Essential element vulnerabilities and comprehensive disaster risk assessment for urban planning and risk management in Azogues, Ecuador

Authors

  • María Augusta Sacoto Flores University of Barcelona, Barcelona, Spain
  • Carlos Sánchez-García UB and IPHES

DOI:

https://doi.org/10.18172/cig.5628

Keywords:

Natural hazards, vulnerability, natural hazard assessment and management, urban planning

Abstract

The comprehensive assessment of disaster risk provides information on the potential adverse effects that could condition the city's processes, due to the interaction and contribution of its components in the development of hazard and vulnerability scenarios. By analyzing the most relevant hazards of the urban environment, identifying the vulnerabilities of the critical elements for the development of the city and the exposure of the elements to hazards; this study focuses on the understanding and holistic assessment of the disaster risk of the city of Azogues in Ecuador, in order to provide information to the local government, institutions and the population, to guide decision-making in urban planning and disaster risk management during all stages of disasters. To this end, a semi-quantitative methodology was applied based on the Multi-criteria Decision Analysis Method, and within this, the Analytic Hierarchy Process method and the heuristic approach and Geographic Information Systems and their tools. The results determined that some elements related to the health, education and supply sectors present certain vulnerabilities, although these are not associated with exposure to hazards. In relation to the most relevant hazards, approximately 7% and 33% of the total study area present high levels of susceptibility to landslides and forest fires, respectively. Finally, it was established that the most important factors affecting landslides are geological aspects and slope; and for forest fires, land use (vegetation) and radiation.

Downloads

Download data is not yet available.

References

Agrawal, N., 2018. Defining Natural Hazards – Large Scale Hazards. Natural Disasters Risk Management in Canada. Springer Dordrecht 1, 23. https://doi.org/10.1007/978-94-024-1283-3

Aksha, S.K., Resler, L.M., Juran, L., Carstensen Jr.L.W., 2020. A geospatial analysis of multi-hazard risk in Dharan, Nepal. Geomatics, Natural Hazards and Risk 11(1), 88-111. https://doi.org/10.1080/19475705.2019.1710580

Altamirano, A., Salas, C., Yaitul, V., Smith-Ramirez, C., Ávila, A., 2013. Influencia de la heterogeneidad del paisaje en la ocurrencia de incendios forestales en Chile Central. Revista de Geografía Norte Grande 55, 157-170. https://doi.org/10.4067/S0718-34022013000200011

Barrantes, C.G., Barrantes, S.O., Núñez, R.O., 2011. Efectividad de la metodología Mora-Vahrson modificada en el caso de los deslizamientos provocados por el terremoto de Cinchona, Costa Rica. Revista Geográfica de América Central 2 (47), 141-162. Disponible en: https://www.redalyc.org/articulo.oa?id=451745770006 (Acceso: 8 noviembre 2022)

Barrantes, C. G., 2018. Multi-hazard model for developing countries. Natural hazards 92(2), 1081-1095. https://doi.org/10.1007/s11069-018-3239-6

Bento-Gonçalves, A., Vieira, A., Úbeda, X., Martin, D., 2012. Fire and soils: key concepts and recent advances. Geoderma 191, 3-13. https://doi.org/10.1016/j.geoderma.2012.01.004

Busico, G.A., Salgado-Gálvez, M.A., Zuloaga, D., González, D., Cardona, O.D., 2017. Integration of Probabilistic and Multi-Hazard Risk Assessment Within Urban Development Planning and Emergency Preparedness and Response: Application to Manizales, Colombia. International Journal of Disaster Risk Science 8, 270–283. https://doi.org/10.1007/s13753-017-0135-8

Bocco, G., 2019. Vulnerabilidad, adaptación y resiliencia sociales frente al riesgo ambiental. Teorías subyacentes. Investigaciones Geográficas 100. https://doi.org/10.14350/rig.60024

Busico, G., Giuditta, E., Kazakis, N., Colombani, N., 2019. A Hybrid GIS and AHP Approach for Modelling Actual and Future Forest Fire Risk Under Climate Change Accounting Water Resources Attenuation Role. Sustainability 11, (24), 7166. https://doi.org/10.3390/su11247166

Carreño, M.L., Cardona, O.D., Barbat, A.H., Suarez, D.C., Perez, M.D.P., Narvaez, L., 2017. Holistic disaster risk evaluation for the urban risk management plan of Manizales, Colombia. International Journal of Disaster Risk Science 8, 258-269. https://doi.org/10.1007/s13753-017-0136-7

Carrión-Mero, P., Briones-Bitar, J., Morante-Carballo, F., Stay-Coello, D., Blanco-Torrens, R., Berrezueta, E., 2021. Evaluation of Slope Stability in an Urban Area as a Basis for Territorial Planning: A Case Study. Appl. Sci. 11, 5013. https://doi.org/10.3390/app11115013

Castellanos, A.E.A., 2008. Multiscale landslide risk assessment in Cuba. Dissertation 154, 1-10, Utrecht University, The Netherlands.

Comunidad Andina, 2017. Estrategia Andina para la Gestión del Riesgo de Desastres (EAGRD). Decisión Nº 819. Perú, Comunidad Andina. Disponible en: https://www.comunidadandina.org/StaticFiles/2017522151956ESTRATEGIA%20ANDINA.pdf (Acceso: 6 abril 2022)

D’Ercole, R., Metzger, P.P., 2004. Vulnerabilidad del Distrito Metropolitano de Quito. IRD / MDMQ. AH/Editorial, 23, 496, Colección Quito Metropolitano.

D’Ercole, R., Hardy, S., Metzger, P., Robert J., 2009. Vulnerabilidades urbanas en los países andinos. Introducción general. Bulletin de l'Institut français d'études andines 38 (3), 401-410. https://doi.org/10.4000/bifea.2222

El-Kholei, A.O., 2019. Chapter 8 - Risks, hazards, and disasters: can a smart city be resilient? In Smart Cities: Issues and Challenges, pp. 125-146, Elsevier. https://doi.org/10.1016/B978-0-12-816639-0.00008-9

Enoh, M.A., Okeke, U.C., Narinua, N.Y., 2021. Identification and modelling of forest fire severity and risk zones in the Cross–Niger transition forest with remotely sensed satellite data. The Egyptian Journal of Remote Sensing and Space Science 24(3), 879-887. https://doi.org/10.1016/j.ejrs.2021.09.002

Fick, S.E., Hijmans, R.J., 2017. WorldClim 2: new 1km spatial resolution climate surfaces for global land areas. International Journal of Climatology 37 (12), 4302-4315. https://doi.org/10.1002/joc.5086

Francos, M., Sánchez-García, C., Girona-García, A., Fernández-García, V., 2021. Influence of topography on sediment dynamics and soil chemical properties in a Mediterranean forest historically affected by wildfires: NE Iberian Peninsula. Environmental Earth Sciences 80(12), 1-15. https://doi.org/10.1007/s12665-021-09731-2

Francos, M., Sánchez-García, C., Corvacho-Ganahín, O., Fernández-García, V., 2022. Soil minor elements in contrasting profiles in an area frequently affected by fire. NE Iberian Peninsula. Fire 5, 189. https://doi.org/10.3390/fire5060189

GAD Azogues, 2011. SIG Municipal. Gobierno Autónomo Descentralizado Municipal de Azogues, Ecuador. Disponible en: https://www.azogues.gob.ec/portal/index.php (Acceso: 7 septiembre 2022)

Garcia-Aristizabal, A., Gasparini, P., Uhinga, G., 2015. Multi-risk Assessment as a Tool for Decision-Making. En: S. Pauleit, A. Coly, S. Fohlmeister, P. Gasparini, G. Jørgensen, S. Kabisch, W. J. Kombe, S. Lindley, I. Simonis, K. Yeshitela (Eds.). Urban Vulnerability and Climate Change in Africa, pp 229-258. Springer, Cham. https://doi.org/10.1007/978-3-319-03982-4_7

Gautam, D., Thapa, S., Pokhrel, S., Lamichhane, S., 2021. Local level multi-hazard zonation of Nepal. Geomatics, Natural Hazards and Risk 12(1), 405-423. https://doi.org/10.1080/19475705.2021.1879941

Gencer, E., Panda, A., Amaratunga, D., 2021. The Role and Challenges for Local Governments in Achieving the Resilience of Critical Infrastructure. En: D. Amaratunga, R. Haigh, N. Dias (Eds) Multi-Hazard Early Warning and Disaster Risks. Springer, Cham. https://doi.org/10.1007/978-3-030-73003-1_8

Ghorbanzadeh, O., Blaschke, T., Gholamnia, K., Aryal, J., 2019. Forest fire susceptibility and risk mapping using social/infrastructural vulnerability and environmental variables. Fire 2(3), 50. https://doi.org/10.3390/fire2030050

Gómez-Orea, D., Gómez-Villamarino, M., 2014. Marco conceptual para la ordenación territorial y reflexiones sobre el proceso ecuatoriano en la materia. In IX Simposio nacional de desarrollo urbano y planificación territorial, (21). Disponible en: http://www.sndu.org/ponencias/panel1/D_Gomez_Orea.pdf (Acceso: 8 diciembre 2022)

Idrovo, C., 2010, Optimización de la planta de tratamiento de Uchupucún. Tesis de Pregrado, Universidad de Cuenca, Cuenca, Ecuador.

IGM, 2009. Descarga de información planificación nacional. Visor geográfico. Instituto Geográfico Militar, Quito, Ecuador. Disponible en: https://www.geoportaligm.gob.ec/geoinformacion/index-alt7.html (Acceso: 13 agosto 2022)

IGM, 2018. Aptitud física del territorio 2018 y Memorias Técnicas, Ciudad de Azogues. Instituto Geográfico Militar, Quito, Ecuador. Disponible en: https://www.geoportaligm.gob.ec/geoinformacion/index-alt3.html (Acceso: 13 agosto 2022)

INAMHI, 2017. Anuario meteorológico. Instituto Nacional de Meteorología e Hidrología de Ecuador.

Kühnl, M., Sapena, M., Wurm, M., Geiß, C., Taubenböck, H., 2022. Multitemporal Landslide Exposure and Vulnerability Assessment in Medellín, Colombia, PREPRINT (1), Research Square. https://doi.org/10.21203/rs.3.rs-1309670/v1

López-Valencia, A.P., 2019. Vulnerability assessment in urban areas exposed to flood risk: methodology to explore green infrastructure benefits in a simulation scenario involving the Cañaveralejo River in Cali, Colombia. Natural Hazards 99, 217–245. https://doi.org/10.1007/s11069-019-03736-8

Lummen, N. S., Yamada, F., 2014. Implementation of an integrated vulnerability and risk assessment model. Natural Hazards 73, 1085-1117. https://doi.org/10.1007/s11069-014-1123-6

MAGAP, 2014. Memoria Técnica: Cantón Azogues, Proyecto: “Levantamiento de Cartografía Temática escala 1:25.000, Lote 1”. Ministerio de Agricultura, Ganadería, Acuacultura y Pesca, Quito, Ecuador. Disponible en: http://metadatos.sigtierras.gob.ec/pdf/Memoria_tecnica_Coberturas_AZOGUES_20150306.pdf (Acceso: 9 octubre 2022)

Moraga, P.J.C., 2010. Evaluación del riesgo ante incendios forestales en la cuenca del río Tempisque, Costa Rica. Revista Geográfica de América Central 2(45), 33-64. Disponible en: https://www.redalyc.org/articulo.oa?id=451744669002 (Acceso: 4 noviembre 2022)

Nefeslioglu, H. A., Gorum, T., 2020. The use of landslide hazard maps to determine mitigation priorities in a dam reservoir and its protection area. Land Use Policy 91, 104363. https://doi.org/10.1016/j.landusepol.2019.104363

Pardeshi, S.D., Autade, S.E., Pardeshi, S.S., 2013. Landslide hazard assessment: recent trends and techniques. SpringerPlus 2, 523. https://doi.org/10.1186/2193-1801-2-523

Paucar, C.J.A., 2016. Modelo para la articulación de la Gestión del Riesgo en el proceso de Ordenamiento Territorial de la ciudad de Guaranda/Ecuador. Tesis Doctoral, Universitat de València, España.

Paudel, U., 2016. Landslide susceptibility assessment using machine learning with emphasis on scaling and topographic representation issues. Dissertation, The University of Tokyo, Tokyo. https://doi.org/10.15083/00075345

Pazmiño, D., 2019. Peligro de incendios forestales asociado a factores climáticos en Ecuador. FIGEMPA: Investigación y Desarrollo 1(1), 10–18. https://doi.org/10.29166/revfig.v1i1.1800

Portilla, F.F., 2018. Agroclimatología del Ecuador. Ed. Universitaria Abya-Yala, Universidad Politécnica Salesiana, Quito, Ecuador.

Promper, C., Glade, T., 2016. Multilayer-exposure maps as a basis for a regional vulnerability assessment for landslides: applied in Waidhofen/Ybbs, Austria. Natural Hazards 82, 111-127. https://doi.org/10.1007/s11069-016-2311-3

Promper, C., Gassner, C., Glade, T., 2015. Spatiotemporal patterns of landslide exposure–a step within future landslide risk analysis on a regional scale applied in Waidhofen/Ybbs Austria. International Journal of Disaster Risk Reduction 12, 25-33. https://doi.org/10.1016/j.ijdrr.2014.11.003

Puente-Sotomayor, F., Egas, A., Teller, J., 2021. Land policies for landslide risk reduction in Andean cities. Habitat International 107, 102298. https://doi.org/10.1016/j.habitatint.2020.102298

Qie, Z., Rong, L., 2017. An integrated relative risk assessment model for urban disaster loss in view of disaster system theory. Nat Hazards 88, 165–190. https://doi.org/10.1007/s11069-017-2861-z

Rahmati, O., Zeinivand, H., Besharat, M., 2016. Flood hazard zoning in Yasooj region, Iran, using GIS and multi-criteria decision analysis. Geomatics, Natural Hazard and Risk 7(3), 1000-1017. https://doi.org/10.1080/19475705.2015.1045043

Ranke, U., 2016. Chapter 7: Risk Assessment. Natural disaster risk management. Switzerland: Springer International Publishing. http://doi.org/10.1007/978-3-319-20675-2

Reyes, B.F., Balcázar, G.C., 2021. Factores que inciden en la probabilidad de ocurrencia de incendios forestales en Ecuador. FIGEMPA: Investigación y Desarrollo 11(1), 50–60. https://doi.org/10.29166/revfig.v11i1.2634

Reyes, P.M.D., Moreno, I.V.J., López, A.A.C., Lasso, B.L., Suango, S.V., Toulkeridis, T., 2020. Use of the Heuristic Model and GIS to Zone Landslide Hazards in the Mira River Basin, Ecuador. En: M.G. Rodriguez, C.E.R. Fonseca., J.P. Salgado, P. Pérez-Gosende, C.M. Orellana, S. Berrezueta (Eds). Information and Communication Technologies. TICEC 2020. Communications in Computer and Information Science, 1307. Springer, Cham. https://doi.org/10.1007/978-3-030-62833-8_19

Robles, A., Rodríguez-Garrido, M. A., Álvarez-Taboada, M. F., 2016. Characterization of wildland-urban interfaces using LiDAR data to estimate the risk of wildfire damage. Revista de Teledetección 45, 57-69. https://doi.org/10.4995/raet.2016.3967

Romero, A.A.N., 2016. Evaluación de la vulnerabilidad sísmica para la ciudad de Azogues. Tesis de Maestría, Escuela Politécnica Nacional, Quito, Ecuador.

Sacoto-Flores, M.A., 2022. Implementación de los lineamientos para la Gestión del Riesgo de Desastres del Servicio Nacional de Gestión de Riesgos y Emergencias (SNGRE) en el Plan del Buen Vivir y Ordenamiento Territorial (PBVOT) del cantón Azogues. Tesis de Máster, Universitat de Barcelona, Barcelona, España.

Sánchez-García, C., Francos, M., 2022. Human-environmental interaction with extreme hydrological events and climate change scenarios as background. Geography and Sustainability 3, 232-236. https://doi.org/10.1016/j.geosus.2022.08.002

Sánchez-García, C., Schulte, L., Carvalho, F., Peña, J.C., 2019. A 500-year flood history of the arid environments of southeastern Spain. The case of the Almanzora River. Global and Planetary Change 181, 102987. https://doi.org/10.1016/j.gloplacha.2019.102987

Schelhorn, S. J., Herfort, B., Leiner, R., Zipf, A., De Albuquerque, J. P., 2014. Identifying elements at risk from OpenStreetMap: The case of flooding. En S.R. Hiltz, M.S. Pfaff, L. Plotnick, and A.C. Robinson (Eds). Proceedings of the 11 th International ISCRAM Conference – University Park, Pennsylvania, USA, May 2014

Schneiderbauer, S., Ehrlich, D., 2004. Risk, Hazard and People´s Vulnerability to Natural Hazards: A Review of Definitions, Concepts and Data. European Commission Joint Research Centre, EUR 21410 EN. Disponible en: https://www.researchgate.net/publication/268149143_Risk_Hazard_and_People%27s_Vulnerability_to_Natural_Hazards_a_Review_of_Definitions_Concepts_and_Data

Serra-Dávalos, M., Plana-Bach, E., Cerdan-Heredia, R., 2019. La integración del riesgo de incendios forestales en el urbanismo: una aproximación normativa, analítica y práctica para el caso de Cataluña. XI Seminario Internacional de Investigación en Urbanismo, Barcelona-Santiago de Chile, Junio 2019. Barcelona: DUOT, 2019. https://doi.org/10.5821/siiu.6567

Shrestha, K., Khadka, U.R., Singh Shrestha, M., 2021. Comparative GIS-Based Assessment of Landslide Susceptibility of Chepe River Corridor, Gandaki River Basin, Nepal. En: R. Djalante, M.F.B. Bisri, R. Shaw (Eds). Integrated Research on Disaster Risks. Disaster Risk Reduction. Springer, Cham. https://doi.org/10.1007/978-3-030-55563-4_7

Singh, A., Pal, S., Kanungo, D.P., 2021. An integrated approach for landslide susceptibility–vulnerability–risk assessment of building infrastructures in hilly regions of India. Environ. Dev. Sustain. 23, 5058–5095. https://doi.org/10.1007/s10668-020-00804-z

Sivrikaya, F., Küçük, Ö., 2022. Modeling forest fire risk based on GIS-based analytical hierarchy process and statistical analysis in Mediterranean region. Ecological Informatics 68, 101537. https://doi.org/10.1016/j.ecoinf.2021.101537

SNGRE. s.f., SNGRE publica lineamientos para incluir la gestión del riesgo en planes de ordenamiento territorial. Servicio Nacional de Gestión de Riesgos y Emergencias, Guayaquil, Ecuador. Disponible en: https://www.gestionderiesgos.gob.ec/sngre-publica-lineamientos-para-incluir-la-gestion-del-riesgo-en-planes-de-ordenamiento-territorial/ (Acceso: 19 septiembre 2022)

SNGRE, 2019. Geoportal – SNGRE. Descarga de archivos geográficos: Incendios Forestales y Movimientos en Masa. Servicio Nacional de Gestión de Riesgos y Emergencias, Guayaquil, Ecuador. Disponible en: https://informacion.gestionderiesgos.gob.ec:8443/centrodedescarga/contenidos/ (Acceso: 19 septiembre 2022)

SNGRE, 2021. Registros históricos de eventos naturales y/o antrópicos de la ciudad de Azogues desde el año 2010 hasta el año 2021. Servicio Nacional de Gestión de Riesgos y Emergencias, Zonal 6, Ecuador.

SNGRE, 2022. Lineamientos para la Gobernanza de la Gestión del Riesgo de Desastres en los GADs municipales y metropolitanos. Servicio Nacional de Gestión de Riesgos y Emergencias, Guayaquil, Ecuador. Disponible en: https://www.gestionderiesgos.gob.ec/documentos-de-gestion-de-riesgos/ (Acceso: 19 septiembre 2022)

SNGRE-PNUD, 2011. Propuesta Metodológica para el análisis de vulnerabilidades en función de amenazas a nivel municipal: sísmica, volcánica, inundación y deslizamiento de tierra. Biblioteca Virtual SNGRE. Disponible en: https://biblioteca.gestionderiesgos.gob.ec:8443/items/show/122 (Acceso: 19 septiembre 2022)

SNGRE-PNUD, 2014. Lineamientos metodológicos para comprender la vulnerabilidad a partir de la identificación de elementos esenciales. Biblioteca Virtual SNGRE. Disponible en: https://biblioteca.gestionderiesgos.gob.ec:8443/items/show/59 (Acceso: 1 diciembre 2022)

SIN, 2014. Portal de descargas. Servicio Nacional de Información, Quito, Ecuador. Disponible en: https://sni.gob.ec/inicio (Acceso: 18 noviembre 2022)

SIN, 2018. Plan del Buen Vivir y Ordenamiento Territorial (PBVOT) del cantón de Azogues – Ecuador. GAD Municipal de Azogues. Servicio Nacional de Información, Quito, Ecuador. Disponible en: https://multimedia.planificacion.gob.ec/PDOT/descargas.html (Acceso: 20 diciembre 2022)

Soto, J., Galve, J.P., Palenzuela, J.A., Azañón, J.M., Tamay, J., Irigaray, C., 2017. A multi-method approach for the characterization of landslides in an intramontane basin in the Andes (Loja, Ecuador). Landslides 14, 1929-1947. https://doi.org/10.1007/s10346-017-0830-y

Sun, L., Ma, C., Li, Y., 2019. Multiple geo-environmental hazards susceptibility assessment: a case study in Luoning County, Henan Province, China. Geomatics, Natural Hazards and Risk 10 (1), 2009-2029. https://doi.org/10.1080/19475705.2019.1658648

Suryabhagavan, K.V., Alemu, M., Balakrishnan, M., 2016. GIS-based multi-criteria decision analysis for forest fire susceptibility mapping: a case study in Harenna forest, southwestern Ethiopia. International Society for Tropical Ecology 57(1), 33-43

UNDRR, 2015. What is the Sendai Framework for Disaster Risk Reduction? United Nations Office for Disaster Risk Reduction. Disponible en: https://www.undrr.org/implementing-sendai-framework/what-sendai-framework

UNDRR, 2016. Report of the open-ended intergovernmental expert working group on indicators and terminology relating to disaster risk reduction. United Nations Office for Disaster Risk Reduction. Disponible en: https://www.preventionweb.net/quick/11605

UNDRR, 2019. Critical infrastructure including schools, health facilities and roads threatened by climate crisis. United Nations Office for Disaster Risk Reduction, Geneva, October 11.

UNDRR, 2021. Regional Assessment Report on Disaster Risk in Latin America and the Caribbean (RAR 2021). United Nations Office for Disaster Risk Reduction. Disponible en: https://www.undrr.org/launch-regional-assessment-report-disaster-risk-latin-america-and-caribbean

Vélez, D.P.E., 2012. Comprobación de las correlaciones de la presión de expansión con las propiedades índices en suelos del sector Challuabamba, Cuenca, recomendaciones para la construcción de cimentaciones. Tesis de Maestría, Universidad de Cuenca, Ecuador.

Villagrán De León, J.C., 2006. Vulnerability: a conceptional and methodological review. Studies of the University: Research, Counsel, Education – Publication Series of UNU Institute for Environment and Human Security (UNU-EHS), No. 4/2006, Bonn, Germany. Disponible en: https://collections.unu.edu/view/unu:1871#viewAttachments

Xofi, M., Domingues, J.C., Santos, P.P., Pereira, S., Oliveira, S.C., Reis, E., Zêzere, J.L., Garcia, R.A.C., Lourenço, P.B., Ferreira, T. M., 2022. Exposure and physical vulnerability indicators to assess seismic risk in urban areas: a step towards a multi-hazard risk analysis. Geomatics, Natural Hazards and Risk 13(1), 1154-1177. https://doi.org/10.1080/19475705.2022.2068457

Younes, C.N., Erazo, M.E., 2016. Landslide susceptibility analysis using remote sensing and GIS in the western Ecuadorian Andes. Natural Hazards 81, 1829–1859. https://doi.org/10.1007/s11069-016-2157-8

Zapata-Ríos, X., Lopez-Fabara, C., Navarrete, A., Paguay-Torres, Flores, M., 2021. Spatiotemporal patterns of burned areas, fire drivers, and fire probability across the equatorial Andes. Journal of Mountain Science 18, 952–972. https://doi.org/10.1007/s11629-020-6402-y

Zorn, M., 2018. Natural Disasters and Less Developed Countries. In: S. Pelc, M. Koderman (Eds). Nature, Tourism and Ethnicity as Drivers of (De)Marginalization. Perspectives on Geographical Marginality, vol 3. Springer, Cham. https://doi.org/10.1007/978-3-319-59002-8_4

Published

28-03-2023

How to Cite

1.
Sacoto Flores MA, Sánchez-García C. Essential element vulnerabilities and comprehensive disaster risk assessment for urban planning and risk management in Azogues, Ecuador. CIG [Internet]. 2023 Mar. 28 [cited 2024 Apr. 27];49(1):163-90. Available from: https://publicaciones.unirioja.es/ojs/index.php/cig/article/view/5628

Issue

Section

Articles

Funding data