Pinhole test for assessing the piping erosion susceptibility of soils

Authors

  • E. Nadal-Romero Universidad de Zaragoza
  • E. Verachtert Departament of Earth and Environmental Sciences
  • R. Maes Departament of Earth and Environmental Sciences
  • J. Poesen Departament of Earth and Environmental Sciences

DOI:

https://doi.org/10.18172/cig.1248

Keywords:

Piping, pinhole test, hydraulic head, soil moisture content, water quality

Abstract

Piping has been observed in natural and anthropogenic landscapes, in different lithologies and climates, and under different types of land uses and vegetation covers. Despite its importance, no standard widely-applied methodology exists to assess susceptibility of soils to piping. The pinhole test, originally developed by Sherard et al. in 1976 is an empirical test based on the qualitative evaluation of the dispersibility (colloidal erodibility) of compacted fined-grained soils. This study aims at evaluating the pinhole test for assessing the susceptibility of soils to piping and establishes recommendations to use the pinhole test, and assesses the effects of hydraulic head, water quality and soil moisture content on the hydrological and erosion responses. Topsoil Ap horizon samples with different moisture contents were taken in Central Belgium. Four hydraulic heads (50, 180, 380 and 1020 mm) and two water qualities (tap and distilled water) were used in the laboratory. The results show: (i) a linear increase in pipe flow discharge (Qw) and sediment discharge (Qs) with increasing hydraulic head, (ii) a negative trend (not significant) for Qw and Qs with increasing soil moisture content, and (iii) significantly higher Qw and Qs for distilled water than for tap water. This study indicates that the pinhole test is suitable for assessing the susceptibility of soil horizons to piping in a quantitative way (Qw, Qs, the time to flow out and the hole size after the test). We recommend the use of: (i) two different and contrasting hydraulic heads (i.e. 180 and 1020 mm), (ii) distilled water, and (iii) different soil moisture contents.

Downloads

Download data is not yet available.

References

ASTM D4647 (2006). Standard Test Method for Identification and Classification of Dispersive Clay Soils by the Pinhole Test. Annual Book of ASTM Standards, Vol. 04.08, ASTM International, West Wonshohocken, PA, p. 11.

Barrón, G., Echeverría, M.T., Ibarra, P., Marco, P., Pérez, F., (1994). Algunas consecuencias geomorfológicas del uso del suelo agrícola en las últimas décadas. La actividad del piping en el bajo valle del Huerva (Zaragoza, Spain). En: Geomorfología en España (Arnáez, J., García Ruiz, J.M., Gómez Villar, A., Eds.). Tomo II, pp. 255-266, Logroño.

Benito, E., Giovannini, G., Díaz Fierros, F., (1991). Effect of pH on dispersion of various soil suspensions and its relation to soil structural stability. Agrochimica, 35: 34-45.

Borselli, L., Torri, D., Poesen, J., Salvador-Sanchís, P., (2001). Effects of water quality on infiltration, runoff and interril erosion processes during simulated rainfall. Earth Surface Processes and Landforms, 26: 329-342.

Botschek, J., Krause, S., Abel, T., Skowronek, A., (2002a). Piping and erodibility of loessic soils in Bergischer Land, Nordrhein-Westfalen. Journal of Plant Nutrient Soil Science, 165 (2): 241-246.

Botschek, J., Krause, S., Abel, T., Skowronek, A., (2002b). Hydrological parameterization of piping in loess-rich soils in the Bergisches Land, Nordrhein-Westfalen, Germany. Journal of Plant Nutrient Soil Science, 165 (4): 506-510.

Bryan, R., Jones, J.A.A., (1997). The significance of soil piping processes: inventory and prospect. Geomorphology, 20: 209-218.

Chorley, R.J. (1978). Glossary of terms. En: Hillslope Hydrology (Kirkby, M.J., Eds.). Wiley, pp 375-176, New York.

Faulkner, H., Spivey, D., Alexander, R., (2000). The role of some site geochemical processes in the development and stabilisation of three badland sites in Almería, Southern Spain. Geomorphology, 35: 87-99.

Faulkner, H., (2006). Piping Hazard on Collapsible and Dispersive Soils in Europe. En: Soil Erosion in Europe (Boardman, J., Poesen, J., Eds.). John Wiley & Sons, Ltd., pp. 537-562, Chichester.

Flanagan, D.C., Norton, L.D., Shainberg, I., (1997). Effect of water chemistry and soils amendments on a silty loam-soil. Part II: soil erosion. Transactions of the American Society of Agricultural Engineers, 40 (6): 1555-1561.

García-Ruiz, J.M., Lasanta, T., Ortigosa-Izquierdo, L., Arnáez, J., (1986). Pipes in cultivated soils of La Rioja: origin and evolution. Zeitschrift für Geomorphologie (Suppl 58): 93-100.

García-Ruiz, J.M., Lasanta, T., Alberto, F., (1997). Soil erosion by piping in irrigated fields. Geomorphology, 20 (3-4): 269-278.

Govers, G., Everaert, W., Poesen, J., Rauws, G., De Ploey, J., Lautridou, J.P., (1990). A long flume study of the dynamics factors affecting the resistance of a loamy soil to concentrated flow erosion. Earth Surface Processes and Landforms, 15 (4): 313-328.

Govers, G., (1991). Time-dependency of runoff velocity and erosion: the effect of the initial soil moisture profile. Earth Surface Processes and Landforms, 16 (8): 713-729.

Gutiérrez-Elorza, M., Sancho, C., Benito, G., Sirvent, J., Desir, G., (1997). Quantitative study of piping processes in badland areas of the Ebro basin, NE Spain. Geomorphology, 20: 237-253.

Gutiérrez-Elorza, M., Benito, G., Rodríguez-Vidal, J., (1988). Piping in badland areas of the middle Ebro basin, Spain. Catena Suppl., 13: 49-60.

Harvey, A., (1982). The role of piping in the development of badlands and gully systems in southeast Spain. En: Badland geomorphology and piping (Bryan, R., Yair, A., Eds.). Geobooks, pp. 317-336, Norwich.

Heede, B.H., (1971). Characteristics and processes of soil piping in gullies. Unites States Department of Agriculture Forest Service, Rocky Mountain Forest and Range. Experiment Station Research Paper RM-68, 15 pp.

Jones, J.A.A., (1981). The nature of Soil Piping, Á Review of Research. Geobooks, Norwich.

Jones, J.A.A., (1997). Pipeflow contributing areas and runoff response. Hydrological Processes, 11 (1): 35-41.

Knapen, A., Poesen, J., De Baets, S., (2007). Seasonal variations in soil erosion resistance during concentrated flow for a loess-derived soil under two contrasting tillage practices. Soil and Tillage Research, 94 (2): 425-440.

López Bermúdez, F.L., Romero Díaz, M.A., (1989). Piping erosion and badland development in South-East Spain. Catena Suppl., 14: 59-73.

Malinowski, J., (1963). Uwagi o wspol wzynniku makroporowatosci lessow w Polsce. Biuletyn Instytutu Geologicznego, 182 (2): 5-24.

Nadal-Romero, E., Verachtert, E., Poesen, J., (2009). Pinhole test for identifying susceptibility of soils to piping erosion: effect of water quality and hydraulic head. En: Advances in studies on desertification (Romero Díaz, A., Belmonte Serrato, F., Alonso Sarria, López-Bermúdez, F., Eds.) Contributions to the International Conference on Desetification in memory of professor John B. Thornes. pp. 351-154. Murcia.

Nadal-Romero, E., Verachtert, E., Maes, R., Poesen, J., (en prep.). Assessing the piping erosion susceptibility of loess-derived soil horizons using the pinhole test.

Parker, C.G., (1964). Piping, a geomorphic agent in landform development of the drylands. En: Land Erosion, Precipitation, Hydrometry, Soil Moisture. Proceedings of the General Assembly of Berkeley, 19-31 August 1963. International Association of Scientific Hydrology, 65: 103-113.

Poesen, J., (1989). Conditions for gully formation in the Belgian Loam Belt and some ways to control them. Soil Technology Series, 1: 39-52.

Poesen, J., Vandaele, K., Van Wesemael, B., (1996). Contribution of gully erosion to sediment production on cultivated lands and rangelands. En: Erosion and Sediment Yield: Global and Regional Perspectives (Proceedings of the Exeter Symposium July 1996). IAHS Publ. no. 236, pp. 251-266.

Romero Díaz, M.A., Marín Sanleandro, O., Sánchez Soriano, A., Belmonte Serrato, F. y Faulkner, H. (2007a). The causes of piping in a set of abandoned agricultural terraces in Southeast Spain. Catena, 69: 282-293.

Romero Díaz, M.A., Marín Sanleandro, O., Sánchez Soriano, A., (2007b). Surfaces of gullies generated by piping proceses in abandoned fields (South-east Spain). En: IV International symposium on gully erosion (Casalí, J., Giménez, R., Eds.) Universidad Pública de Navarra, pp. 106-108, Pamplona.

Romero Díaz, M.A., Marín Sanleandro, O., Sánchez Soriano, A., (2009). Procesos de piping en la región de Murcia. Cuadernos de Investigación Geográfica, 35 (1): 87-117.

Sherard, J.L., Dunningan, L., Decker, R., Steele, F., (1976a). Pinhole Test for identifying Dispersive Soils. Journal of the Geotechnical Engineering Division, Vol. 102, Paper 11846: 69-85.

Sherard, J.L., Dunningan, L., Decker, R., (1976b). Identification and nature of dispersive soils. Journal of the Geotechnical Engineering Division ASCE, Vol. 102: 287-301.

Ternan, J.L., Elmes, A., Fitzjohn, C., Williams, A.G., (1998). Piping susceptibility and the role of hydrogeomorphic controls in pipe development in alluvial sediments, Central Spain. Zeitschrift für Geomorphologie, 42 (1): 75-87.

Torri, D., Borselli, L., Calzolari, C., Yanez, M.S., Salvador Sanchis, M.P., (2002). Soil erosion, land use, soil qualities and soil functions: effect of erosion. En: Man and Soil at the Third Millennium, Vol. I (Rubio, J.L., Morgan, R.P.C., Asins, S., Andreu, V., Eds.). Geoforma, pp. 131-148, Logroño.

Verachtert, E., Van den Eeckhaut, M., Poesen, J., Deckers, J., (2010). Factors controlling the spatial distribution of soil piping erosion on loess-derived soils: A case study from central Belgium. Geomorphology, 118 (3-4): 339-348.

Published

03-06-2013

How to Cite

1.
Nadal-Romero E, Verachtert E, Maes R, Poesen J. Pinhole test for assessing the piping erosion susceptibility of soils. CIG [Internet]. 2013 Jun. 3 [cited 2024 Apr. 20];37(1):99-114. Available from: https://publicaciones.unirioja.es/ojs/index.php/cig/article/view/1248

Issue

Section

Articles