., Jones, C.A., 2021. Climate change impact assessment on water resources under RCP scenarios: a case study in Mundaú River Basin, Northeastern Brazil. Int. J. Climatol. 41, pp. E1045-E1061.

Argañaraz, J.P., Entraigas, I., 2011. Análisis comparativo entre las máquinas de vectores soporte y el clasificador de máxima probabilidad para la discriminación de cubiertas de suelo. Revista de Teledetección 36, 26-39.

Ávila-Pérez, I.D., Ortiz-Malavasi, E., Soto-Montoya, C., Vargas-Solano, Y., Aguilar-Arias, H., Miller-Granados, C., 2020. Evaluation of four classification algorithms of Landsat-8 and Sentinel-2 satellite images to identify forest cover in highly fragmented regions in Costa Rica. Revista de Teledetección 57, 37-49.

Bansal, S., Katyal, D., Saluja, R., Chakraborty, M., Garg, J., 2018. Remotely sensed MODIS wetland components for assessing the variability of methane emissions in Indian tropical/subtropical wetlands. Int J Appl Earth Obs Geoinformation 64, 0303- 2434.

Bhatnagar, S., Ghosh, B., Regan, S., Naughton, O., Johnston, P., Gill, L., 2018. Monitoring environmental supporting conditions of a raised bog using remote sensing techniques. Proc. IAHS 380, 9-15.

Bezada, M., 2000. Estudio geomorfológico del cauce del Río Apure, para el estudio de su navegabilidad. Informe Técnico elaborado para Hidromet C.A. Caracas, Venezuela, 70 pp.

Bishop, Y.M.M., Fienberg, S.E., Holland, P.W., Light, R.J., Mosteller, F., 1977. Book Review: Discrete Multivariate Analysis: Theory and Practice. Applied Psychological Measurement 1(2), 297-306.

Borràs, J., Delegido, J., Pezzola, A., Pereira, M., Morassi, G., Camps-Valls, G., 2017. Land use classification from Sentinel-2 imagery. Revista de Teledetección 48, 55-66.

Bosquilia, R.W.D., Muller-Karger, F.E., 2021. Analysis of the wetland classification using optical satellite imagery in the environmental protection area of Guaraqueçaba, PR, Brazil. Journal of South American Earth Sciences 112.

Campos-Taberner, M., García-Haro, F.J., Martínez, B., Gilabert, M.A. 2020. Deep learning for agricultural land use classification from Sentinel-2. Revista de Teledetección 56, 35-48.

Camporeale, C., Perucca, E., Ridolfi, L., Gurnell, A., 2013. Modeling the interactions between river morphodynamics and riparian vegetation. Rev. Geophys. 51 (3), pp. 379-414.

Castro, M.N., Castro, R.M., De Souza, C., 2013. A importância da mata ciliar no contexto da conservação do solo. RENEFARA 4 (4), pp. 230-241.

Chagas, A.M.S., De Montenegro, A.A., De Andrade Farias, C.W.L., Lins, F.A.C., Silva, J.R.I., 2022. Use of geotechnologies for morphometric analysis of experimental basin in the semiarid region to support hydrological simulation. Rev. Eng. na Agric.-REVENG 30, pp. 19-35.

Chávez, P.S.J., 1996. Image-based atmospheric corrections-revisited and improved. Photogrammetric Engineering and Remote Sensing 62(9), 1025-1036.

Chuvieco, E., 2010. Teledetección Ambiental (Tercera Ed.). Barcelona, España: Ariel.

Comber, A., Fisher, P., Wadsworth, R., 2005. You know what land cover is but does anyone else?... an investigation into semantic and ontological confusion. International Journal of Remote Sensing 26(1), 223-228.

Congalton, R.G., 1991. A Review of Assessing the Accuracy of Classifications of Remotely Sensed Data. Remote Sensing of Environment 46, 35-46.

Congedo, L., 2016. Semi-Automatic Classification Plugin Semi-Automatic Classification Plugin Documentation.

Congedo, L., 2018. Semi-Automatic Classification Plugin Documentation, Scp,

Crosato, A., Saleh, M.S., 2011. Numerical study on the effects of floodplain vegetation on river planform style. Earth Surf. Processes Landforms 36 (6), pp. 711-720.

Davies, N., Gibling, M., 2011. Evolution of fixed-channel alluvial plains in response to Carboniferous vegetation. Nature Geosci 4, 629–633.

Deilmai, B., Ahmad, B., Zabihi, H., 2014. Comparison of two classification methods (MLC and SVM) to extract land use and land cover in Johor Malaysia. En IOP Conference Series: Earth and Environmental Science, 20, 7th IGRSM International Remote Sensing & GIS Conference and Exhibition. Kuala Lumpur, Malaysia, 22–23 de april. pp. 1-7.

Del Bosque, I., Arozarena, A., Villa, G., Valcárcel, N., Porcuna, A., 2005. Creación de un sistema de información geográfico de ocupación del suelo en España. "Proyecto SIOSE". Actas del XI Congreso Nacional de Teledetección, 21-23 septiembre, Puerto de la Cruz, España, 255-262.

Di Vittorio, C., Georgakakos, A., 2018. Land cover classification and wetland inundation mappingusing MODIS. Remote Sensing of Environment 204, 1‐ 17. 10.1016/j.rse.2017.11.001

Eaton, B., Millar, RG., Davidson, S., 2010. Channel patterns: braided, anabranching, and single-thread. Geomorphology 120 (3–4), 353-364. j.geomorph.2010.04.010

El Mortaji, N., Wahbi, M., Ait Kazzi, M., Yazidi Alaoui, O., Boulaassal, H., Maatouk, M., Zaghloul, M.N., El Kharki, O., 2022. High resolution land cover mapping and crop classification in the Loukkos watershed (Northern Morocco): An approach using SAR Sentinel- 1 time series. Revistade Teledetección 60,47‐ 69.

European Space Agency (ESA), 2020. Sentinel Online, Level C-1. Disponible en: SupportVectorMachine.html

Fernández-Gimeno, L., López-García, M. J., 2015. Expansión urbana del Área Metropolitana de Valencia en el periodo 1984-2011 a partir de imágenes Landsat TM y ETM+. Revista de Teledetección 44, 1-14.

Fleiss, J.L., 1981. Statistical methods for rates and proportions. New York: John Wiley and Sons.

Foody, G.M., Mathur, A., 2006. The use of small training sets containing mixed pixels for accurate hard image classification: training on mixed spectral responses for classification by a SVM. Remote Sensing of Environment. 103: 179-189.

García-Mora, T.J., Mas, J.F., 2008. Comparación de metodologías para el mapeo de la cobertura y uso del suelo en el sureste de México. Investigaciones Geográfica 67, 7-19.

Gasser, E., Schwarz, M., Simon, A., Perona, P., Phillips, C., Hübl, J., Dorren, L., 2019. A review of modeling the effects of vegetation on large wood recruitment processes in mountain catchments. Earth-Sci. Rev. (194), 350-373. j.earscirev.2019.04.013

Gradziński, R., Baryła, J., Doktor, M., Gmur, D., Gradziński, M., Kędzior, A., Paszkowski, m., Soja, R., Zieliński, T., Żurek, S., 2003. Vegetation-controlled modern anastomosing system of the upper Narew River (NE Poland) and its sediments. Sed. Geol. 157 (3-4), pp. 253-276.

Guo, J., Zhang, J., Zhang, Y., Cao, Y., 2008. Study on the comparison of the land cover classification for multitemporal MODIS images. Paper presented at the fifth International Workshop on Earth Observation and Remote Sensing Applications, Xi’an, China, 18-20 de Junio. pp 1-6.

Gurnell, A., 2014. Plants as river system engineers. Earth Surf. Processes Landforms 39 (1), 4-25.

Guzmán, R, Bezada, M., Rodríguez, I., 2013. Cambios de canal durante los últimos 60 años en el sistema anastomosado del curso medio del río Apure, Venezuela. Interciencia, 9, 642-649.

Guzmán, R., Bezada, M., Rodríguez-Santalla, I., 2021. Granulometric characterization of sediments in the anastomosed system of the Apure river Venezuela. Journal of South American Earth Sciences 109.

Harwood, K, Brown, A.G., 1993. Fluvial processes in a forested anastomosing river: Flood partitioning and changing flow patterns. Earth Surface Processes and Landforms 8, 741-748.

Hermosilla, T., Wulder, M., White, J., Coops, N., Hobart, G., 2015. An integrated landsat time series protocol for change detection and generation of annual gap-free surface reflectance composites. Remote Sensing of Environment 158, 220- 234.

Jara, C., Delegido, J., Ayala, J., Lozano, P., Armas, A., Flores, V., 2019. Study of wetlands in the Ecuadorian Andes through the comparison of Landsat-8 and Sentinel-2 images. Revista de Teledetección 53, 45-57.

Jensen, J.R., 2005. Introductory digital image processing: a remote sensing perspective. Series in geographic information science. Pearson Prentice Hall, South California. 526 pp.

Langendoen, E.J., Richard Lowrance, R., Simon, A., 2009. Assessing the impact of riparian processes on streambank stability. Ecohydrology 2 (3), 360-369.

López González, F.J., Crecente Maseda, R., Álvarez López, C.J., 2002. Los usos del suelo analizados mediante S.I.G. XIV Congreso de Ingeniería Gráfica. 5-7 junio, Santander, España.

Lu, D., Weng, Q., 2007. A survey of image classification methods and techniques for improving classification performance. International Journal of Remote Sensing 28(5), 823-870.

Mas, J.F., Díaz-Gallegos, J.R., Pérez-Vega, A., 2003. Evaluación de la confiabilidad temática de mapas o de imágenes clasificadas: una revisión, Investigaciones Geográficas, Boletín, 51, Instituto de Geografía, UNAM, México, pp. 53-72.

Mather, P.M., 2004. Computer processing of remotely-sensed images: an introduction, Tercera edición, Chichester, John Wiley & Sons, 442 pp.

Matsubara, Y., Howard, A.D., Burr, D.M., Williams, R.M., Dietrich, W.E., Moore, J.M., 2015. River meandering on Earth and Mars: a comparative study of Aeolis Dorsa meanders, Mars and possible terrestrial analogs of the Usuktuk River, AK, and the Quinn River, NV. Geomorphology 240, 102-120. DOI:10.1016/j.geomorph.2014.08.031

Melo, L., Camacho, M., 2005. Interpretación visual de imágenes de sensores remotos y su aplicación en levantamientos de cobertura y uso de la tierra (Instituto Geográfico Agustín Codazzi, Ed.) (1. Ed.). Bogotá D.C.

Micheli, E., Kirchner, J., 2002. Effects of wet meadow riparian vegetation on streambank erosion. 1. Remote sensing measurements of streambank migration and erodibility. Earth Surf. Processes Landforms 27 (6), 627-639.

Micheli, E., Kirchner, J., Larsen, E., 2004. Quantifying the effect of riparian forest versus agricultural vegetation on river meander migration rates, central Sacramento River, California, USA. River Res. Appl. 20 (5), 537-548.

Millar, R.G., 2000. Influence of bank vegetation on alluvial channel patterns. Water Resour. Res. 36 (4), 1109-1118.

Ministerio del Ambiente y de los Recursos Naturales. 1983a. Sistemas Ambientales Venezolanos Proyecto Ven/79/001. Región de los Andes Estado Barinas, Caracas: Autor.

Ministerio del Ambiente y de los Recursos Naturales. 1983b. Sistemas ambientales venezolanos Proyecto Ven/79/001. Región Natural Alto Apure. Caracas: Autor.

Ministerio del Ambiente y de los Recursos Naturales, Dirección de Suelos, Vegetación y Fauna. 1981. Mapa de vegetación actual de Venezuela. Caracas: Autor.

Ministerio del Ambiente y de los Recursos Naturales, Dirección General Sectorial Programa Orinoco Apure (DGS PROA). 1995. Análisis ambiental de los cortes de meandros en los ríos Apure (El Santero) y Portuguesa (El Totumo). Caracas: Autor.

Ministerio del Ambiente y de los Recursos Naturales-Hidromet. 2001. Estudio geomorfológico con énfasis en la dinámica fluvial del Río Apure. Ministerio del Ambiente y de los Recursos Naturales. Caracas, Venezuela. 265 pp.

Mondal, A., Kundu, S., Kumar, S., Shukla, R., Mishra, P., 2012. Comparison of support vector machine and maximum likelihood classification technique using satellite imagery. International Journal of Remote Sensing and GIS 1(2), 116-123.

Murray, A.B., Paola, C., 2003. Modelling the effect of vegetation on channel pattern in bedload rivers. Earth Surf. Processes Landforms 28 (2), 131-143.

Nie, S., Wang, C., Xi, X., Lou, S., Li, S., 2018. Estimating the height of wetland vegetation using airborne discrete-return LiDAR data. Optik 154, 267-274.

Ningthoujam, R., Tansey, K., Balzter, H., Morrison, K., Johnson, S., Gerard, F., George, C., Burbidge, G., Doody, S., Veck, N., Llewellyn, G., Blythe, T., 2016. Mapping forest cover and forest cover change with airborne s-band radar. Remote Sensing 8(7), 577- 597.

Oliveira-Júnior, J.F., Shah, M., Abbas, A., Correia Filho, W.L.F., Da Silva Junior, C.A., De Barros Santiago, D., Teodoro, P.E., Mendes, D., De Suousa, A., Aviv-Sharon, E., Silveira, V.R., Gomes Pimentel, L.C., Barros Da Silva, E., Haq, M.A., Khan, LL., Mohamed, A., Attia, E.A., 2022. Spatiotemporal analysis of fire foci and environmental degradation in the biomes of northeastern Brazil. Sustainability 14 (11), 6935.

Oommen, T., Misra, D., Twarakavi, N.K.C., Prakash, A., Sahoo, B., Bandopadhyay, S., 2008. An objective analysis of support vector machine based classification for remote sensing. Math. Geosci. 40, 409-424.

Ortiz, N., Pérez, U., 2009. Imágenes ASTER en la discriminación de áreas de uso agrícola en Colombia. Rev. Fac. Nac. Agr. 62, 4923-1935.

Parker, G., 1998. River meanders in a tray. Nature, 395 (6698), 111.

Perea-Ardila, M.A., Oviedo-Barrero, F., Leal-Villamil, J., 2019. Cartografía de bosques de manglar mediante imágenes de sensores remotos: estudio de caso Buenaventura, Colombia. Revista de Teledetección, 53, 73-86.

Pollen, N., Simon, A. 2005. Estimating the mechanical effects of riparian vegetation on stream bank stability using a fiber bundle model. Water Resour. Res. 41 (7).

Pouyllau, M., 1974. Estudio geomorfológico del río Apure y zonas adyacentes. HIDROMET.

Priego, A., Bocco, G., Mendoza, M., Garrido, A., 2010. Propuesta para la generación semiautomatizada de unidades de paisaje. Morelia: Serie Planeación Territorial. Centro de Investigaciones en Geografía Ambiental Universidades Autónoma de México.

Ramia, M., 1964. Distribución de las sábanas en Venezuela. Rev. Geog. 7, 25-34.

Richards, J.A., 2013. Remote Sensing Digital Image Analysis. Springer

Richards, J.A., Jia, X., 2006. Remote Sensing Digital Image Analysis (4th ed.). Berlín: Springer.

Rodríguez, I., 1999. Evolución geomorfológica de delta del Ebro y prognosis de su evolución. Universidad de Alcalá de Henares, Tesis de doctorado. Pp. 161.

Rust, B.R., 1981. Sedimentation in an arid-zone anastomosing fluvial system: Cooper’s Creek, Central Australia. Journal of Sedimentary Petrology 51, 745-755.

Santos, M.G., Hartley, A.J., Mountney, N.P., Peakall, J., Owen, A., Merino, E.R., Assine, M.L., 2019. Meandering rivers in modern desert basins: implications for channel planform controls and prevegetation rivers. Sediment. Geol. 385, pp. 1-14.

Shi, X., Xue, B. 2016. Parallelizing maximum likelihood classification on computer cluster and graphics processing unit for supervised image classification. International Journal of Digital Earth 10(7), 737- 748.

Silva, J.R.I., De Souza, E.S., Souza, R., Dos Santos, E.S., Antonino, A.C.D., 2019. Efeito de diferentes usos do solo na erosão hídrica em região semiárida. Rev. Eng. na Agric. 27 (3), 272-283.

Silva, J.R.I., Montenegro, A.A.A., Farias, C.W.L.A., Jardim, A.M.R.F., Da Silva, T.G.F., Montenegro, S.M.G.L., 2022. Morphometric characterization and land use of the Pajeú river basin in the Brazilian semi-arid region. J. S. Am. Earth Sci. 118, 103939. 10.1016/j.jsames.2022.103939

Smith, D.G., 1976. Effect of vegetation on lateral mitration of anastomosed channels of a glacier meltwater river. Geological Society of America Bulletin (87), 857-860.<857:EOVOLM>2.0.CO;2

Smith, D.G., 1983. Anastomosed fluvial deposits: modern examples from Western Canada. In J.D. Collinson, J. Lewin (Eds). Modern and Ancient Fluvial Systems. Spec. Publs. Int. Ass. Sediment, (6), 155-168.

Sobrino, J.A., Jiménez-Muñoz, J.C., Paolini, L., 2004. Land surface temperature retrieval from LANDSAT TM 5. Remote Sensing of Environment 90 (4), 434-440.

Stehman, S.V., 2009. Sampling designs for accuracy assessment of land cover. International Journal of Remote Sensing 30(20), 5243-5272.

Topaloğlu, R., Sertel, E., Musaoğlu, N., 2016. Assessment of classification accuracies of sentinel-2 and landsat-8 data for land cover/use mapping. International Archives of the Photogrammetry. Remote Sensing and Spatial Information Sciencies, XLI-B8, 1055-1059.

Van Dijk, W., Teske, R., Van de Lageweg, W., Kleinhans, M., 2013. Effects of vegetation distribution on experimental river channel dynamics. Water Resour. Res. 49 (11), 7558-7574.

Vargas-Sanabria, D., Campos-Vargas, C., 2018. Sistema multi-algoritmo para la clasificación de coberturas de la tierra en el bosque seco tropical del Área de Conservación Guanacaste, Costa Rica. Tecnología en Marcha 31-1, 58-69.

Volonté, A., Gil, V., Campo, A.M., 2018. Estudio de la vegetación y sus efectos en la dinámica fluvial en cuencas serranas, Argentina. Revista Geografía Venezolana 59, 366-380.

Wang, B., Smith, L.C., Yang, X., Pavelsky, T.M., Altenau, E.H., Gleason, C.J., Pietroniro, A., Rodriguez, E., Bates, P.D., 2022. Remote sensing of broad-scale controls on large river anabranching, Remote Sensing of Environment 281.

Zen, S., Perona, P., 2020. Biomorphodynamics of river banks in vegetated channels with self -formed width. Advances in Water Resources, 135, 103488. 10.1016/j.advwatres.2019.103488.

Zhang, H., Roy, D., Yan, L., Li, Z., Huang, H., Vermote, E., Skakun, S., Roger, J., 2018. Characterization of Sentinel-2A and Landsat-8 top of atmosphere, surface, and nadir BRDF adjusted reflectance and NDVI differences. Remote Sensing of Environment 215, 482-494.



How to Cite

Guzmán R, Bezada M, Rodríguez-Santalla I. Land cover mapping using remote sensing data in the Apure River Flood Plain (Venezuela). CIG [Internet]. 2023 Jul. 14 [cited 2023 Dec. 2];49(1):113-37. Available from: