Integration Of Machine Learning Models And Spatial Simulation For Land Use Change Analysis In Loja, Ecuador

Authors

DOI:

https://doi.org/10.18172/cig.6683

Keywords:

cambio de uso del suelo, expansión urbana, modelos predictivos, planificación territorial, Cambio climático

Abstract

This study analyzed land-use change patterns in Loja, Ecuador, between 1990 and 2020 using transition matrices and the change intensity methodological framework. Based on these spatiotemporal dynamics, urban expansion was projected to 2070, and alternative scenarios were generated. To explain current dynamics, the Random Forest model achieved the best performance (accuracy: 90.72%; Kappa: 0.852; quantity disagreement: 0.04; allocation disagreement: 0.17). In the trend scenario for 2070, urban expansion would primarily affect agricultural areas (93.6%) and natural vegetation (6.15%), including approximately 17.2% of zones with a high landslide risk. Under future climate scenarios, this expansion is expected to be concentrated in areas with projected increases in temperature and precipitation, potentially heightening the city’s vulnerability to extreme events. The results highlight the usefulness of open-access tools for modeling future urban scenarios in data-limited contexts, as well as the replicability of the methodology in other intermediate cities facing similar challenges. Overall, this study contributes to the design of sustainable land management strategies tailored to local contexts.

Downloads

Download data is not yet available.

References

Aldwaik, S.Z., Pontius, R.G., 2012. Intensity analysis to unify measurements of size and stationarity of land changes by interval, category, and transition. Landscape and Urban Planning 106(1), 103–114. https://doi.org/10.1016/j.landurbplan.2012.02.010 DOI: https://doi.org/10.1016/j.landurbplan.2012.02.010

Allan, A., Soltani, A., Abdi, M.H., Zarei, M., 2022. Driving Forces behind Land Use and Land Cover Change: A Systematic and Bibliometric Review. Land 11(8), 1222. https://doi.org/10.3390/land11081222 DOI: https://doi.org/10.3390/land11081222

Alshari, E.A., Gawali, B.W., 2022. Modeling Land Use Change in Sana’a City of Yemen with MOLUSCE. Journal of Sensors 2022, 1–15. https://doi.org/10.1155/2022/7419031 DOI: https://doi.org/10.1155/2022/7419031

Alsharif, A. a. A., Pradhan, B., 2013. Urban sprawl analysis of Tripoli Metropolitan City (Libya) using remote sensing data and multivariate logistic regression model. Journal of the Indian Society of Remote Sensing 42(1), 149–163. https://doi.org/10.1007/s12524-013-0299-7 DOI: https://doi.org/10.1007/s12524-013-0299-7

Bell, E.J., 1974. Markov analysis of land use change—An application of stochastic processes to remotely sensed data. Socio-Economic Planning Sciences 8(6), 311–316. https://doi.org/10.1016/0038-0121(74)90034-2 DOI: https://doi.org/10.1016/0038-0121(74)90034-2

Bell, S., Alves, S., de Oliveira, E.S., Zuin, A., 2010. Migration and land use change in Europe: A review. Living Reviews in landscape research, 4. DOI: https://doi.org/10.12942/lrlr-2010-2

Bren d’Amour, C., Reitsma, F., Baiocchi, G., Barthel, S., Güneralp, B., Erb, K.-H., Haberl, H., Creutzig, F., Seto, K.C., 2017. Future urban land expansion and implications for global croplands. Proceedings of the National Academy of Sciences of the United States of America 114(34), 8939–8944. https://doi.org/10.1073/pnas.1606036114 DOI: https://doi.org/10.1073/pnas.1606036114

Chen, G., Li, X., Liu, X., Chen, Y., Liang, X., Leng, J., Xu, X., Liao, W., Qiu, Y., Wu, Q., Huang, K., 2020. Global projections of future urban land expansion under shared socioeconomic pathways. Nature Communications 11(1). https://doi.org/10.1038/s41467-020-14386-x DOI: https://doi.org/10.1038/s41467-020-14386-x

Deng, Z., Quan, B., 2022. Intensity Characteristics and Multi-Scenario projection of land use and land cover change in Hengyang, China. International Journal of Environmental Research and Public Health 19(14), 8491. https://doi.org/10.3390/ijerph19148491 DOI: https://doi.org/10.3390/ijerph19148491

Faheem, Z., Kazmi, J.H., Shaikh, S., Arshad, S., Noreena, N., Mohammed, S., 2024. Random forest-based analysis of land cover/land use LCLU dynamics associated with meteorological droughts in the desert ecosystem of Pakistan. Ecological Indicators 159, 111670. https://doi.org/10.1016/j.ecolind.2024.111670 DOI: https://doi.org/10.1016/j.ecolind.2024.111670

FIC (Fundación para la Investigación del Clima), Lavola S.A., Universidad Técnica Particular de Loja, 2021. Índice de Vulnerabilidad al Cambio Climático y Plan de Adaptación para la ciudad de Loja, Ecuador. Resumen ejecutivo. Caracas: CAF. Retrieved from https://scioteca.caf.com/handle/123456789/1812

Gallardo, M., 2018. Revisión y Análisis de estudios de Modelos de Cambios de Uso del Suelo y de Escenarios a Futuro. Geographicalia 70, 1-26 DOI: https://doi.org/10.26754/ojs_geoph/geoph.2018703278

Gao, C., Cheng, D., Iqbal, J., Yao, S., 2023. Spatiotemporal Change Analysis and Prediction of Future Land Cover Changes Using QGIS MOLUSCE Plugin on a Large Regional Scale and the Relationship Analysis with Mountain Hazards: A Case Study of the Great Yellow River Region (GYRR). China. Land.

Gaur, S., Singh, R., 2023. A Comprehensive Review on Land Use/Land Cover (LULC) Change Modeling for Urban Development: Current Status and Future Prospects. Sustainability 15(2), 903. https://doi.org/10.3390/su15020903 DOI: https://doi.org/10.3390/su15020903

Girma, R., Fürst, C., Moges, A., 2021. Land use land cover change modeling by integrating artificial neural network with cellular Automata-Markov chain model in Gidabo river basin, main Ethiopian rift. Environmental Challenges 6, 100419. https://doi.org/10.1016/j.envc.2021.100419 DOI: https://doi.org/10.1016/j.envc.2021.100419

Gobierno de Ecuador, 2024a. Eventos peligrosos [Conjunto de datos]. Datos Abiertos Ecuador. https://www.datosabiertos.gob.ec/dataset/eventos-peligrosos/resource/1e170a6f-7f6e-48a3-a46b-be97c265fb1b

Gobierno de Ecuador, 2024b. Plan de Desarrollo para el Nuevo Ecuador 2024-205. Eje de Riesgos. Secretaría Nacional de Planificación y Secretaría Nacional de Gestión de Riesgos. https://www.planificacion.gob.ec/wp-content/uploads/2024/05/PND24-25Eje5.pdf

Guillén, V., Orellana, D., 2016. Un acercamiento a caracterizar la isla de calor en Cuenca, Ecuador. CONAMA, 2016.

Gündel, H., Önaç, A.K., 2023. Sponge City Based on Blue – Green Urbanism. https://doi.org/10.52460/issc.2023.053 DOI: https://doi.org/10.52460/issc.2023.053

Gündüz, H.İ., 2025. Land-Use Land-Cover Dynamics and Future Projections Using GEE, ML, and QGIS-MOLUSCE: A Case Study in Manisa. Sustainability 17(4), 1363. https://doi.org/10.3390/su17041363 DOI: https://doi.org/10.3390/su17041363

Hagenauer, J., Omrani, H., Helbich, M., 2019. Assessing the performance of 38 machine learning models: the case of land consumption rates in Bavaria, Germany. International Journal of Geographical Information Science 33(7), 1399–1419. https://doi.org/10.1080/13658816.2019.1579333 DOI: https://doi.org/10.1080/13658816.2019.1579333

Hamad, R., Balzter, H., Kolo, K., 2018. Predicting Land Use/Land Cover Changes Using a CA-Markov Model under Two Different Scenarios. Sustainability 10(10), 3421. https://doi.org/10.3390/su10103421 DOI: https://doi.org/10.3390/su10103421

Herold, M., Goldstein, N.C., Clarke, K.C., 2003. The spatiotemporal form of urban growth: Measurement, analysis and modeling. Remote Sensing of Environment 86(3), 286–302. https://doi.org/10.1016/S0034-4257(03)00075-0 DOI: https://doi.org/10.1016/S0034-4257(03)00075-0

Kafy, A.A., Rahman, M.S., Hasan, M.M., Islam, M., 2020. Modelling future land use land cover changes and their impacts on land surface temperatures in Rajshahi, Bangladesh. Remote Sensing Applications: Society and Environment 18, 100314. https://doi.org/10.1016/j.rsase.2020.100314 DOI: https://doi.org/10.1016/j.rsase.2020.100314

Kamaraj, M., Rangarajan, S., 2022. Predicting the future land use and land cover changes for Bhavani basin, Tamil Nadu, India, using QGIS MOLUSCE plugin. Environmental Science and Pollution Research 29(57), 86337–86348. https://doi.org/10.21203/rs.3.rs-616393/v1 DOI: https://doi.org/10.1007/s11356-021-17904-6

Kamusoko, C., Gamba, J., 2015. Simulating Urban Growth Using a Random Forest-Cellular Automata (RF-CA) Model. ISPRS International Journal of Geo-Information 4(2), 447–470. https://doi.org/10.3390/ijgi4020447 DOI: https://doi.org/10.3390/ijgi4020447

Katzschner, L., 2011. Urban Climate Strategies Against Future Heat Stress Conditions. In: Otto-Zimmermann, K. (eds). Resilient Cities. Local Sustainability, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0785-6_8 DOI: https://doi.org/10.1007/978-94-007-0785-6_8

Krivoguz, D., 2024. The Kerch Peninsula in Transition: A Comprehensive Analysis of Land Use and Land Cover Changes Over Thirty Years. Preprint.org. https://doi.org/10.20944/preprints202404.0496.v2 DOI: https://doi.org/10.20944/preprints202404.0496.v2

Lazcano Martínez, M., 2005. El acceso al suelo y a la vivienda de los sectores informales: el caso de la ciudad de México. Revista INVI 20(54). https://doi.org/10.5354/0718-8358.2005.62171 DOI: https://doi.org/10.5354/0718-8358.2005.62171

Leta, M.K., Demissie, T.A., Tränckner, J., 2021. Modeling and Prediction of Land Use Land Cover Change Dynamics Based on Land Change Modeler (LCM) in Nashe Watershed, Upper Blue Nile Basin, Ethiopia. Sustainability 13(7), 3740. https://doi.org/10.3390/su13073740 DOI: https://doi.org/10.3390/su13073740

Li, S., Yang, X., Cui, P., Sun, Y., Song, B., 2024. Machine-Learning-Algorithm-Based Prediction of Land Use/Land Cover and Land Surface Temperature Changes to Characterize the Surface Urban Heat Island Phenomena over Harbin, China. Land 13(8), 1164. https://doi.org/10.3390/land13081164 DOI: https://doi.org/10.3390/land13081164

Lin, Y., Chu, H., Wu, C., Verburg, P.H., 2010. Predictive ability of logistic regression, auto-logistic regression and neural network models in empirical land-use change modeling – a case study. International Journal of Geographical Information Science 25(1), 65-87. https://doi.org/10.1080/13658811003752332 DOI: https://doi.org/10.1080/13658811003752332

Lu, H., Shang, Z., Ruan, Y., Jiang, L., 2023. Study on Urban Expansion and Population Density Changes Based on the Inverse S-Shaped Function. Sustainability 15(13), 10464. https://doi.org/10.3390/su151310464 DOI: https://doi.org/10.3390/su151310464

Lukas, P., Melesse, A.M., Kenea, T.T., 2023. Prediction of future Land Use/Land Cover changes using a coupled CA-ANN model in the Upper Omo–Gibe River Basin, Ethiopia. Remote Sensing 15(4), 1148. https://doi.org/10.3390/rs15041148 DOI: https://doi.org/10.3390/rs15041148

Mahtta, R., Fragkias, M., Güneralp, B., Mahendra, A., Reba, M., Wentz, E.A., Seto, K.C., 2022. Urban land expansion: the role of population and economic growth for 300+ cities. Npj Urban Sustainability 2(1). https://doi.org/10.1038/s42949-022-00048-y DOI: https://doi.org/10.1038/s42949-022-00048-y

Malek, Ž., Douw, B., Van Vliet, J., Van Der Zanden, E.H., Verburg, P.H., 2019. Local land-use decision-making in a global context. Environmental Research Letters 14(8), 083006. https://doi.org/10.1088/1748-9326/ab309e DOI: https://doi.org/10.1088/1748-9326/ab309e

MapBiomas, 2025. MapBiomas – Collection 2.0 of the Annual Series of Land Cover and Land Use Maps of Ecuador (including the Galápagos Archipelago), covering the period 1985–2023. Consulted on 31 Mar 2025. Available at: https://ecuador.mapbiomas.org/mapas-de-cobertura-y-uso/

Mei, Z., Wu, H., Li, S., 2018. Simulating land-use changes by incorporating spatial autocorrelation and self-organization in CLUE-S modeling: A case study in Zengcheng District, Guangzhou, China. Frontiers of Earth Science 12(2), 299–310. https://doi.org/10.1007/s11707-017-0639-y DOI: https://doi.org/10.1007/s11707-017-0639-y

Ministerio de Desarrollo Urbano y Vivienda (MIDUVI), 2015. Informe Nacional de Ecuador para la III Conferencia de NNUU sobre vivienda y desarrollo sostenible. Subsecretaría de Hábitat y Asentamientos Humanos – SHAH.

Mou, J., Chen, Z., Huang, J., 2023. Predicting Urban Expansion to Assess the Change of Landscape Character Types and Its Driving Factors in the Mountain City. Land 12(4), 928. https://doi.org/10.3390/land12040928 DOI: https://doi.org/10.3390/land12040928

Muhammad, R., Zhang, W., Abbas, Z., Guo, F., Gwiazdzinski, L., 2022. Spatiotemporal change analysis and prediction of future land use and land cover changes using QGIS MOLUSCE plugin and remote sensing big data: a case study of Linyi, China. Land 11(3), 419. DOI: https://doi.org/10.3390/land11030419

Mutale, B., Qiang, F., 2024. Modeling future land use and land cover under different scenarios using patch-generating land use simulation model. A case study of Ndola district. Frontiers in Environmental Science 12. https://doi.org/10.3389/fenvs.2024.1362666 DOI: https://doi.org/10.3389/fenvs.2024.1362666

Municipio de Loja, 2020. Ordenanza Municipal 026-2020 sobre la protección y restauración de fuentes de agua, ecosistemas frágiles, biodiversidad y servicios ambientales del cantón Loja a través de la creación y gestión de áreas de conservación municipal y uso sostenible -ACMUS.

Municipio de Loja, 2021. Plan de uso y gestión del suelo cantón Loja. https://www.loja.gob.ec/contenido/plan-de-desarrollo-y-ordenamiento-territorial

Nong, Y., Du, Q., 2011. Urban growth pattern modeling using logistic regression. Geo-spatial Information Science 14(1), 62–67. https://doi.org/10.1007/s11806-011-0427-x DOI: https://doi.org/10.1007/s11806-011-0427-x

Ortega-Andrade, H.M., Blanco, M.R., Cisneros-Heredia, D.F., Arévalo, N.G., Vargas-Machuca, K.G.L. de, Sánchez-Nivicela, J.C., Armijos-Ojeda, D., Andrade, J.F.C., Reyes-Puig, C., Riera, A.B.Q., Székely, P., Soto, O.R.R., Székely, D., Guayasamin, J.M., Pesántez, F.R.S., Amador, L., Betancourt, R., Ramírez-Jaramillo, S.M., Timbe-Borja, B., Muñoz, M.H.Y., 2021. Red List assessment of amphibian species of Ecuador: A multidimensional approach for their conservation. PLOS ONE 16(5), e0251027. https://doi.org/10.1371/journal.pone.0251027 DOI: https://doi.org/10.1371/journal.pone.0251027

Ouma, Y.O., Nkwae, B., Odirile, P., Moalafhi, D.B., Anderson, G., Parida, B., Qi, J., 2024. Land-Use Change Prediction in Dam Catchment Using Logistic Regression-CA, ANN-CA and Random Forest Regression and Implications for Sustainable Land–Water Nexus. Sustainability 16(4), 1699. https://doi.org/10.3390/su16041699 DOI: https://doi.org/10.3390/su16041699

Ponte, S., Oishi, A.C., Sonti, N.F., Locke, D.H., Phillips, T.H., Pavao‐Zuckerman, M., 2024. Interactions between management context and tree water use influence stormwater management potential of urban forests. Urban Forestry & Urban Greening 95, 128321. https://doi.org/10.1016/j.ufug.2024.128321 DOI: https://doi.org/10.1016/j.ufug.2024.128321

Pontius, R.G., Shusas, E., McEachern, M., 2004. Detecting important categorical land changes while accounting for persistence. Agriculture, Ecosystems & Environment 101 (2–3), 251–268. https://doi.org/10.1016/j.agee.2003.09.008 DOI: https://doi.org/10.1016/j.agee.2003.09.008

Pontius, R.G., Millones, M., 2011. Death to Kappa: birth of quantity disagreement and allocation disagreement for accuracy assessment. International Journal of Remote Sensing 32(15), 4407–4429. https://doi.org/10.1080/01431161.2011.552923 DOI: https://doi.org/10.1080/01431161.2011.552923

Pontius, R.G., Santacruz, A., 2014. Quantity, exchange, and shift components of difference in a square contingency table. International Journal of Remote Sensing 35(21), 7543–7554. https://doi.org/10.1080/2150704x.2014.969814 DOI: https://doi.org/10.1080/2150704X.2014.969814

Pradana, A.N., Djuraidah, A., Soleh, A.M., 2023. Land use change modelling using logistic regression, random forest and additive logistic regression in Kubu Raya Regency, West Kalimantan. Forum Geografi 37(2). https://doi.org/10.23917/forgeo.v37i2.23270 DOI: https://doi.org/10.23917/forgeo.v37i2.23270

Programa de las Naciones Unidas para el Medio Ambiente (PNUMA). Municipio de Loja & Naturaleza y Cultura Internacional, 2007. Perspectivas del medio ambiente urbano: GEO Loja. https://wedocs.unep.org/20.500.11822/9269

Sakieh, Y., Jabbarian Amiri, B., Danekar, A., Feghhi, J., Dezhkam, S., 2015. Simulating urban expansion and scenario prediction using a cellular automata urban growth model, SLEUTH, through a case study of Karaj City, Iran. Journal of Housing and the Built Environment 30(4), 591–611. https://doi.org/10.1007/s10901-014-9432-2 DOI: https://doi.org/10.1007/s10901-014-9432-3

Samat, N., Hasni, R., Elhadary, Y. a. E., 2011. Modelling Land Use Changes at the Peri-Urban Areas using Geographic Information Systems and Cellular Automata Model. Journal of Sustainable Development 4(6). https://doi.org/10.5539/jsd.v4n6p72 DOI: https://doi.org/10.5539/jsd.v4n6p72

Sankarrao, L., Ghose, D.K., Rathinsamy, M., 2021. Predicting land-use change: Intercomparison of different hybrid machine learning models. Environmental Modelling & Software 145, 105207. https://doi.org/10.1016/j.envsoft.2021.105207 DOI: https://doi.org/10.1016/j.envsoft.2021.105207

Sarkar, P., 2000. A brief history of cellular automata. ACM Computing Surveys 32 (1), 80–107. https://doi.org/10.1145/349194.349202 DOI: https://doi.org/10.1145/349194.349202

Schuster-Olbrich, J.P., Marquet, O., Miralles-Guasch, C., Fuentes Arce, L., 2024. Spatial patterns and drivers of urban expansion: An exploratory spatial analysis of the Metropolitan Region of Santiago, Chile, from 1997 to 2013. Cities 153, 105305. https://doi.org/10.1016/j.cities.2024.105305 DOI: https://doi.org/10.1016/j.cities.2024.105305

Secretaría de Gestión de Riesgos (SNGR), 2024. SitRep No. 77 – Incendios forestales (01/01/2024 al 21/11/2024). Secretaría de Gestión de Riesgos. https://www.gestionderiesgos.gob.ec/wp-content/uploads/2024/11/SitRep-No.-77-Incendios-Forestales-01012024-al-21112024.pdf

Secretaría de Gestión de Riesgos (SNGR), 2025. Gobierno nacional declara en emergencia la provincia de Loja. Secretaría de Gestión de Riesgos. https://www.gestionderiesgos.gob.ec/gobierno-nacional-declara-en-emergencia-la-provincia-de-loja/

Silva, L.P.E., Xavier, A.P.C., Da Silva, R.M., Santos, C.A.G., 2019. Modeling land cover change based on an artificial neural network for a semiarid river basin in northeastern Brazil. Global Ecology and Conservation 21, e00811. https://doi.org/10.1016/j.gecco.2019.e00811 DOI: https://doi.org/10.1016/j.gecco.2019.e00811

Souza, C.M., Shimbo, J.Z., Rosa, M.R., Parente, L.L., Alencar, A.A., Rudorff, B.F.T., Hasenack, H., Matsumoto, M., Ferreira, L.G., Souza-Filho, P.W.M., De Oliveira, S.W., Rocha, W.F., Fonseca, A.V., Marques, C. B., Diniz, C.G., Costa, D., Monteiro, D., Rosa, E.R., Vélez-Martin, E.,… Azevedo, T., 2020. Reconstructing Three Decades of Land Use and Land Cover Changes in Brazilian Biomes with Landsat Archive and Earth Engine. Remote Sensing 12(17), 2735. https://doi.org/10.3390/rs12172735 DOI: https://doi.org/10.3390/rs12172735

Subedi, P., Subedi, K., Thapa, B., 2013. Application of a hybrid cellular automaton–Markov (CA–Markov) model in land-use change prediction: A case study of Saddle Creek Drainage Basin, Florida. Journal of Geographic Information System 5(4), 273–284. https://doi.org/10.4236/jgis.2013.54026

Tahir, Z., Haseeb, M., Mahmood, S.A., Batool, S., Abdullah-Al-Wadud, M., Ullah, S., Tariq, A., 2025. Predicting land use and land cover changes for sustainable land management using CA-Markov modelling and GIS techniques. Scientific Reports 15(1). https://doi.org/10.1038/s41598-025-87796-w DOI: https://doi.org/10.1038/s41598-025-87796-w

Thomas, M., Prakash, A., Dhyani, S., Pujari, P.R., 2024. Governing green change to improve resilience by assessing urban risks for localizing nature-based solutions in fast sprawling Dehradun, India. International Journal of Disaster Risk Reduction: IJDRR 111(104684), 104684. https://doi.org/10.1016/j.ijdrr.2024.104684 DOI: https://doi.org/10.1016/j.ijdrr.2024.104684

United Nations Environment Programme (UNEP), Municipality of Loja, Nature and Culture International (NCI). 2007. Perspectivas del Medio Ambiente Urbano: GEOLoja. https://wedocs.unep.org/20.500.11822/9269

Van Berkum, S., 2023. How Urban Growth in the Global South Affects Agricultural Dynamics and Food Systems Outcomes in Rural Areas: A Review and Research Agenda. Sustainability 15(3), 2591. https://doi.org/10.3390/su15032591 DOI: https://doi.org/10.3390/su15032591

Varnier, M., Weber, E.J., 2025. Evaluating the Accuracy of Land-Use Change Models for Predicting Vegetation Loss Across Brazilian Biomes. Land 14(3), 560. DOI: https://doi.org/10.3390/land14030560

Veldkamp, A., Lambin, E., 2001. Predicting land-use change. Agriculture Ecosystems & Environment 85(1–3), 1–6. https://doi.org/10.1016/s0167-8809(01)00199-2 DOI: https://doi.org/10.1016/S0167-8809(01)00199-2

Wu, S., Sumari, N.S., Dong, T., Xu, G., Liu, Y., 2021. Characterizing Urban Expansion Combining Concentric-Ring and Grid-Based Analysis for Latin American Cities. Land 10, 444. https://doi.org/10.3390/land10050444 DOI: https://doi.org/10.3390/land10050444

Zhang, M., Zhang, C., Kafy, A.A., Tan, S., 2021. Simulating the relationship between land use/cover change and urban thermal environment using machine learning algorithms in Wuhan City, China. Land 11(1), 14. DOI: https://doi.org/10.3390/land11010014

Zhu, W., Li, Y., Luan, K., Qiu, Z., He, N., Zhu, X., Zou, Z. 2024. Forest Canopy Height Retrieval and Analysis Using Random Forest Model with Multi-Source Remote Sensing Integration. Sustainability, 16(5), 1735. https://doi.org/10.3390/su16051735 DOI: https://doi.org/10.3390/su16051735

Published

02-02-2026

How to Cite

1.
González-Coronel I, Muñoz-Sotomayor V, Burneo-Ordóñez MF. Integration Of Machine Learning Models And Spatial Simulation For Land Use Change Analysis In Loja, Ecuador. CIG [Internet]. 2026 Feb. 2 [cited 2026 Feb. 16];. Available from: https://publicaciones.unirioja.es/ojs/index.php/cig/article/view/6683

Issue

Section

Articles