Soil erosion due to rainfall and the impacts of climate change in an Andean highland in Colombia

Authors

DOI:

https://doi.org/10.18172/cig.5667

Keywords:

decadal modified Fournier index, Mann-Kendall test, Climate trends, rainfall aggressiveness

Abstract

Trends and median slope of daily rainfall that can affect rainfall aggressiveness and cause erosion in the Bogotá - Duitama corridor were studied. For this, the daily records of 26 stations (35 years, from 1980 to 2014) were evaluated, using the Sen's statistic and the Mann-Kendall test with confidence levels higher than 90%. The studied area covered about 8,100 km2, located between 2,100 and 3,300 m a.s.l. in the Colombian Andes. Four stations with positive trends in median annual rainfall were found (from 6.90 mm/year to 28.80 mm/year) and one station with a decrease in median rainfall of -6.86 mm/year. In order to analyze the pluvial aggressiveness as the main agent of soil erosion, the Modified Fournier Indices (MFI) were generated for periods of 10 days. With the maximum decadal Modified Fournier Indices (MFIdmax) of each year, it was possible to establish the median positive trend (Sen) of rainfall aggressiveness in five stations and three stations with negative trends. Through the correlation between the degree of erosion with the square of the decadal average maximum values of each year (MFIdmax2) and the negative annual precipitation, a coefficient of determination (R2) greater than 0.50 was found. The validation of MFIdmax2 to explain the degree of soil erosion is a new useful methodology for land use planning and monitoring. In this way, developing countries have the possibility of using a tool to face the processes of pluvial erosion, vulnerability and adaptation to climate change.

Downloads

Download data is not yet available.

Author Biographies

Omar Jaramillo-Rodríguez, Independent investigator.

Geographer.

Wladimir Mejía-Ayala, Coordinator of postgraduate studies in Geography.

Pedagogical and Technological University of Colombia (UPTC) in agreement with the Agustín Codazzi Geographic Institute (IGAC).

References

Almagro, A., Oliveira, P.T.S., Nearing, M.A., Hagemann, S., 2017. Projected climate change impacts in rainfall erosivity over Brazil. Scientific Reports, 7(1). https://doi.org/10.1038/s41598-017-08298-y

Antelo R., Fernández, M., 2014. Estimación de datos faltantes de precipitación diaria para las distintas ecorregiones de la República Argentina. 1-13. https://www.ina.gov.ar/ifrh-2014/Eje3/3.02.pdf

Arias-Muñoz, P., Saz, M.A., Escolano, S., 2023. Estimation of soil erosion through the RUSLE model. Case study: upper-middle basin of Mira River in Andean-Ecuador. Investigaciones Geograficas 79, 207-230. https://doi.org/10.14198/INGEO.22390

Basher, L., Elliott, S., Hughes, A., Tait, A., Page, M., Rosser, B., McIvor, I., Douglas, G., Jones, H., 2012. Impacts of climate change on erosion and erosion control methods - A critical review. Final report (New Zealand Government, Ed.). Ministry for Primary Industries. https://www.mpi.govt.nz/dmsdocument/4074/direct

Borrelli, P., Robinson, D., Panagos, P., Lugato, E., Yang, J., Alewell, C., Wuepper, D., Montanarella, L., Ballabio, C., 2020. Land use and climate change impacts on global soil erosion by water (2015-2070). Proceedings of the National Academic of Sciences of the USA [PNAS], 117(36), 21994-22001. https://doi.org/10.1073/pnas.2001403117/-/DCSupplemental

Chow, V., Maidment, D., Mays, L., 1994. Hidrología aplicada (McGraw-Hill, Ed.). McGraw-Hill.

Clarke, R., 1984. Mathematical models in hydrology (FAO, Ed.). Food and Agriculture Organization of the United Nations (FAO).

di Lena, B., Curci, G., Vergni, L., 2021. Analysis of rainfall erosivity trends 1980–2018 in a complex terrain region (Abruzzo, central Italy) from rain gauges and gridded datasets. Atmosphere 12(6). https://doi.org/10.3390/atmos12060657

Eekhout, J., de Vente, J., 2020. How soil erosion model conceptualization affects soil los projections under climate change. Progress in Physical Geography: Earth and Environment 44(2), 212-232. https://doi.org/10.1177/0309133319871937

Fournier, F., 1960. Climat et érosion: la relation entre l’érosion du sol par l’eau et les précipitations atmosphériques (Presses universitaires de France, Ed.; 1st ed.). Presses universitaires de France.

Gallego, M., 2003. Estudio de la variabilidad climática en la península Ibérica [Tesis doctoral, Universidad de Extremadura]. https://dialnet.unirioja.es/descarga/tesis/256.pdf

Gómez, E., 1991. El potencial de erosión pluvial por período decadal y su manejo conservacionista. Zona suroccidental departamento de Antioquia (Metodología de Fournier). Boletín de Ciencias de La Tierra 10, 1-21. https://revistas.unal.edu.co/index.php/rbct/article/ view/94915

Gómez, E., 1999. Procesos erosivos: Estrategias para su caracterización e implementación de sus prácticas básicas de control y prevención (Universidad Nacional de Colombia, Ed.). Universidad Nacional de Colombia.

Hudson, N., 1982. Conservación del suelo (Reverté S.A., Ed.). Reverté.

Instituto de Hidrología, M. y E.A. [IDEAM], Ministerio de Ambiente y Desarrollo Sostenible, Universidad de Ciencias Aplicadas y Ambientales [UDCA], 2015. Estudio nacional de la degradación de suelos por erosión en Colombia (IDEAM & UDCA, Eds.). IDEAM y UDCA.

Instituto Geográfico Agustín Codazzi [IGAC], 2014. Conclusiones - Glosario. In IGAC (Ed.), Nombres geográficos de Colombia: Región Cundiboyacense, datos pertinentes del proceso de apropiación y socialización del territorio. Imprenta Nacional de Colombia.

Kendall, M.G., 1948. Rank correlation methods (Charles Griffin & Company Limited, Ed.). http://125.22.75.155:8080/view/web/viewer.html?file=/bitstream/123456789/11758/1/Rank%20Correlation%20Methods.pdf

Lal, R., Monger, C., Nave, L., Smith, P., 2021. The role of soil in regulation of climate. Royal Society, B (376), 20210084. https://doi.org/10.1098/rstb.2021.0084

Lamprea Quiroga, P.S., Sanabria Marin, R., 2020. Teoría general de sistemas en el diálogo del conocimiento campesino del altiplano cundiboyacense colombiano con las ciencias edáfica y climática. Perspectiva Geográfica 25(2), 34-55. https://doi.org/10.19053/01233769.9283

Linsley, R., Kohler, M., Paulus, J., 1977. Hidrología para ingenieros (McGraw-Hill Latinoamericana S.A., Ed.; 2.a). McGraw-Hill.

Mann, H.B., 1945. Nonparametric Tests Against Trend. Econometrica 13(3). https://doi.org/10.2307/1907187

Medina, R., Montoya, C., Jaramillo, A., 2008. Estimación estadística de valores faltantes en series históricas de lluvia. Cenicafé 59(3), 260-273.

National Oceanic and Atmospheric Administration [NOAA], 2021, April 1. The Oceanic El Niño Index (ONI). http://www.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ ensoyears.shtml

Pal, I., 2009. Rainfall trends in India and their impact on soil erosion and land management. Thesis Doctor of Philosophy, University of Cambridge. https://doi.org/10.17863/CAM.13976

Renard, K., Freimund, J., 1994. Using monthly precipitation data to estimate the R-factor in the revised USLE. Journal of Hydrology 157, 287-306.

Rojas, E., Arce, B., Peña, A., Boschell, F., Ayarza, M., 2010. Cuantificación e interpolación de tendencias locales de temperaturas y precipitaciones en zonas alto andinas de Cundinamarca y Boyacá (Colombia). Corpoica. Ciencia y Tecnología Agropecuaria 11(2), 173-182. http://www.redalyc.org/articulo.oa?id=449945029009

Sen, P.K., 1968. Estimates of regression coefficient base on Kendall’s Tau. Journal of American Statistical Association 63(324), 1379-1389. https://www.pacificclimate.org/~wernera/zyp/ Sen%201968%20JASA.pdf

Suresh, R., 2008. Watershed hydrology. Principles of hydrology. A. K. Jain & Standard Publishers Distributions.

Valdés-Pineda, R., Pizarro, R., Valdés, J., Carrasco, P., García-Chevesich, P., Olivares, C., 2016. Spatio-temporal trends of precipitation, its aggressiveness and concentration, along the Pacific coast of South América (36–49°S). Hydrological Sciences Journal 61(11), 2110-2132. https://doi.org/10.1080/02626667.2015.1085989

Várallyay, G., 2010. The impact of climate change on soils and on their water management. In Agronomy Research (Vol. 8). http://agronomy.emu.ee/vol08Spec2/p08s214.pdf

Xiaofei, M., Chengyi, Z., Jianting Z., 2021. Aggravated risk of soil erosion with global warming. A global meta-analysis. Catena 200, 105129. https://doi.org/10.1016/j.catena.2020.105129

Downloads

Published

13-11-2023

How to Cite

1.
Lamprea-Quiroga PS, Jaramillo-Rodríguez O, Mejía-Ayala W. Soil erosion due to rainfall and the impacts of climate change in an Andean highland in Colombia. CIG [Internet]. 2023 Nov. 13 [cited 2024 Apr. 28];49(2):83-99. Available from: https://publicaciones.unirioja.es/ojs/index.php/cig/article/view/5667