Analysis Of The Positioning Accuracy Of Geotagged Photos Taken With Mobile Devices In Various Terrain Conditions

Authors

DOI:

https://doi.org/10.18172/cig.6565

Keywords:

photography, geotagging, GIS, GNSS, Mobile device

Abstract

Currently, most mobile devices can capture geotagged photos—i.e., images to which the location of capture is assigned. Despite extensive literature on the use of geotagging, there is a limited number of studies addressing the accuracy of the recorded locations. Therefore, this research was undertaken to assess the positional accuracy of geotagged photos, defined, among other metrics, by the mean unit error of the assigned coordinates. This article presents the results of test measurements conducted using various mobile devices to determine situational coordinates within the applicable coordinate system. The study discusses the satellite systems currently in use, as well as the measurement technologies that influence geolocation accuracy in smartphones and cameras equipped with a geotagging feature. Test measurements involved comparing the coordinates embedded in geotagged photos with those obtained using a high-precision GNSS receiver. Depending on the device and technology used, the mean unit location errors ranged from 4.0 metres to nearly 50 metres. These findings highlight the low precision of such devices in determining exact positions. To explore ways of improving accuracy, additional tests were carried out using various features and applications available on different devices, assessing their impact on location determination based on geotagged photos. Notably, the use of the GPS Test application for position stabilisation reduced mean unit errors by nearly 45%. The results of this study led to the development of recommendations aimed at enabling the determination of a mobile device’s X and Y coordinates with an accuracy of several metres. This level of precision may be sufficient for many practical applications and presents a cost-effective alternative to expensive GPS receivers, which require specialised geodetic knowledge for professional use.

Downloads

Download data is not yet available.

References

Ai, Q., Maciuk, K., Lewinska, P., Borowski, L. 2021. Characteristics of Onefold Clocks of GPS. Galileo. BeiDou and GLONASS Systems. Sensors 21, 2396. https://doi.org/10.3390/s21072396

barbeau/gpstest. 2025. Available at: https://github.com/barbeau/gpstest (last access 09/01/2025)

Benson, B. 2016. PokemonGo. Createspace Independent Publishing Platform, p. 56.

Bogusz, J., Klos, A., Pokonieczny, K. 2019. Optimal Strategy of a GPS Position Time Series Analysis for Post-Glacial Rebound Investigation in Europe. Remote Sens. 11, 1209. https://doi.org/10.3390/rs11101209

BTSearch. 2025. Available at: https://beta.btsearch.pl/ (last access 09/01/2025).

Chavez, D.J., Knap, N.E., McCollum, D.G. 2004. Assessing National Forest Visitors’ Comprehension of International Symbols for Communicating Outdoor Recreation Messages Parks &Recreation 22 (3).

Dunn, O.J. 1964. Multiple comparisons using rank sums. Technometrics 6 (3), 241-252

Dz.U. 2024 poz. 342. 2012. Rozporządzenie Rady Ministrów z dnia 15 października 2012 r. w sprawie państwowego systemu odniesień przestrzennych. Available at: https://isap.sejm.gov.pl/isap.nsf/download.xsp/WDU20240000342/O/D20240342.pdf (last access: 09/06/2025)

ElQadi, M.M., Lesiv, M., Dyer, A.G., Dorin, A. 2020. Computer vision-enhanced selection of geo-tagged photos on social network sites for land cover classification. Environmental Modelling & Software 128. https://doi.org/10.1016/j.envsoft.2020.104696

Fan, Y., Mandal, M.S.H., Nakabayashi, M., Hosaka, T. 2024. Visitor experience with biodiversity in tropical rainforests: A global-scale assessment using social media data. Biological Conservation 293. https://doi.org/10.1016/j.biocon.2024.110590

Foltête, J.C., Ingensand, J., Blanc, N. 2020. Coupling crowd-sourced imagery and visibility modelling to identify landscape preferences at the panorama level. Landscape and Urban Planning 197. https://doi.org/10.1016/j.landurbplan.2020.103756

García-Palomares, J.C., Gutiérrez, J., Mínguez, C. 2015. Identification of tourist hot spots based on social networks: A comparative analysis of European metropolises using photo-sharing services and GIS. Applied Geography 63, 408-417. https://doi.org/10.1016/j.apgeog.2015.08.002

Geoportal. 2025. Available at: https://www.geoportal.gov.pl/ (last access 09/01/2025).

Golder, S., Huberman, B. 2006. Usage Patterns of Collaborative Tagging Systems. J. Information Science 32, 198-208. https://doi.org/10.1177/0165551506062337

GPS Test. 2025. Available at: https://play.google.com/store/apps/details?id=com.chartcross.gpstest (last access 09/01/2025).

Hofmann-Wellenhof, B., Lichtenegger, H., Wasle, E. 2008. GNSS – Global Navigation Satellite Systems: GPS, GLONASS, Galileo, and more. Springer Vien, Austria.

Hu, Y., Gao, S. Janowicz, K., Yu, B., Li, W., Prasad, S. 2015. Extracting and understanding urban areas of interest using geotagged photos. Computers. Environment and Urban Systems 54. 240-254. https://doi.org/10.1016/j.compenvurbsys.2015.09.001

Huang, R. 2023. Analyzing national parks visitor activities using geotagged social media photos. Journal of Environmental Management 330. https://doi.org/10.1016/j.jenvman.2022.117191

Humphreys, L., Liao, T. 2011. Mobile Geotagging: Reexamining Our Interactions with Urban Space. Journal of Computer-Mediated Communication 16 (3), 407-423. https://doi.org/10.1111/j.1083-6101.2011.01548.x

Ihamäki, P. 2014. The potential of treasure hunt games to generate positive emotions in learners: Experiencing local geography and history using GPS devices. International Journal of Technology Enhanced Learning 6 (1), 5-20. http://doi.org/10.5555/2608743.2608744

Ihamäki, P. 2015. User Experience of Geocaching and Its Application to Tourism and Education (doctoral dissertation). Annales Universitatis Turkuensis B404, 249 s. http://doi.org/10.13140/RG.2.1.3202.3205

Kaplan, E.D., Hegarty C. 2017. Understanding GPS/GNSS: Principles and Applications, Third Edition, Artech House: Boston USA. 993 pp.

Kenny, U., Regan, Á., Hearne, D., O'Meara, C. 2021. Empathising. defining and ideating with the farming community to develop a geotagged photo app for smart devices: A design thinking approach. Agricultural Systems 194. https://doi.org/10.1016/j.agsy.2021.103248

Kobylarczyk, J., Cebulska, M., Baziak, B., Bodziony, M. 2024. Assessment of thermal conditions in urban interiors on the example of the Cracow University of Technology campus. Materiały Budowlane 628. Issue 12.pp. 235-244. http://doi.org/10.15199/33.2024.12.25

Kumaran, V.J., Mohidem, N.A., Che’Ya, N.N., Ilahi, W.F.F., Shah, J.A., Sahwee, Z., Yusof, N., Omar, M.H. 2024. How can aerial imagery and vegetation indices algorithms monitor the geotagged crop? The Egyptian Journal of Remote Sensing and Space Sciences 27 (4), 628-636. https://doi.org/10.1016/j.ejrs.2024.08.003

Lee, H., Seo, B., Koellner, T., Lautenbach, S. 2019. Mapping cultural ecosystem services 2.0 – Potential and shortcomings from unlabeled crowd sourced images. Ecological Indicators 96. Part 1. pp. 505-515. https://doi.org/10.1016/j.ecolind.2018.08.035

Lee, L., Jones, M., Ridenour, G.S., Bennett, S.J., Majors, A.C., Melito, B.L., Wilson, M.J. 2016. Comparison of Accuracy and Precision of GPS-Enabled Mobile Devices. IEEE International Conference on Computer and Information Technology (CIT), Nadi, Fiji, pp. 73-82, http://doi.org/10.1109/CIT.2016.94

Li, X., Pan, L., Yu, W. 2021. Assessment and Analysis of the Four-Satellite QZSS Precise Point Positioning and the Integrated Data Processing With GPS. IEEE Access 9, 116376-116394. http://doi.org/10.1109/ACCESS.2021.3106050

Lissai, G. 2006. Assisted GPS solution in cellular networks. Master Thesis. Rochester Institute of Technology. https://repository.rit.edu/theses/6475

Lu, J., Guo, X., Su, C. 2020. Global capabilities of BeiDou Navigation Satellite System. Satell Navig 1. https://doi.org/10.1186/s43020-020-00025-9

Merry, K., Bettinger, P. 2019. Smartphone GPS accuracy study in an urban environment. PLoS ONE 14 (7), e0219890. https://doi.org/10.1371/journal.pone.0219890

Navarrete-Hernandez, P., Luneke, A., Truffello, R., Fuentes, L. 2023. Planning for fear of crime reduction: Assessing the impact of public space regeneration on safety perceptions in deprived neighborhoods. Landscape and Urban Planning 237. https://doi.org/10.1016/j.landurbplan.2023.104809

NGA. 2014. Department Of Defense World Geodetic System 1984. Its Definition and Relationships with Local Geodetic Systems. National Geospatial-Intelligence Agency (NGA) Standardization Document. Office of Geomatics.

NIST/SEMATECH e-Handbook of Statistical Methods. 2025. Available at: http://www.itl.nist.gov/div898/handbook/ (last access 07/08/2025)

OpenStreetMap. 2025. Available at: https://www.openstreetmap.org (last access 09/01/2025).

Orsi, F., Geneletti, D. 2013. Using geotagged photographs and GIS analysis to estimate visitor flows in natural areas. Journal for Nature Conservation 21 (5), 359-368. https://doi.org/10.1016/j.jnc.2013.03.001

Park, M., Luo, J., Collins, R.T., Liu, Y. 2014. Estimating the camera direction of a geotagged image using reference images. Pattern Recognition 47 (9), 2880-2893. https://doi.org/10.1016/j.patcog.2014.03.002

Payntar, N.D., Hsiao, W.L., Covey, R.A., Grauman, K. 2021. Learning patterns of tourist movement and photography from geotagged photos at archaeological heritage sites in Cuzco. Peru. Tourism Management 82. https://doi.org/10.1016/j.tourman.2020.104165

QGIS Python Plugins Repository. 2025. Available at: https://plugins.qgis.org/plugins/ImportPhotos/#plugin-about (last access 09/01/2025).

Ryser, E., Spichiger, H., Jaquet-Chiffelle, D.O. 2024. Geotagging accuracy in smartphone photography. Forensic Science International: Digital Investigation 50 (Supplement), 301813. https://doi.org/10.1016/j.fsidi.2024.301813

Saadeldin, M., O'Hara, R., Zimmermann, J., Mac Namee, B., Green, S. 2022. Using deep learning to classify grassland management intensity in ground-level photographs for more automated production of satellite land use maps. Remote Sensing Applications: Society and Environment 26. https://doi.org/10.1016/j.rsase.2022.100741

Samany, N.N. 2019. Automatic landmark extraction from geo-tagged social media photos using deep neural network. Cities 93, 1-12. https://doi.org/10.1016/j.cities.2019.04.012

Santra, A., Mahato, S., Dan. S., Bose, A. 2019. Precision of satellite based navigation position solution: A review using NavIC data. Journal of Information and Optimization Sciences 40 (8), 1683–1691. https://doi.org/10.1080/02522667.2019.1703264

Sathianarayanan, M., Hsu, P.H., Chang, C.C. 2024. Extracting disaster location identification from social media images using deep learning. International Journal of Disaster Risk Reduction 104. https://doi.org/10.1016/j.ijdrr.2024.104352

Spatialreference. 2025. Available at: https://spatialreference.org/ref/epsg/2178/ (last access 30/09/2025).

Tavani, S., Billi, A., Corradetti, A., Mercuri, M., Bosman, A., Cuffaro, M., Seers, T., Carminati, E. 2022. Smartphone assisted fieldwork: Towards the digital transition of geoscience fieldwork using LiDAR-equipped iPhones. Earth-Science Reviews 227, 103969, https://doi.org/10.1016/j.earscirev.2022.103969

Tsui, J.B.Y. 2005. Basic GPS Concept. In K. Chang (Ed.), Fundamentals of Global Positioning System Receivers: A Software Approach. 2nd ed. Wiley & Sons, pp. 7-29. https://doi.org/10.1002/0471712582.ch2

Tsutsumida, N., Funada, S. 2023. Mapping cherry blossom phenology using a semi-automatic observation system with street level photos. Ecological Informatics 78, 102314. https://doi.org/10.1016/j.ecoinf.2023.102314

Uznański, A. 2017. Comparative analysis of the quality of RTN measurements related to all reference networks in Poland. Research and Technical Papers of Association for Transportation Engineers in Cracow 1, 167-181.

Vu, H.Q., Li, G., Law, R., Ye, B.H. 2015. Exploring the travel behaviors of inbound tourists to Hong Kong using geotagged photos. Tourism Management 46, 222-232. https://doi.org/10.1016/j.tourman.2014.07.003

Xu, Z., Chen, L., Chen, G. 2015. Topic based context-aware travel recommendation method exploiting geotagged photos. Neurocomputing 155, 99-107. https://doi.org/10.1016/j.neucom.2014.12.043

Zaragozí, B., Trilles, S., Carrion, D., Pérez-Albert, M.Y. 2020. A geotagged image dataset with compass directions for studying the drivers of farmland abandonment. Data in Brief 33. https://doi.org/10.1016/j.dib.2020.106340

Zhang, S., Zhou, W. 2018. Recreational visits to urban parks and factors affecting park visits: Evidence from geotagged social media data. Landscape and Urban Planning 180, 27-35. https://doi.org/10.1016/j.landurbplan.2018.08.004

Zheng, Y., Zheng, F., Yang, C., Nie, G., Li, S. 2022. Analyses of GLONASS and GPS+GLONASS Precise Positioning Performance in Different Latitude Regions. Remote Sens 14. https://doi.org/10.3390/rs14184640

Published

02-12-2025

How to Cite

1.
Szafarczyk A, Baziak B, Bodziony M. Analysis Of The Positioning Accuracy Of Geotagged Photos Taken With Mobile Devices In Various Terrain Conditions. CIG [Internet]. 2025 Dec. 2 [cited 2025 Dec. 16];. Available from: https://publicaciones.unirioja.es/ojs/index.php/cig/article/view/6565

Issue

Section

Articles