Burying the carbon to dig up the future
Reviewing the role of Geography in valuing soil carbon ecosystem services
DOI:
https://doi.org/10.18172/cig.5767Keywords:
Soil Carbon Sequestration, Soil Carbon Markets, Environmental Geography, Climate Change Mitigation, Land Management PracticesAbstract
Soil carbon sequestration presents a pathway towards climate change mitigation and adaptation while also fostering sustainable socio-economic development. The emergence of soil carbon markets, which monetize carbon capture and land management practices, has given new impetus to this area of study. However, the intersection of environmental, social, and economic systems inherent to soil carbon markets introduces significant complexities. To understand the research landscape and the prevailing themes within the field, we conducted a systematic literature review, sourcing articles from the Web of Science and SCOPUS databases that focused on soil carbon markets, published between January 2017 and august 2023. Our analysis revealed three primary research themes emerged: 1) Soil Ecosystem Services (61%), closely associated with the agricultural and environmental sciences; 2) Environmental Economics (21%) show the growing focus on economic valuation of ecosystem services since the Paris Agreement; and 3) Exploratory Analyses (18%) highlight recent efforts in dealing with the complex network of environmental, social, economic, political and cultural factors. However, these areas of research are often treated separately, reflecting a broader disconnect between natural and social sciences: Geography, uniquely positioned at the intersection of natural and social sciences, could bridge this divide. Through a geographical lens, one can better comprehend drivers behind land management and land-use changes and how they relate to environmental indicators and soil carbon markets. In the social sciences, cultural aspects that shape soil management practices, farmers' relationships with land and markets, and their engagement with soil carbon markets could be examined to predict actions towards improving environmental performance indicators. These settings are highly local, influenced by factors like land tenure rights, landscape ecology, political settings, and power dynamics. Geography's role extends beyond merely understanding these local factors. It also involves studying 'space' and 'place', concepts that are crucial in the context of soil carbon markets. Within the framework of complexity theory and spatial agent-based modelling for socio-ecological systems, Geography can provide valuable insights into how different entities within soil carbon markets interact and influence each other. In the context of climate change, soil ecosystem services, and by extension soil carbon markets, can influence social and economic vulnerabilities. An integrated study of land use, management practices, and their impact on soil ecosystem services, using both quantitative and qualitative approaches, can provide insights into social behaviour and ecosystem responses over time.
Downloads
References
Aba, S.C., Ndukwe, O., Amu, C.J., Baiyeri, K.P., 2017. The role of trees and plantation agriculture in mitigating global climate change. African Journal of Food, Agriculture, Nutrition and Development 17 (4), 12691-12707. https://doi.org/10.18697/ajfand.80.15500 DOI: https://doi.org/10.18697/ajfand.80.15500
Aguilera, E., Lassaletta, L., Gattinger, A., Gimeno, B.S., 2013. Managing soil carbon for climate change mitigation and adaptation in Mediterranean cropping systems: A meta-analysis. Agriculture, Ecosystems and Environment 168, 25-36. https://doi.org/10.1016/j.agee.2013.02.003 DOI: https://doi.org/10.1016/j.agee.2013.02.003
An, L., Grimm, V., Sullivan, A., Turner II, B.L., Malleson, N., Heppenstall, A., Vincenot, C., Robinson, D., Ye, X., Liu, J., Lindkvist, E., Tang, W., 2021. Challenges, tasks, and opportunities in modeling agent-based complex systems. Ecological Modelling 457. https://doi.org/10.1016/j.ecolmodel.2021.109685 DOI: https://doi.org/10.1016/j.ecolmodel.2021.109685
Arneth, A., Sitch, S., Pongratz, J., Stocker, B.D., Ciais, P., Poulter, B., Bayer, A.D., Bondeau, A., Calle, L., Chini, L.P., Gasser, T., Fader, M., Friedlingstein, P., Kato, E., Li, W., Lindeskog, M., Nabel, J.E.M.S., Pugh, T.A.M., Robertson, E., Viovi, N., Yue, C., Zaehle, S., 2017. Historical carbon dioxide emissions caused by land-use changes are possibly larger than assumed. Nature Geoscience 10(2), 79-84. https://doi.org/10.1038/ngeo2882 DOI: https://doi.org/10.1038/ngeo2882
Auerbach, R., 2018. Sustainable food systems for Africa. Economia Agro-Alimentare 20 (3), 301-320. https://doi.org/10.3280/ECAG2018-003003 DOI: https://doi.org/10.3280/ECAG2018-003003
Balume Kayani, I., Agumas, B., Musyoki, M., Nziguheba, G., Marohn, C., Benz, M., Vanlauwe, B., Cadisch, G., Rasche, F., 2021. Market access and resource endowment define the soil fertility status of smallholder farming systems of South-Kivu, DR Congo. Soil use and Management 37 (2), 353-366. https://doi.org/10.1111/sum.12691 DOI: https://doi.org/10.1111/sum.12691
Banerjee, K., Mitra, A., Villasante, S., 2021. Carbon cycling in mangrove ecosystem of western Bay of Bengal (India). Sustainability 13 (12). https://doi.org/10.3390/su13126740 DOI: https://doi.org/10.3390/su13126740
Baumber, A., Metternicht, G., Cross, R., Ruoso, L.-E., Cowie, A.L., Waters, C., 2019. Promoting co-benefits of carbon farming in Oceania: Applying and adapting approaches and metrics from existing market-based schemes. Ecosystem Services 39. https://doi.org/10.1016/j.ecoser.2019.100982 DOI: https://doi.org/10.1016/j.ecoser.2019.100982
Beni, C., Neri, U., Papetti, P., Altimari, A., 2021. Natural horticultural systems in organic farming as a tool for resilience: Improvement of economic performance and prevention of soil erosion. Agroecology and Sustainable Food Systems 45 (9), 1375-1398. https://doi.org/10.1080/21683565.2021.1929657 DOI: https://doi.org/10.1080/21683565.2021.1929657
Berazneva, J., Conrad, J. M., Güereña, D.T., Lehmann, J., Woolf, D, 2019. Agricultural Productivity and Soil Carbon Dynamics: A Bioeconomic Model. American Journal of Agricultural Economics 101 (4), 1021-1046. https://doi.org/10.1093/ajae/aaz014 DOI: https://doi.org/10.1093/ajae/aaz014
Bhattacharyya, S.S., Leite, F.F.G.D., Adeyemi, M.A., Sarker, A.J., Cambareri, G.S., Faverin, C., Tieri, M.P., Castillo-Zacarias, C., Melchor-Martinez, E.M., Iqbal, H M.N., Parra-Saldivar, R., 2021. A paradigm shift to CO2 sequestration to manage global warming—With the emphasis on developing countries. Science of the Total Environment 790. https://doi.org/10.1016/j.scitotenv.2021.148169 DOI: https://doi.org/10.1016/j.scitotenv.2021.148169
Biggs, N.B., Hafner, J., Mashiri, F.E., Huntsinger, L., Lambin, E.F., 2021. Payments for ecosystem services within the hybrid governance model: Evaluating policy alignment and complementarity on California rangelands. Ecology and Society 26 (1). https://doi.org/10.5751/ES-12254-260119 DOI: https://doi.org/10.5751/ES-12254-260119
Black, H.I.J., Reed, M S., Kendall, H., Parkhurst, R., Cannon, N., Chapman, P.J., Orman, M., Phelps, J., Rudman, H., Whalley, S., Yeluripati, J., Ziv, G., 2022. What makes an operational farm soil carbon code? Insights from a global comparison of existing soil carbon codes using a structured analytical framework. Carbon Management 13 (1), 554-580. https://doi.org/10.1080/17583004.2022.2135459 DOI: https://doi.org/10.1080/17583004.2022.2135459
Blackburn, J., Mooiweer, H., Parks, M., Hutson, A., 2018. The Soil Value Exchange: Unlocking nature’s value via the market. Bulletin of the Atomic Scientists 74 (3), 62-169). https://doi.org/10.1080/00963402.2018.1461974 DOI: https://doi.org/10.1080/00963402.2018.1461974
Bouzouidja, R., Bechet, B., Hanzlikova, J., Snehota, M., Le Guern, C., Capiaux, H., Jean-Soro, L., Claverie, R., Joimel, S., Schwartz, C., Guenon, R., Szkordilisz, F., Kormondi, B., Musy, M., Cannavo, P., Lebeau, T., 2021. Simplified performance assessment methodology for addressing soil quality of nature-based solutions. Journal of Soils and Sediments 21 (5) 1909-1927. https://doi.org/10.1007/s11368-020-02731-y DOI: https://doi.org/10.1007/s11368-020-02731-y
Brancalion, P.H.S., Guillemot, J., César, R.G., Andrade, H.S., Mendes, A., Sorrini, T. B., Piccolo, M. D.C., Peluci, M.C., Moreno, V.D.S., Colletta, G., Chazdon, R.L. 2021. The cost of restoring carbon stocks in Brazil’s Atlantic Forest. Land Degradation and Development 32 (2), 830-841. https://doi.org/10.1002/ldr.3764 DOI: https://doi.org/10.1002/ldr.3764
Brill, S., 2021. A story of its own: Creating singular gift-commodities for voluntary carbon markets. Journal of Cultural Economy 14 (3), 332-343. https://doi.org/10.1080/17530350.2020.1864448 DOI: https://doi.org/10.1080/17530350.2020.1864448
Bristow, M., Hutley, L.B., Beringer, J., Livesley, S.J., Edwards, A C., Arndt, S.K., 2016. Quantifying the relative importance of greenhouse gas emissions from current and future savanna land use change across northern Australia. Biogeosciences 13(22), 6285-6303. https://doi.org/10.5194/bg-13-6285-2016 DOI: https://doi.org/10.5194/bg-13-6285-2016
Camarena, S., 2021. Engaging with Artificial Intelligence (AI) with a Bottom-Up Approach for the Purpose of Sustainability: Victorian Farmers Market Association, Melbourne Australia. Sustainability 13 (16). https://doi.org/10.3390/su13169314 DOI: https://doi.org/10.3390/su13169314
Carlos Alias, J., Antonio Mejias, J., Chaves, N., 2022. Effect of Cropland Abandonment on Soil Carbon Stock in an Agroforestry System in Southwestern Spain. Land 11 (3). https://doi.org/10.3390/land11030425 DOI: https://doi.org/10.3390/land11030425
Cerqueira, H., 2021. Sequestro de Carbono no Solo: Mitigação das Alterações Climáticas em Ecossistemas Mediterrâneos [Universidade Nova de Lisboa - Faculdade de Ciências Sociais e Humanas]. https://doi.org/10.13140/RG.2.2.24240.28167
Chen, Y., Kou, W., Ma, X., Wei, X., Gong, M., Yin, X., Li, J., Li, J., 2022. Estimation of the Value of Forest Ecosystem Services in Pudacuo National Park, China. Sustainability 14 (17). https://doi.org/10.3390/su141710550 DOI: https://doi.org/10.3390/su141710550
Chizmar, S.J., Parajuli, R., Bardon, R., Cubbage, F., 2021. State Cost-Share Programs for Forest Landowners in the Southern United States: A Review. Journal of Forestry 119 (2), 177-195. https://doi.org/10.1093/jofore/fvaa054 DOI: https://doi.org/10.1093/jofore/fvaa054
Chopin, P., Sierra, J., 2021. Potential and constraints for applying the “4 per 1000 Initiative” in the Caribbean: The case of Guadeloupe. Regional Environmental Change 21 (1). https://doi.org/10.1007/s10113-020-01740-4 DOI: https://doi.org/10.1007/s10113-020-01740-4
Contasti, A.L., Firth, A.G., Baker, B.H., Brooks, J.P., Locke, M.A., Morin, D.J., 2023. Balancing Tradeoffs in Climate-Smart Agriculture: Will Selling Carbon Credits Offset Potential Losses in the Net Yield Income of Small-Scale Soybean (Glycine max L.) Producers in the Mid-Southern United States? Decision Analysis. Informs. https://doi.org/10.1287/deca.2023.0478 DOI: https://doi.org/10.1287/deca.2023.0478
Correia, P. J., Pestana, M., 2018. Exploratory analysis of the productivity of carob tree (Ceratonia siliqua) orchards conducted under dry-farming conditions. Sustainability 10 (7). https://doi.org/10.3390/su10072250 DOI: https://doi.org/10.3390/su10072250
Costantini, E.A.C., Antichi, D., Almagro, M., Hedlund, K., Sarno, G., Virto, I., 2020. Local adaptation strategies to increase or maintain soil organic carbon content under arable farming in Europe: Inspirational ideas for setting operational groups within the European innovation partnership. Journal of Rural Studies 79, 102-115. https://doi.org/10.1016/j.jrurstud.2020.08.005 DOI: https://doi.org/10.1016/j.jrurstud.2020.08.005
Davis, B.A., 2023. A climate solution on shaky ground: the voluntary carbon market and agricultural sequestration. University of Illinois Law Review 3, 955-990.
De Leijster, V., Verburg, R.W., Santos, M.J., Wassen, M.J., Martinez-Mena, M., de Vente, J., Verweij, P.A., 2020. Almond farm profitability under agroecological management in southeastern Spain: Accounting for externalities and opportunity costs. Agricultural Systems 183. https://doi.org/10.1016/j.agsy.2020.102878 DOI: https://doi.org/10.1016/j.agsy.2020.102878
Drews, M., Larsen, M.A.D., Balderrama, J.G.P., 2020. Projected water usage and land-use-change emissions from biomass production (2015-2050). Energy Strategy Reviews 29, 100487. https://doi.org/10.1016/j.esr.2020.100487 DOI: https://doi.org/10.1016/j.esr.2020.100487
Duncan, C., Primavera, J.H., Hill, N.A.O., Wodehouse, D.C.J., Koldewey, H.J., 2022. Potential for Return on Investment in Rehabilitation-Oriented Blue Carbon Projects: Accounting Methodologies and Project Strategies. Frontiers in Forests and Global Change 4. https://doi.org/10.3389/ffgc.2021.775341 DOI: https://doi.org/10.3389/ffgc.2021.775341
Dybala, K.E., Steger, K., Walsh, R.G., Smart, D.R., Gardali, T., Seavy, N.E., 2019. Optimizing carbon storage and biodiversity co-benefits in reforested riparian zones. Journal of Applied Ecology 56 (2), 343-353. https://doi.org/10.1111/1365-2664.13272 DOI: https://doi.org/10.1111/1365-2664.13272
Englund, O., Dimitriou, I., Dale, V.H., Kline, K.L., Mola-Yudego, B., Murphy, F., English, B., McGrath, J., Busch, G., Negri, M.C., Brown, M., Goss, K., Jackson, S., Parish, E., Cacho, J., Zumpf, C., Quinn, J., Mishra, S.K., 2020. Multifunctional perennial production systems for bioenergy: Performance and progress. Energy and Environment 9 (5). https://doi.org/10.1002/wene.375 DOI: https://doi.org/10.1002/wene.375
Fargione, J.E., Bassett, S., Boucher, T., Bridgham, S.D., Conant, R.T., Cook-Patton, S.C., Ellis, P.W., Falcucci, A., Fourqurean, J.W., Gopalakrishna, T., Gu, H., Henderson, B., Hurteau, M.D., Kroeger, K.D., Kroeger, T., Lark, T.J., Leavitt, S.M., Lomax, G., McDonald, R.,I., … Griscom, B.W., 2018. Natural climate solutions for the United States. Science Advances 4 (11). https://doi.org/10.1126/sciadv.aat1869 DOI: https://doi.org/10.1126/sciadv.aat1869
Fearnehough, H., Kachi, A., Mooldijk, S., Warnecke, C., Schneider, L., 2020. Future role for voluntary carbon markets in the Paris era - Final Report (p. 94). https://www.dehst.de/SharedDocs/news/EN/future-role-for-voluntary-carbon-markets.html
Feliciano, D., 2022. Factors influencing the adoption of sustainable agricultural practices: The case of seven horticultural farms in the United Kingdom. Scottish Geographical Journal 138 (3-4), 291-320). https://doi.org/10.1080/14702541.2022.2151041 DOI: https://doi.org/10.1080/14702541.2022.2151041
Felton, M., Jones, P., Tranter, R., Clark, J., Quaife, T., Lukac, M., 2023. Farmers’ attitudes towards, and intentions to adopt, agroforestry on farms in lowland South-East and East England. Land Use Policy 131. https://doi.org/10.1016/j.landusepol.2023.106668 DOI: https://doi.org/10.1016/j.landusepol.2023.106668
Fleischman, F., Basant, S., Chhatre, A., Coleman, E.A., Fischer, H.W., Gupta, D., Güneralp, B., Kashwan, P., Khatri, D., Muscarella, R., Powers, J.S., Ramprasad, V., Rana, P., Solorzano, C.R., Veldman, J.W., 2020. Pitfalls of Tree Planting Show Why We Need People-Centered Natural Climate Solutions. BioScience 70 (11), 947-950. https://doi.org/10.1093/biosci/biaa094 DOI: https://doi.org/10.1093/biosci/biaa094
Franceschinis, C., Liebe, U., Thiene, M., Meyerhoff, J., Field, D., McBratney, A., 2022. The effect of social and personal norms on stated preferences for multiple soil functions: Evidence from Australia and Italy. Australian of Agricultural and Resource Economics 66 (2), 335-362. https://doi.org/10.1111/1467-8489.12466 DOI: https://doi.org/10.1111/1467-8489.12466
Geng, J., Liang, C., 2021. Analysis of the internal relationship between ecological value and economic value based on the forest resources in China. Sustainability 13 (12). https://doi.org/10.3390/su13126795 DOI: https://doi.org/10.3390/su13126795
Gomes, E., Abrantes, P., Banos, A., Rocha, J., Buxton, M., 2019. Farming under urban pressure: Farmers’ land use and land cover change intentions. Applied Geography 102, 58-70. https://doi.org/10.1016/j.apgeog.2018.12.009 DOI: https://doi.org/10.1016/j.apgeog.2018.12.009
Gotts, N.M., van Voorn, G.A.K., Polhill, J.G., Jong, E. de, Edmonds, B., Hofstede, G.J., Meyer, R., 2019. Agent-based modelling of socio-ecological systems: Models, projects and ontologies. Ecological Complexity 40. https://doi.org/10.1016/j.ecocom.2018.07.007 DOI: https://doi.org/10.1016/j.ecocom.2018.07.007
Gramig, B.M., Widmar, N.J.O., 2018. Farmer preferences for agricultural soil carbon sequestration schemes. Applied Economic Perspectives and Policy 40 (3), 502-521. https://doi.org/10.1093/aepp/ppx041 DOI: https://doi.org/10.1093/aepp/ppx041
Groshans, G.R., Mikhailova, E.A., Post, C.J., Schlautman, M.A., Zurqani, H.A., Zhang, L., 2018. Assessing the Value of Soil Inorganic Carbon for Ecosystem Services in the Contiguous United States Based on Liming Replacement Costs. Land 7 (4). https://doi.org/10.3390/land7040149 DOI: https://doi.org/10.3390/land7040149
Hermann, D., Sauthoff, S., Musshoff, O., 2017. Ex-ante evaluation of policy measures to enhance carbon sequestration in agricultural soils. Ecological Economics 140, 241-250. https://doi.org/10.1016/j.ecolecon.2017.05.018 DOI: https://doi.org/10.1016/j.ecolecon.2017.05.018
Hutchison, L.M., Pollack, J.B., Swanson, K., Yoskowitz, D., 2018. Operationalizing Blue Carbon in the Mission-Aransas National Estuarine Research Reserve, Texas. Coastal Management 46 (4), 278-296. https://doi.org/10.1080/08920753.2018.1474068 DOI: https://doi.org/10.1080/08920753.2018.1474068
IATP, 2020. Why Carbon Markets Won’t work for Agriculture. https://www.iatp.org/documents/why-carbon-markets-wont-work-agriculture
IPCC, 2014. Climate change 2014 - Mitigation of climate change. In O. Edenhofer, R. Pichs-Madruga, E. F. Y. Sokona, S. Kadner, K. Seyboth, A. Adler, I. Baum, S. Brunner, P. Eickemeier, B. Kriemann, J. Savolainen, S. Schlömer, C. von Stechow, T. Zwickel, J.C. Minx (Eds.). Climate Change 2014 Mitigation of Climate Change. Cambridge University Press. https://doi.org/10.1017/CBO9780511546013 DOI: https://doi.org/10.1017/CBO9780511546013
Jacobs, H., Gupta, A., Möller, I., 2023. Governing-by-aspiration? Assessing the nature and implications of including negative emission technologies (NETs) in country long-term climate strategies. Global Environmental Change, 81. https://doi.org/10.1016/j.gloenvcha.2023.102691 DOI: https://doi.org/10.1016/j.gloenvcha.2023.102691
Jafarzadeh, A.A., Mahdavi, A., Shamsi, S.R.F., Yousefpour, R., 2021. Assessing synergies and trade-offs between ecosystem services in forest landscape management. Land Use Policy, 111. https://doi.org/10.1016/j.landusepol.2021.105741 DOI: https://doi.org/10.1016/j.landusepol.2021.105741
Jin, E., Sutherland, J.W., 2018. An integrated sustainability model for a bioenergy system: Forest residues for electricity generation. Biomass & Bioenergy 119, 10-21. https://doi.org/10.1016/j.biombioe.2018.09.005 DOI: https://doi.org/10.1016/j.biombioe.2018.09.005
Johansson, E.L., Brogaard, S., Brodin, L., 2022. Envisioning sustainable carbon sequestration in Swedish farmland. Environmental Science and Policy 135, 16-25. https://doi.org/10.1016/j.envsci.2022.04.005 DOI: https://doi.org/10.1016/j.envsci.2022.04.005
Kallio, G., LaFleur, W., 2023. Ways of (un)knowing landscapes: Tracing more-than-human relations in regenerative agriculture. Journal of Rural Studies 101. https://doi.org/10.1016/j.jrurstud.2023.103059 DOI: https://doi.org/10.1016/j.jrurstud.2023.103059
Kay, S., Graves, A., Palma, J. H. N., Moreno, G., Roces-Díaz, J V., Aviron, S., Chouvardas, D., Crous-Duran, J., Ferreiro-Domínguez, N., García de Jalón, S., Măcicăşan, V., Mosquera-Losada, M.R., Pantera, A., Santiago-Freijanes, J.J., Szerencsits, E., Torralba, M., Burgess, P.J., Herzog, F., 2019. Agroforestry is paying off – Economic evaluation of ecosystem services in European landscapes with and without agroforestry systems. Ecosystem Services 36. https://doi.org/10.1016/j.ecoser.2019.100896 DOI: https://doi.org/10.1016/j.ecoser.2019.100896
Keenor, S.G., Rodrigues, A.F., Mao, L., Latawiec, A.E., Harwood, A.R., Reid, B.J., 2021. Capturing a soil carbon economy. Royal Society Open Science 8 (4), 202305. https://doi.org/10.1098/rsos.202305 DOI: https://doi.org/10.1098/rsos.202305
Kirkby, M., 2021. Desertification and development: Some broader contexts. Journal of Arid Environments 193. https://doi.org/10.1016/j.jaridenv.2021.104575 DOI: https://doi.org/10.1016/j.jaridenv.2021.104575
Kitaibekova, S., Toktassynov, Z., Sarsekova, D., Mohammadi Limaei, S., Zhilkibayeva, E., 2023. Assessment of Forest Ecosystem Services in Burabay National Park, Kazakhstan: A Case Study. Sustainability 15, (5). https://doi.org/10.3390/su15054123 DOI: https://doi.org/10.3390/su15054123
Lal, R., 2004. Soil Carbon Sequestration Impacts on Global Climate Change and Food Security. Science 304, 1623-1627. DOI: https://doi.org/10.1126/science.1097396
Lal, R., 2010. Beyond Copenhagen: Mitigating climate change and achieving food security through soil carbon sequestration. Food Security 2(2), 169-177. https://doi.org/10.1007/s12571-010-0060-9 DOI: https://doi.org/10.1007/s12571-010-0060-9
Lal, R., 2020. The role of industry and the private sector in promoting the “4 per 1000” initiative and other negative emission technologies. Geoderma 378. https://doi.org/10.1016/j.geoderma.2020.114613 DOI: https://doi.org/10.1016/j.geoderma.2020.114613
Lal, R., Ussiri, D., 2017. Carbon Sequestration for Climate Change Mitigation and Adaptation. Springer. https://doi.org/10.1007/978-3-319-53845-7 DOI: https://doi.org/10.1007/978-3-319-53845-7
Le, N.N., Pham, T.D., Yokoya, N., Ha, N.T., Nguyen, T.T.T., Tran, T.D.T., Pham, T.D., 2021. Learning from multimodal and multisensor earth observation dataset for improving estimates of mangrove soil organic carbon in Vietnam. International Journal of Remote Sensing 42 (18), 6866-6890. https://doi.org/10.1080/01431161.2021.1945158 DOI: https://doi.org/10.1080/01431161.2021.1945158
Li, Z., Qi, Z., Jiang, Q., Sima, N., 2021. An economic analysis software for evaluating best management practices to mitigate greenhouse gas emissions from cropland. Agricultural Systems 186, 102950. https://doi.org/10.1016/j.agsy.2020.102950 DOI: https://doi.org/10.1016/j.agsy.2020.102950
Liu, Y., Bi, Y., Xie, Y., Zhao, X., He, D., Wang, S., Wang, C., Guo, T., Xing, G., 2020. Successive straw biochar amendments reduce nitrous oxide emissions but do not improve the net ecosystem economic benefit in an alkaline sandy loam under a wheat-maize cropping system. Land Degradation and Development 31 (7), 868-883. https://doi.org/10.1002/ldr.3495 DOI: https://doi.org/10.1002/ldr.3495
Lobell, D.B., Baldos, U.L.C., Hertel, T. W., 2013. Climate adaptation as mitigation: The case of agricultural investments. Environmental Research Letters 8(1), 12. https://doi.org/10.1088/1748-9326/8/1/015012 DOI: https://doi.org/10.1088/1748-9326/8/1/015012
Lopes, F., Amaral, B., 2021. O valor do recreio florestal nos parques florestais Açorianos; [The value of forest recreation in Azorean public parks]. Revista de Economia e Sociologia Rural 59 (1), 1-10. https://doi.org/10.1590/1806-9479.2021.238884 DOI: https://doi.org/10.1590/1806-9479.2021.238884
Lundholm, A., Black, K., Corrigan, E., Nieuwenhuis, M., 2020. Evaluating the Impact of Future Global Climate Change and Bioeconomy Scenarios on Ecosystem Services Using a Strategic Forest Management Decision Support System. Frontiers in Ecology and Evolution 8, 200. https://doi.org/10.3389/fevo.2020.00200 DOI: https://doi.org/10.3389/fevo.2020.00200
Marks, A. B., 2020. (Carbon) farming our way out of climate change. Denver Law Review 97 (3), 497-556.
Michaelowa, A., Hermwille, L., Obergassel, W., Butzengeiger, S., 2019. Additionality revisited: guarding the integrity of market mechanisms under the Paris Agreement. Climate Policy 3062. https://doi.org/10.1080/14693062.2019.1628695 DOI: https://doi.org/10.1080/14693062.2019.1628695
Molajou, A., Pouladi, P., Afshar, A., 2021. Incorporating Social System into Water-Food-Energy Nexus. Water Resources Management 35 (13), 4561-4580. https://doi.org/10.1007/s11269-021-02967-4 DOI: https://doi.org/10.1007/s11269-021-02967-4
Moran-Rodas, V.E., Preusse, V., Wachendorf, C., 2022. Agricultural Management Practices and Decision-Making in View of Soil Organic Matter in the Urbanizing Region of Bangalore. Sustainability 14 (10). https://doi.org/10.3390/su14105775 DOI: https://doi.org/10.3390/su14105775
Mouratiadou, I., Stella, T., Gaiser, T., Wicke, B., Nendel, C., Ewert, F., Hilst, F., 2019. Sustainable intensification of crop residue exploitation for bioenergy: Opportunities and challenges. GCB Bioenergy 12(1), 71-89. https://doi.org/10.1111/gcbb.12649 DOI: https://doi.org/10.1111/gcbb.12649
Nunes, S., Gastauer, M., Cavalcante, R.B.L., Ramos, S.J., Caldeira Jr, C.F., Silva, D., Rodrigues, R.R., Salomao, R., Oliveira, M., Souza-Filho, P.W.M., Siqueira, J.O., 2020. Challenges and opportunities for large-scale reforestation in the Eastern Amazon using native species. Forest Ecology and Management 466. https://doi.org/10.1016/j.foreco.2020.118120 DOI: https://doi.org/10.1016/j.foreco.2020.118120
Odote, C., 2019. Implications of the Ecosystem-Based Approach to Wetlands Management on the Kenyan Coast. Publications on Ocean Development 87, 413-442). https://doi.org/10.1163/9789004389984_014 DOI: https://doi.org/10.1163/9789004389984_014
O’Sullivan, L., Wall, D., Creamer, R., Bampa, F., Schulte, R.P.O., 2018. Functional Land Management: Bridging the Think-Do-Gap using a multi-stakeholder science policy interface. Ambio 47 (2), 216-230. https://doi.org/10.1007/s13280-017-0983-x DOI: https://doi.org/10.1007/s13280-017-0983-x
Otte, P.P., Vik, J., 2017. Biochar systems: Developing a socio-technical system framework for biochar production in Norway. Technology in Society 51, 34-45. https://doi.org/10.1016/j.techsoc.2017.07.004 DOI: https://doi.org/10.1016/j.techsoc.2017.07.004
Parish, E.S., Karlen, D.L., Kline, K.L., Comer, K.S., Belden, W.W., 2023. Designing Iowa Agricultural Landscapes to Improve Environmental Co-Benefits of Bioenergy Production. Sustainability 15 (13). https://doi.org/10.3390/su151310051 DOI: https://doi.org/10.3390/su151310051
Parron, L.M., Villanueva, A.J., Glenk, K., 2022. Estimating the value of ecosystem services in agricultural landscapes amid intensification pressures: The Brazilian case. Ecosystem Services 57. https://doi.org/10.1016/j.ecoser.2022.101476 DOI: https://doi.org/10.1016/j.ecoser.2022.101476
Partey, S.T., Zougmore, R.B., Ouedraogo, M., Thevathasan, N.V., 2017. Why Promote Improved Fallows as a Climate-Smart Agroforestry Technology in Sub-Saharan Africa? Sustainability 9 (11). https://doi.org/10.3390/su9111887 DOI: https://doi.org/10.3390/su9111887
Pellerin, S., Bamière, L., Angers, D., Béline, F., Benoit, M., Butault, J.P., Chenu, C., Colnenne-David, C., Cara, S.D., Delame, N., Doreau, M., Dupraz, P., Faverdin, P., Garcia-Launay, F., Hassouna, M., Hénault, C., Jeuffroy, M.-H., Klumpp, K., Metay, A., … Chemineau, P., 2017. Identifying cost-competitive greenhouse gas mitigation potential of French agriculture. Environmental Science & Policy 77, 130-139. https://doi.org/10.1016/j.envsci.2017.08.003 DOI: https://doi.org/10.1016/j.envsci.2017.08.003
Persiani, A., Diacono, M., Montemurro, F., 2023. Agroecological practices in organic fennel cultivation to improve environmental sustainability. Agroecology and Sustainable Food Systems 47 (5), 668-686. https://doi.org/10.1080/21683565.2023.2180699 DOI: https://doi.org/10.1080/21683565.2023.2180699
Priori, S., Barbetti, R., Meini, L., Morelli, A., Zampolli, A., D’Avino, L., 2019. Towards economic land evaluation at the farm scale based on soil physical-hydrological features and ecosystem services. Water 11 (8). https://doi.org/10.3390/w11081527 DOI: https://doi.org/10.3390/w11081527
Rodrigues, S., Horan, E., 2018. The Role of Biochar in Sustainable Agriculture, and Climate Change Mitigation for Sustainable Cities. World Sustainability Series, pp. 437-447. https://doi.org/10.1007/978-3-319-73293-0_25 DOI: https://doi.org/10.1007/978-3-319-73293-0_25
Roy, O., Meena, R.S., Kumar, S., Jhariya, M.K., Pradhan, G., 2022. Assessment of land use systems for CO2 sequestration, carbon credit potential, and income security in Vindhyan region, India. Land Degradation and Development 33 (4), 670-682. https://doi.org/10.1002/ldr.4181 DOI: https://doi.org/10.1002/ldr.4181
Rudolf, K., Hennings, N., Dippold, M.A., Edison, E., Wollni, M., 2021. Improving economic and environmental outcomes in oil palm smallholdings: The relationship between mulching, soil properties and yields. Agricultural Systems 193. https://doi.org/10.1016/j.agsy.2021.103242 DOI: https://doi.org/10.1016/j.agsy.2021.103242
Rumpel, C., Amiraslani, F., Chenu, C., Garcia Cardenas, M., Kaonga, M., Koutika, L.S., Ladha, J., Madari, B., Shirato, Y., Smith, P., Soudi, B., Soussana, J.F., Whitehead, D., Wollenberg, E., Cardenas, M.G., Kaonga, M., Koutika, L.S., Ladha, J., Madari, B., …Wollenberg, E., 2020. The 4p1000 initiative: Opportunities, limitations and challenges for implementing soil organic carbon sequestration as a sustainable development strategy. Ambio 49 (1), 350-360. https://doi.org/10.1007/s13280-019-01165-2 DOI: https://doi.org/10.1007/s13280-019-01165-2
Russell-Smith, J., Sangha, K.K., 2018. Emerging opportunities for developing a diversified land sector economy in Australia’s northern savannas. The Rangeland Journal 40 (4), 315. https://doi.org/10.1071/RJ18005 DOI: https://doi.org/10.1071/RJ18005
Ryschawy, J., Tiffany, S., Gaudin, A., Niles, M.T., Garrett, R.D., 2021. Moving niche agroecological initiatives to the mainstream: A case-study of sheep-vineyard integration in California. Land Use Policy 109. https://doi.org/10.1016/j.landusepol.2021.105680 DOI: https://doi.org/10.1016/j.landusepol.2021.105680
Salvati, L., Mavrakis, A., Colantoni, A., Mancino, G., Ferrara, A., 2015. Complex Adaptive Systems, soil degradation and land sensitivity to desertification: A multivariate assessment of Italian agro-forest landscape. Science of the Total Environment 521-522 (1), 235-245. https://doi.org/10.1016/j.scitotenv.2015.03.094 DOI: https://doi.org/10.1016/j.scitotenv.2015.03.094
Santos, M.P., Morais, T. G., Domingos, T., Teixeira, R. F. M., 2022. Valuing Ecosystem Services Provided by Pasture-Based Beef Farms in Alentejo, Portugal. Land 11(12). https://doi.org/10.3390/land11122238 DOI: https://doi.org/10.3390/land11122238
Santos, R., Roxo, M.J., 2017. Um conto de duas tragédias: O Baldio da Serra de Mértola no Alentejo (sul de Portugal) e a sua privatização , séculos XVIII a XX. In M. Motta, M. Piccolo (Eds.), Domínio de Outrém Volume 1 - Posse e Propriedade na Era Moderna (Portugal e Brasil), Vol. 1, pp. 30-66). Nósporcátudobem. http://hdl.handle.net/10316/86926
Sanz-Cobena, A., Lassaletta, L., Aguilera, E., Prado, A. del, Garnier, J., Billen, G., Iglesias, A., Sánchez, B., Guardia, G., Abalos, D., Plaza-Bonilla, D., Puigdueta-Bartolomé, I., Moral, R., Galán, E., Arriaga, H., Merino, P., Infante-Amate, J., Meijide, A., Pardo, G., … Smith, P., 2017. Strategies for greenhouse gas emissions mitigation in Mediterranean agriculture: A review. Agriculture, Ecosystems and Environment 238, 5-24. https://doi.org/10.1016/j.agee.2016.09.038 DOI: https://doi.org/10.1016/j.agee.2016.09.038
Scharlemann, J.P.W., Tanner, E.V.J., Hiederer, R., Kapos, V., 2014. Global soil carbon: Understanding and managing the largest terrestrial carbon pool. Carbon Management 5 (1), 81-91. https://doi.org/10.4155/cmt.13.77 DOI: https://doi.org/10.4155/cmt.13.77
Sharma, M., Kaushal, R., Kaushik, P., Ramakrishna, S., 2021. Carbon farming: Prospects and challenges. Sustainability 13 (19). https://doi.org/10.3390/su131911122 DOI: https://doi.org/10.3390/su131911122
Shukla, P.R., Skea, J., Buendia, E.C., Masson-Delmotte, V., Pörtner, H.-O., Roberts, D.C., Zhai, P., Slade, R., Connors, S., Diemen, R. van, Ferrat, M., Haughey, E., Luz, S., Neogi, S., Pathak, M., Petzold, J., Pereira, J.P., Vyas, P., Huntley, E., … Malley, J., 2019. Climate Change and Land: an IPCC special report. Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems, 1-864. https://www.ipcc.ch/srccl/
Smith, P., Calvin, K., Nkem, J., Campbell, D., Cherubini, F., Grassi, G., Korotkov, V., Le Hoang, A., Lwasa, S., McElwee, P., Nkonya, E., Saigusa, N., Soussana, J. F., Taboada, M.A., Manning, F.C., Nampanzira, D., Arias-Navarro, C., Vizzarri, M., House, J., … Arneth, A., 2020. Which practices co-deliver food security, climate change mitigation and adaptation, and combat land degradation and desertification? Global Change Biology 26(3), 1532-1575. https://doi.org/10.1111/gcb.14878 DOI: https://doi.org/10.1111/gcb.14878
Sollen-Norrlin, M., Ghaley, B.B., Rintoul, N.L.J., 2020. Agroforestry Benefits and Challenges for Adoption in Europe and Beyond. Sustainability 12 (17). https://doi.org/10.3390/su12177001 DOI: https://doi.org/10.3390/su12177001
Sun, W., Xu, C., 2021. Carbon price prediction based on modified wavelet least square support vector machine. Science of The Total Environment 754, 142052. https://doi.org/10.1016/j.scitotenv.2020.142052 DOI: https://doi.org/10.1016/j.scitotenv.2020.142052
Torvanger, A., 2019. Governance of bioenergy with carbon capture and storage (BECCS): Accounting, rewarding, and the Paris agreement. Climate Policy 19 (3), 329-341. https://doi.org/10.1080/14693062.2018.1509044 DOI: https://doi.org/10.1080/14693062.2018.1509044
Tuan, Y.F., 1977. Space and Place: The Perspective of Experience (8th Edition). University of Minnesota Press.
Tubiello, F., 2012. Climate Change Adaptation and Mitigation - Challenges and Opportunities for the Food Sector. FAO. http://www.fao.org/docrep/016/i2855e/i2855e.pdf
Venmans, F., Ellis, J., Nachtigall, D., 2020. Carbon pricing and competitiveness: are they at odds? Climate Policy 20 (9), 1070-1091. https://doi.org/10.1080/14693062.2020.1805291 DOI: https://doi.org/10.1080/14693062.2020.1805291
Von Cossel, M., Winkler, B., Mangold, A., Lask, J., Wagner, M., Lewandowski, I., Elbersen, B., van Eupen, M., Mantel, S., Kiesel, A., 2020. Bridging the Gap Between Biofuels and Biodiversity Through Monetizing Environmental Services of Miscanthus Cultivation. Earth Future 8(10). https://doi.org/10.1029/2020EF001478 DOI: https://doi.org/10.1029/2020EF001478
Wilkes, A., Wang, S., Lipper, L., Chang, X., 2021. Market Costs and Financing Options for Grassland Carbon Sequestration: Empirical and Modelling Evidence from Qinghai, China. Frontiers in Environmental Science 9. https://doi.org/10.3389/fenvs.2021.657608 DOI: https://doi.org/10.3389/fenvs.2021.657608
Wu, J., Wang, M., Wang, T., Fu, X., 2022. Evaluation of Ecological Service Function of Liquidambar formosana Plantations. International Journal of Environmental Research and Public Health 19 (22). https://doi.org/10.3390/ijerph192215317 DOI: https://doi.org/10.3390/ijerph192215317
Yang, Y., Hobbie, S.E., Hernandez, R.R., Fargione, J., Grodsky, S.M., Tilman, D., Zhu, Y.-G., Luo, Y., Smith, T.M., Jungers, J.M., Yang, M., Chen, W.Q., 2020. Restoring Abandoned Farmland to Mitigate Climate Change on a Full Earth. One Earth 3 (2) 176-186). https://doi.org/10.1016/j.oneear.2020.07.019 DOI: https://doi.org/10.1016/j.oneear.2020.07.019
Zomer, R.J., Bossio, D.A., Sommer, R., Verchot, L. V., 2017. Global Sequestration Potential of Increased Organic Carbon in Cropland Soils. Scientific Reports 7 (1), 1-8. https://doi.org/10.1038/s41598-017-15794-8 DOI: https://doi.org/10.1038/s41598-017-15794-8
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Henrique Cerqueira, Maria José Roxo, Adolfo Calvo-Cases

This work is licensed under a Creative Commons Attribution 4.0 International License.
The authors retain copyright of articles and authorize Cuadernos de Investigación Geográfica / Geographical Research Letters the first publication. They are free to share and redistribute the article without obtaining permission from the publisher as long as they give appropriate credit to the editor and the journal.
Self-archiving is allowed too. In fact, it is recommendable to deposit a PDF version of the paper in academic and/or institutional repositories.
It is recommended to include the DOI number.
This journal is licensed under a Creative Commons Attribution 4.0 International LicenseFunding data
-
Fundação para a Ciência e a Tecnologia
Grant numbers 2021.04744.BD