Spectral-Temporal Analysis Of Wetland Fires In The Pantanal-Brazil Supported By UAV Multispectral Imagery

Authors

DOI:

https://doi.org/10.18172/cig.6801

Keywords:

Conservation Unit, Spectral Analysis, High Resolution, Sensors, Remotely Piloted Aircraft

Abstract

 The Wetlands of the Pantanal in Brazil are highly sensitive to environmental changes, and events such as wildfires pose a significant threat to biodiversity. In 2020, approximately 80% of its area was affected by high-intensity fires. Therefore, this study aimed to analyze, both spectrally and temporally over a three-year period (2019, 2020, and 2021), the behavior of four macrohabitats located within two study areas of the Private Reserve of Natural Heritage SESC Pantanal (RPPN SESC Pantanal), situated in the state of Mato Grosso, Brazil. For the analysis conducted over the three-year period in the study areas, the Micasense Altum multispectral camera was employed, along with processing methods involving spectral and temporal analysis. The results revealed a drastic decrease in reflectance within the red-edge and near-infrared (NIR) spectral bands in 2020, following the fire event, in both mapped areas. A subsequent recovery was observed in 2021, although reflectance levels remained below those recorded in 2019 (pre-fire conditions). The Acurizal and Tabocal macrohabitats exhibited the highest reflectance amplitudes and the greatest variability over the years, particularly in longer wavelengths (NIR). The Campina macrohabitat showed the lowest reflectance values, due to its vegetation being composed predominantly of shrub and herbaceous species. The Dry Forest (Mata Seca) displayed the highest spectral stability and demonstrated a continuous downward trend in average reflectance, indicating a loss of species diversity following the fire event. The findings contribute to the enhancement of conservation measures in wetland ecosystems, the management of protected areas, and the effectiveness of public policies, highlighting the potential of high-resolution multispectral data for spectral monitoring as a tool for detecting environmental changes.

Downloads

Download data is not yet available.

References

Boon, M.A., Tesfamichael, S. 2017. Wetland vegetation integrity assessment with low altitude multispectral UAV imagery. International Conference on Unmanned Aerial Vehicles in Geomatics. Anais The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Bonn, Germany. https://doi.org/10.5194/isprs-archives-XLII-2-W6-55-2017

Doughty, C.L., Cavanaugh, K.C. 2019. Mapping Coastal Wetland Biomass from High Resolution Unmanned Aerial Vehicle (UAV) Imagery. Remote Sensing, 11(5), 540-576. https://doi.org/10.3390/rs11050540

Dubs, B. 1992. Observations on the differentiation of woodland and wet savanna habitats in the Pantanal of Mato Grosso, Brazil. In: Furley, P.A., Proctor, J., Ratter, J.A. (Ed.) Nature and dynamics of forest-savanna boundaries. London: Chapman and Hall, p. 431-449.

Fernandes, I.M., Signor, C. A., Penha, J. 2010. Biodiversidade no Pantanal de Poconé. Centro de Pesquisa do Pantanal, Cuiabá, 196 p.

Ferreira, W. T. S., Carvalho, L. L., Rabelo, A. P. C. 2019. Análise da distribuição espaço- temporal dos focos de incêndio no Pantanal (2000-2016). In: Zuffo, A. M. Pantanal: o espaço geográfico e as tecnologias em análise. Editora Atena, Ponta Grossa, PR.

Junk W.J., Piedade M.T.F., Nunes da Cunha C., Wittmann F., Schöngart J. 2018. Macrohabitat studies in large Brazilian floodplains to support sustainable development in the face of climate change. Ecohydrology & Hydrobiology 18: 334-344. https://doi.org/10.1016/j.ecohyd.2018.11.007

Lowe, D.G. 1999. Object recognition from local scale-invariant features. Proc. 7th International Conference on Computer Vision (ICCV'99) (Corfu, Greece): 1150-1157. http://doi.org/10.1109/ICCV.1999.790410

Lowe, D.G. 2004. Distinctive image features from scale-invariant key points. International Journal of Computer Vision 60(2): 91-110. https://doi.org/10.1023/B:VISI.0000029664.99615.94

Mahdavi, S., Salehi, B., Granger, J., Amani, M., Brisco, B., Huang, W. 2017. Remote sensing for wetland classification: a comprehensive review. GIScience & Remote Sensing, 55(5), 623–658. https://doi.org/10.1080/15481603.2017.1419602

Ministério do Meio Ambiente. 2007. Biodiversidade do Cerrado e Pantanal: áreas e ações prioritárias para conservação. Série Biodiversidade 17. MMA. Brasília: MMA, 540 p. https://www.gov.br/mma/pt-br/assuntos/biodiversidade-e-biomas/biomas-e-ecossistemas/biomas/arquivos-biomas/cerrado_pantanal-1.pdf

Ngo, D.T. 2024. Mapping tree species of wetlands using multispectral images of UAVs and machine learning: A case study of the Dong Rui Commune. Heliyon, 10 (15), e35159. https://doi.org/10.1016/j.heliyon.2024.e35159

Nunes da Cunha C., Junk W.J. 2004. Year-to-year changes in water level drive the invasion of Vochysia divergens in Pantanal grasslands. Applied Vegetation Science, 7, 103-110. https://doi.org/10.1111/j.1654-109X.2004.tb00600.x

Nunes da Cunha C., Junk W.J. 2014. A classificação dos macrohabitats do Pantanal Mato-grossense. In: Nunes da Cunha, C., Piedade, M.T.F., Junk, W.J. (Orgs.). Classificação e Delineamento das Áreas Úmidas Brasileiras e de Seus Macrohabitats. Cuiabá: EdUFMT. p. 77-122. https://www.edufmt.com.br/product-page/classifica%C3%A7%C3%A3o-e-delineamento-das-%C3%A1reas-%C3%BAmidas-brasileiras-e-de-seus-macrohabitat-1

Peixoto, A.L., Luz, J.R.P., Brito, M.A. 2016. Conhecendo a biodiversidade. Brasília, MCTIC, CNPq, PPBio, 196 p. https://ppbio.inpa.gov.br/sites/default/files/conhecendo_a_biodiversidade_livro.pdf

RAMSAR. 2003. Information sheet for a new RAMSAR wetland in the Pantanal. https://rsis.ramsar.org/RISapp/files/RISrep/BR1270RISformer_160210.pdf

Ratter, J.A., Pott, A, Nunes Da Cunha, C., Haridasan, M. 1988. Observations on wood vegetation types in the Pantanal and at Corumbá, Brazil. Notes Royal Botanical Garden of Edinburgh, v. 45, p. 503-525. https://archive.org/details/notes-from-royal-botanic-garden-edinburgh-45-003-503-525

Salim, D.H.C., Andrade, G.R., Assunção, A.F., Cosme, P.H. d. M., Pereira, G., Amorim, C.C. 2024. Assessing the Impact of Environmental Conditions on Reflectance Values in Inland Waters Using Multispectral UAS Imagery. Limnological Review, 24(4), 466-490. https://doi.org/10.3390/limnolrev24040027

Samiappan, S., Turnage, G., Hathcock, L.A., Moorhead, R. 2016. Mapping of invasive phragmites (common reed) in Gulf of Mexico coastal wetlands using multispectral imagery and small Unmanned Aerial Systems. International Journal of Remote Sensing, 38(8-10), 2861-2882. https://doi.org/10.1080/01431161.2016.1271480

Szeliski, R. 2010. Computer Vision: algorithms and Applications. London: Springer, 812 p.

Wu, S., Tetzlaff, D., Daempfling, H., Soulsby, C. 2023. Improved understanding of vegetation dynamics and wetland ecohydrology via monthly UAV-based classification. Hydrological Processes, 37(9), e14988. https://doi.org/10.1002/hyp.14988

Zhang, X., Liu, L., Zhao, T., Chen, X., Lin, S., Wang, J., Mi, J., Liu, W. 2023. GWL_FCS30: a global 30 m wetland map with a fine classification system using multi-sourced and time-series remote sensing imagery in 2020, Earth Syst. Sci. Data, 15, 265-293. https://doi.org/10.5194/essd-15-265-2023

Zarista, S., Zeilhofer, P. 2015. Monitoramento da Dinâmica de Inundação no Pantanal Norte com Uso de Índices EVI e LSWI do MODIS. In: ROSSETO, O. C., TOCANTINS, N. Ambiente Agrário do Pantanal Brasileiro: socioeconomia e conservação da biodiversidade. 1 ed. Porto Alegre, Imprensa Livre, Compasso Lugar Cultura, 677 p. https://www.cppantanal.org.br/2018/images/Livro_Pantanal.pdf

Published

04-12-2025

How to Cite

1.
Nunes GM, Nunes da Cunha C, Silva N da. Spectral-Temporal Analysis Of Wetland Fires In The Pantanal-Brazil Supported By UAV Multispectral Imagery. CIG [Internet]. 2025 Dec. 4 [cited 2025 Dec. 16];. Available from: https://publicaciones.unirioja.es/ojs/index.php/cig/article/view/6801

Issue

Section

Special Issue: Forest fires: risk, consequences and technological advances in their analysis and management