Experiments as tools in geomorphology

M. Seeger


In this introductory article to the special issue “Experiments in geomorphology”, the fundamentals of experiments in science, and especially in earth science and geomorphology, are discussed. This is of special interest, as geomorphological sciences crosses scales and thus, different types of experiments are applied for highly variable tasks: (i) Real experiments: to test hypotheses on the process interaction of well defined landscape components; (ii) Quasi experiments: the integrated response of pre-defined morphological units is quantified here; (iii) Hybrid experiments: spatial stratification of the landscape according to statistically evaluable characteristics.

A short review on different types of experiments in geomorphology is given, focusing on the processes relevant for soil erosion: splash, inter-rill and linear erosion. Finally, the contributions to the special issue are classified according to the classification of experiments given.


experiments; soil erosion; experimental theory; experimental classification; soil erosion measurements

Full Text:



Ahnert, F. 1980. A note on measurements and experiments in geomorphology. Zeitschrift für Geomorphology Supplementband 35, 1-10.

Ali, M., Seeger, M., Sterk, G., Moore, D. 2013. A unit stream power based sediment transport function for overland flow. Catena 101, 197–204. DOI: http://doi.org//10.1016/j.catena.2012.09.006.

Arnáez, J., Lana-Renault, N., Ruiz-Flaño, P., Pascual, N., Lasanta, T. 2017. Mass soil movement on terraced landscapes of the Mediterranean mountain areas: A case study of the Iberian Range, Spain. Cuadernos de Investigación Geográfica 43 (1). DOI: http://doi.org/10.18172/cig.3211.

Arnáez, J., Lasanta, T., Ruiz-Flaño, P., Ortigosa, L. 2007. Factors affecting runoff and erosion under simulated rainfall in Mediterranean vineyards. Soil and Tillage Research 93, 324-334. DOI: http://doi.org/10.1016/j.still.2006.05.013.

Auerswald, K., Fiener, P., Dikau, R. 2009. Rates of sheet and rill erosion in Germany – A meta-analysis. Geomorphology 111, 182-193. DOI: http://doi.org/10.1016/j.geomorph.2009.04.018.

Bagarello, V., Ferro, V., Giordano, G., Mannocchi, F., Todisco, F., Vergni, L. 2013. Predicting event soil loss from bare plots at two Italian sites. Catena 109, 96-102. DOI: http://doi.org/10.1016/j.catena.2013.04.010.

Bagarello, V., Stefano, C.D., Ferro, V., Kinnell, P.I.A., Pampalone, V., Porto, P., Todisco, F. 2011. Predicting soil loss on moderate slopes using an empirical model for sediment concentration. Journal of Hydrology 400, 267-273. DOI: http://doi.org/10.1016/j.hydrol.2011.01.029.

Bagnold, R.A. 1938. Grain structure of sand dunes and its relation to their water content. Nature 142, 403–404.

Bagnold, R.A. 1941. The physics of blown sand and desert dunes. Methuen, London, 265 pp.

Becker, K., Gronz, O., Wirtz, S., Seeger, M., Brings, C., Iserloh, T., Casper, M.C., Ries, J.B. 2015. Characterization of complex pebble movement patterns in channel flow – a laboratory study. Cuadernos de Investigación Geográfica 41, 63-85. DOI: http://doi.org/10.18172/cig.2645.

Bockheim, J.G., Gennadiyev, A.N. 2009. The value of controlled experiments in studying soil-forming processes: A review. Geoderma 152, 208-217. DOI: http://doi.org/10.1016/j.geoderma.2009.06.019.

Boix-Fayos, C., Martínez-Mena, M., Calvo-Cases, A., Arnau-Rosalén, E., Albaladejo, J., Castillo, V. 2007. Causes and underlying processes of measurement variability in field erosion plots in Mediterranean conditions. Earth Surface Processes and Landforms 32, 85-101. DOI: http://doi.org/10.1002/esp.1382.

Boix-Fayos, C., Martínez-Mena, M., Arnau-Rosalén, E., Calvo-Cases, A., Castillo, V., Albaladejo, J. 2006. Measuring soil erosion by field plots: Understanding the sources of variation. Earth-Science Reviews 78, 267-285. DOI: http://doi.org/10.1016/j.earscirev.2006.05.005.

Borselli, L., Cassi, P., Torri, D. 2008. Prolegomena to sediment and flow connectivity in the landscape: A GIS and field numerical assessment. Catena 75, 268-277. DOI: http://doi.org/10.1016/j.catena.2008.07.006.

Bryan, R., De Ploey, J. 1983. Comparability of soil loss measurements with different laboratory rainfall simulators. Catena Supplement 4, 33-56.

Bryan, R.B. 1991. Surface wash. In: Field Experiments and Measurement Programs in Geomorphology. A.A.Balkema,, Amsterdam, pp. 107-167.

Butzen, V., Seeger, M., Casper, M. 2011. Spatial pattern and temporal variability of runoff processes in Mediterranean Mountain environments – coupling experimental measurement and GIS-analyses. Zeitschrift fúr Geomorphology Supplementband 55, 25-48.

Butzen, V., Seeger, M., Marruedo, A., de Jonge, L., Wengel, R., Ries, J.B., Casper, M.C. 2015. Water repellency under coniferous and deciduous forest — Experimental assessment and impact on overland flow. Catena 133, 255-265. DOI: http://doi.org/10.1016/j.catena.2015.05.022.

Cammeraat, L.H. 2002. A review of two strongly contrasting geomorphological systems within the context of scale. Earth Surface Processes and Landforms 27, 1201-1222. DOI: http://doi.org/10.1002/esp.421.

Cerdà, A. 1998. The influence of aspect and vegetation on seasonal changes in erosion under rainfall simulation on a clay soil in Spain. Canadian Journal of Soil Science 78, 321-330.

Cerdà, A., Imeson, A.C., Calvo, A. 1995. Fire and aspect induced differences on the erodibility and hydrology of soils at La Costera, Valencia, southeast Spain. Catena 24, 289-304. DOI: http://doi.org/1.1016/0341-8162(95)00031-2.

Cerdà, A., Jurgensen, M.F. 2011. Ant mounds as a source of sediment on citrus orchard plantations in eastern Spain. A three-scale rainfall simulation approach. Catena 85, 231-236. DOI: http://doi.org/10.1016/j.catena.2011.01.008.

Cerdà, A., Schnabel, S., Ceballos, A., Gómez-Amelia, D. 1998. Soil hydrological response under simulated rainfall in the Dehesa land system (Extremadura, SW Spain) under drought conditions. Earth Surface Processes and Landforms 23, 195-209. DOI: http://doi.org/10.1002/(SICI)1096-9837(199803)23:3<195::AID-ESP830>3.0.CO;2-1.

Cerdan, O., Govers, G., Le Bissonnais, Y., Van Oost, K., Poesen, J., Saby, N., Gobin, A., Vacca, A., Quinton, J., Auerswald, K., Klik, A., Kwaad, F.J.P.M., Raclot, D., Ionita, I., Rejman, J., Rousseva, S., Muxart, T., Roxo, M.J., Dostal, T. 2010. Rates and spatial variations of soil erosion in Europe: A study based on erosion plot data. Geomorphology 122, 167-177. DOI: http://doi.org/10.1016/j.geomorph.2010.06.011.

Cerdan, O., Le Bissonnais, Y., Govers, G., Lecomte, V., Van Oost, K., Couturier, A., King, C., Dubreuil, N. 2004. Scale effect on runoff from experimental plots to catchments in agricultural areas in Normandy. Journal of Hydrology 299, 4-14. DOI: http://doi.org/10.1016/j.hydrol.2004.02.017.

Chepil, W. 1945. Dynamics of wind erosion: I. Nature of movement of soil by wind. Soil Science 60, 305-320.

Darboux, F., Davy, P., Gascuel-Odoux, C. 2002. Effect of depression storage capacity on overland-flow generation for rough horizontal surfaces: water transfer distance and scaling. Earth Surface Processes and Landforms 27, 177-191. DOI: http://doi.org/10.1002/esp.312.

de Vente, J., Poesen, J. 2005. Predicting soil erosion and sediment yield at the basin scale: Scale issues and semi-quantitative models. Earth-Science Reviews 71, 95-125. DOI: http://doi.org/10.1016/j.earscirev.2005. 02.002.

Edwards, L., Burney, J.R., Richter, G., MacRae, A.H. 2000. Evaluation of compost and straw mulching on soil-loss characteristics in erosion plots of potatoes in Prince Edward Island, Canada. Agriculture, Ecosystems, Environment 81, 217-222. DOI: http://doi.org/10.1016/S0167-8809(00)00162-6.

Einstein, H.A. 1936. Der Geschiebetrieb als Wahrscheinlichkeitsproblem. ETH Zürich, Zürich.

Ekern, P.C. 1950. Raindrop impact as the force initiating soil erosion. Soil Science Society of America Journal 15, 7-10.

Ferrer, V., Errea, P., Alonso, E., Gómez-Gutiérrez, A., Nadal-Romero, E. 2017. A multiscale approach to assess geomorpholgical processes in a semiarid badland area (Ebro Depression, Spain). Cuadernos de Investigación Geográfica 43 (1). DOI: http://doi.org/10.18172/cig.3139.

García-Orenes, F., Cerdà, A., Mataix-Solera, J., Guerrero, C., Bodí, M.B., Arcenegui, V., Zornoza, R., Sempere, J.G. 2009. Effects of agricultural management on surface soil properties and soil-water losses in eastern Spain. Soil and Tillage Research 106, 117-123. DOI: http://doi.org/10.1016/j.still.2009.06.002.

García-Orenes, F., Guerrero, C., Roldán, A., Mataix-Solera, J., Cerdà, A., Campoy, M., Zornoza, R., Bárcenas, G., Caravaca, F. 2010. Soil microbial biomass and activity under different agricultural management systems in a semiarid Mediterranean agroecosystem. Soil and Tillage Research 109, 110-115. DOI: http://doi.org/10.1016/j.still.2010.05.005.

García-Ruiz, J.M., Beguería, S., Nadal-Romero, E., González-Hidalgo, J.C., Lana-Renault, N., Sanjuán, Y. 2015. A meta-analysis of soil erosion rates across the world. Geomorphology 239, 160-173. DOI: http://doi.org/10.1016/j.geomorph.2015.03.008.

Geddes, N., Dunkerley, D. 1999. The influence of organic litter on the erosive effects of raindrops and of gravity drops released from desert shrubs. Catena 36, 303-313. DOI: http://doi.org/10.1016/S0341-8162(99)00050-8.

Gimenez, R., Govers, G. 2002. Flow detachment by concentrated flow on smooth and irregular beds. Soil Science Society of America Journal 66, 1475-1483. DOI: http://doi.org/10.2136/sssaj2002.1475.

Goebes, P., Seitz, S., Geißler, C., Lassu, T., Peters, P., Seeger, M., Nadrowski, K., Scholten, T., 2014. Momentum or kinetic energy – How do substrate properties influence the calculation of rainfall erosivity? Journal of Hydrology 517, 310-316. DOI: http://doi.org/10.1016/j.jhydrol.2014.05.031.

Govers, G. 1989. Grain velocities in overland flow: a laboratory study. Earth Surface Processes and Landforms 14, 481-498. DOI: http://doi.org/10.1002/esp.3290140605.

Hills, R.C. 1971. Lateral flow under cylinder infiltrometers: a graphical correction procedure. Journal of Hydrology 13, 153-162. DOI: http://doi.org/10.1016/0022-1694(71)90212-5.

Imeson, A.C., Lavee, H., Calvo, A., Cerdà, A. 1998. The erosional response of calcareous soils along a climatological gradient in southeast Spain. Geomorphology 24, 3-16. DOI: http://doi.org/10.1016/S0169-555X(97)00097-4.

Iserloh, T., Ries, J.B., Arnáez, J., Boix-Fayos, C., Butzen, V., Cerdà, A., Echeverría, M.T., Fernández-Gálvez, J., Fister, W., Geißler, C., Gómez, J.A., Gómez-Macpherson, H., Kuhn, N.J., Lázaro, R., León, F.J., Martínez-Mena, M., Martínez-Murillo, J.F., Marzen, M., Mingorance, M.D., Ortigosa, L., Peters, P., Regüés, D., Ruiz-Sinoga, J.D., Scholten, T., Seeger, M., Solé-Benet, A., Wengel, R., Wirtz, S. 2013a. European small portable rainfall simulators: A comparison of rainfall characteristics. Catena 110, 100-112. DOI: http://doi.org/10.1016/j.catena.2013.05.013.

Iserloh, T., Ries, J.B., Cerdà, A., Echeverría, M.T., Fister, W., Geißler, C., Kuhn, N.J., León, F.J., Peters, P., Schindewolf, M., Schmidt, J., Scholten, T., Seeger, M. 2013b. Comparative measurements with seven rainfall simulators on uniform bare fallow land. Zeitschrif für Geomorphology Supplementband 57, 11-26. DOI: http://doi.org/10.1127/0372-8854/2012/S-00085.

Kinnell, P.I.A. 2005a. Raindrop-impact-induced erosion processes and prediction: A review. Hydrological Processes 19, 2815-2844. DOI: http://doi.org/10.1002/hyp.5788.

Kinnell, P.I.A. 2005b. Sediment transport by medium to large drops impacting flows at subterminal velocity. Soil Science Society of America Journal 69, 902-905. DOI: http://doi.org/10.2136/sssaj2004.0273.

Kinnell, P.I.A. 2001. Particle travel distances and bed and sediment compositions associated with rain-impacted flows. Earth Surface Processes and Landforms 26, 749-758. DOI: http://doi.org/10.1002/esp.221.

Kinnell, P.I.A. 1993. Sediment concentrations resulting from flow depth/drop size interactions in shallow overland flow. Transactions of the ASAE 36, 1099-1103.

Kinnell, P.I.A. 1985. Runoff effects on the efficiency of raindrop kinetic energy in sheet erosion. Soil Erosion and Conservation 399-405.

Kirchhoff, M., Rodrigo-Comino, J., Seeger, M., Ries, J.B. 2017. Soil erosion in sloping vineyards under conventional and organic land use managements (Saar-Mosel valley, Germany). Cuadernos de Investigación Geográfica 43 (1). Doi:

Kleinhans, M.G., Bierkens, M.F.P., van der Perk, M. 2010. HESS Opinions On the use of laboratory experimentation: “Hydrologists, bring out shovels and garden hoses and hit the dirt.” Hydrology and Earth System Sciences 14, 369-382. DOI: http://doi.org/10.5194/hess-14-369-2010.

Kleinhans, M.G., van Dijk, W.M., van de Lageweg, W.I., Hoendervoogt, R., Markies, H., Schuurman, F. 2010. From nature to lab: scaling self-formed meandering and braided rivers. In: Dittrich, Koll, Aberle, Geisenhainer (eds.), River Flow 2010, pp. 1001-1010.

Kuhn, N.J., Greenwood, P., Fister, W. 2014. Use of Field Experiments in Soil Erosion Research, in: M.J. Thornbush, C.D. Allen, F.A. Fitzpatrick (Eds.), Developments in Earth Surface Processes, Elsevier, pp. 175-200. DOI: http://doi.org/10.1016/8978-0-444-63402-3.00011-X.

Lassu, T., Seeger, M., Peters, P., Keesstra, S.D. 2015. The Wageningen Rainfall Simulator: Set-up and Calibration of an Indoor Nozzle-Type Rainfall Simulator for Soil Erosion Studies. Land Degradation & Development 26, 604-612. DOI: http://doi.org/10.1002/ldr.2360.

Lehmann, P., Hinz, C., McGrath, G., Tromp-van Meerveld, H.J., McDonnell, J.J. 2007. Rainfall threshold for hillslope outflow: an emergent property of flow pathway connectivity. Hydrology and Earth System Sciences 11, 1047-1063.

León, J., Badía, D., Echeverría, M.T. 2015. Comparison of different methods to measure soil erosion in the Central Ebro Valley. Cuadernos de Investigación Geográfica 41 (1), 165-180. DOI: http://doi.org/18172/cig.2703.

León, J., Seeger, M., Badía, D., Peters, P., Echeverría, M.T. 2014. Thermal shock and splash effects on burned gypseous soils from the Ebro Basin (NE Spain). Solid Earth 5, 131-140. DOI: http://doi.org/10.5194/se-5-131-2014.

Luk, S.H., Cai, Q.G. 1990. Laboratory experiments on crust development and rainsplash erosion of loess soils, China. Catena 17, 261-276. DOI: http://doi.org/10.1016/0341-8162(90)90020-E.

Lundin, R. 2001. Auroral particle acceleration processes: the legacy of Hannes Alfvén. Physics and Chemistry of the Earth, Part C: Solar, Terrestrial & Planetary Science 26, 13-23. DOI: http://doi.org/10.1016/S1464-1917(00)00085-4.

Major, J.J. 1997. Depositional processes in large-scale debris-flow experiments. The Journal of Geology 105, 345-366.

Marzen, M., Iserloh, T., Casper, M.C., Ries, J.B. 2015. Quantification of particle detachment by rain splash and wind-driven rain splash. Catena 127, 135-141. DOI: http://doi.org/10.1016/j.catena.2014.12.023.

Masselink, R.J.H., Temme, A.J.A.M., Giménez, R., Casalí, J., Keesstra, S.D. 2017. Assessing hillslope-channel connectivity in an agricultural catchment using rare-earth oxide tracers and random forests models. Cuadernos de Investigación Geográfica, 43 (1). Doi:

McGregor, K.C., Bengtson, R.L., Mutchler, C.K. 1988. Effects of surface straw on interrill runoff and erosion of Grenada silt loam soil. Transactions of the ASAE 31, 111-116.

Mertens, J., Jacques, D., Vanderborght, J., Feyen, J. 2002. Characterisation of the field-saturated hydraulic conductivity on a hillslope: in situ single ring pressure infiltrometer measurements. Journal of Hydrology 263, 217-229. DOI: http://doi.org/10.1016/S0022-1694(02)00052-5.

Mueller, E.N., Wainwright, J., Parsons, A.J. 2007. Impact of connectivity on the modeling of overland flow within semiarid shrubland environments. Water Resources Research 43. DOI: http://doi.org/10.1029/2006WR005006.

Mutchler, C.K., McGregor, K.C., Cullum, R.F. 1994. Soil loss from contoured ridge-till. Transactions of the ASAE 37, 139-142. DOI: http://doi.org/10.13031/2013.28063.

Navas, A., Garcia Ruiz, J.M., Machin, J., Lasanta, T., Valero, B. 1997. Soil erosion on dry farming land in two changing environments of the central Ebro Valley, Spain. IAHS Publication 245, 13-20.

Nearing, M.A., Govers, G., Norton, L.D. 1999. Variability in soil erosion data from replicated plots. Soil Science Society of America Journal 63, 1829-1835. DOI: http://doi.org/10.2136/sssaj1999.6361829x.

Okin, G.S., Parsons, A.J., Wainwright, J., Herrick, J.E., Bestelmeyer, B.T., Peters, D.C., Fredrickson, E.L. 2009. Do Changes in Connectivity Explain Desertification? BioScience 59, 237-244. DOI: http://doi.org/ 10.1525/bio.2009.59.3.8.

Okuda, S. 1991. Rapid mass movements, in: Field Experiments and Measurement Programs in Geomorphology. A.A.Balkema, Amsterdam, pp. 61-105.

Otto, K.H., Mönter, L. 2015. Scientific Literacy im Geographieunterricht fördern. Experimentelle Lehr-/Lernformen und Modellexperimente. Geographie Heute 322, 2-7.

Pavelka, J., Smetanová, A., Rejman, J., Kováčik, P. 2017. An interdisciplinary tillage erosion experiment: Establishing a new field in grasslands with reconstructed ard plough of the Bronze Age. Cuadernos de Investigación Geográfica 43 (1). DOI: http://doi.org/10.18172/cig.3131.

Paola, C., Straub, K., Mohrig, D., Reinhardt, L., 2009. The “unreasonable effectiveness” of stratigraphic and geomorphic experiments. Earth-Science Reviews 97, 1-43. DOI: http://doi.org/10.1016/j.earscirev.2009.05.003.

Poesen, J.W.A., Lavee, H. 1991. Effects of size and incorporation of synthetic mulch on runoff and sediment yield from interrils in a laboratory study with simulated rainfall. Soil and Tillage Research 21, 209-223. DOI: http://doi.org/10.1016/0167-1987(91)90021-O.

Postma, G., Kleinhans, M.G., Meijer, P.T., Eggenhuisen, J.T. 2008. Sediment transport in analogue flume models compared with real-world sedimentary systems: a new look at scaling evolution of sedimentary systems in a flume. Sedimentology 55, 1541-1557. DOI: http://doi.org/10.1111/j.1365-3091.2008.00956.x.

Radder, H. 2009. The philosophy of scientific experimentation: a review. Automated Experimentation 1, 2. DOI: http://doi.org/10.1186/1759-4499-1-2.

Regüés, D., Badía, D., Echeverría, M.T., Gispert, M., Lana-Renault, N., León, J., Nadal-Romero, E., Pardini, G., Serrano-Muela, P. 2017. Analysing land uses and vegetation cover effect on soil infiltration in three contrasting environments in Northeast Spain. Cuadernos de Investigación Geográfica 43 (1). Doi:

Ries, J.B. 1994. Bodenerosion in der Hochgebirgsregion des östlichen Zentral-Himalaya untersucht am Beispiel Bamti/Bhandar/Surma, Nepal. Universität Freiburg, Freiburg i. Br.

Ries, J.B., Iserloh, T., Seeger, M., Gabriels, D. 2013. Rainfall simulations constraints, needs and challenges for a future use in soil erosion research. Zeitschrif für Geomorphology Supplementband 57, 1-10. DOI: http://doi.org/10.1127/0372-8854/2013/S-00130.

Ries, J.B., Seeger, M., Iserloh, T., Wistorf, S., Fister, W. 2009. Calibration of simulated rainfall characteristics for the study of soil erosion on agricultural land. Soil and Tillage Research 106, 109-116. DOI: http://doi.org/10.1016/j.still.2009.07.005.

Rodrigo-Comino, J., Brings, C., Lassu, T., Iserloh, T., Senciales, J.M., Martínez Murillo, J.F., Ruiz Sinoga, J.D., Seeger, M., Ries, J.B. 2015. Rainfall and human activity impacts on soil losses and rill erosion in vineyards (Ruwer Valley, Germany). Solid Earth 6, 823-837. DOI: http://doi.org/10.5194/se-6-823-2015.

Rodrigo-Comino,J., Seeger, M., Senciales, J.M., Ruiz-Sinoga. J.D., Ries, J.B. 2016. Variación espacio-temporal de los procesos hidrológicos del suelo en viñedos con elevadas pendientes (Valle del Ruwer-Mosela, Alemania). Cuadernos de Investigación Geográfica 42 (1), 281-306. DOI: http://doi.org/10.18172/cig. 2934.

Seeger, M. 2007. Uncertainty of factors determining runoff and erosion processes as quantified by rainfall simulations. Catena 71, 56-67. DOI: http://doi.org/10.1016/j.catena.2006.10.005.

Seuffert, O. 1993. Die Bodenerosion als ökologischer Faktor und als wissenschaftliches Problem. Petermanns Geographische Mitteilungen 137, 259-274.

Seyhan, E. 1977. Essential conditions of rainfall simulation for laboratory water erosion experiments. Earth Surface Processes 2, 185-190. DOI: http://doi.org/10.1002/esp.3290020210.

Shinbrot, T., Duong, N.H., Kwan, L., Alvarez, M.M. 2004. Dry granular flows can generate surface features resembling those seen in Martian gullies. PNAS 101, 8542-8546. DOI: http://doi.org/10.1073/pnas. 0308251101.

Shriner, D.S., Abner, C.H., Mann, L.K. 1977. Rainfall simulation for environmental application. Oak Ridge National Lab., TN (USA).

Sidiras, N., Roth, C.H. 1987. Infiltration measurements with double-ring infiltrometers and a rainfall simulator under different surface conditions on an Oxisol. Soil and Tillage Research 9, 161-168. DOI: http://doi.org/10.1016/0167-1987(87)90082-1.

Sidorchuk, A., Schmidt, J., Cooper, G. 2008. Variability of shallow overland flow velocity and soil aggregate transport observed with digital videography. Hydrological Processes 22, 4035-4048. DOI: http://doi.org/10.1002/hyp.7006.

Šimůnek, J., Wendroth, O., van Genuchten, M.T. 1999. Estimating unsaturated soil hydraulic properties from laboratory tension disc infiltrometer experiments. Water Resources Research 35, 2965–2979. DOI: http://doi.org/10.1029/1999WR900179.

Slattery, M.C., Bryan, R.B. 1994. Surface seal development under simulated rainfall on an actively eroding surface. Catena 22, 17-34. DOI: http://doi.org/10.1016/0341-8162(94)90063-9.

Slaymaker, O. 1991a. Introduction. In: Field Experiments and measurement programs in Geomorphology. A.A.Balkema, Amsterda, pp. 1-5.

Slaymaker, O. 1991b. Field experiments and measurement programs in Geomorphology. A.A.Balkema, Rotterdam.

Slaymaker, O., Dunne, T., Rapp, A. 1982. The nature of field experiments in geomorphology. Studia Geomorphologica Carpatho-Balcanica 11-17.

Smets, T., Poesen, J., Bochet, E. 2008. Impact of plot length on the effectiveness of different soil-surface covers in reducing runoff and soil loss by water. Progress in Physical Geography 32, 654-677. DOI: http://doi.org/10.1177/0309133308101473.

Stroosnijder, L. 2005. Measurement of erosion: Is it possible? Catena 64, 162-173. DOI: http://doi.org/10.1016/j.catena.2005.08.004.

Todisco, F., Vergni, L., Mannocchi, F., Bomba, C. 2012. Calibration of the soil loss measurement method at the Masse experimental station. Catena 91, 4-9. DOI: http://doi.org/10.1016/j.catena.2011.02.003.

Védie, E., Costard, F., Font, M., Lagarde, J.L. 2008. Laboratory simulations of Martian gullies on sand dunes. Geophysical Research Letters 35. DOI: http://doi.org/10.1029/2008GL035638.

Vermeulen, B., Boersema, M.P., Hoitink, A.J.F., Sieben, J., Sloff, C.J., van der Wal, M. 2014. River scale model of a training dam using lightweight granulates. Journal of Hydro-environmental Research 8, 88-94. DOI: http://doi.org/10.1016/j.jher.2013.05.004.

Wallerstein, N.P., Alonso, C.V., Bennett, S.J., Thorne, C.R. 2001. Distorted Froude-scaled flume analysis of large woody debris. Earth Surface Processes and Landforms 26, 1265-1283. DOI: http://doi.org/10.1002/esp.271.

Wishmeier, W.H., Smith, D.D. 1978. Predicting Rainfall Erosion Losses: A Guide to Conservation Planning. Agriculture Handbook, USDA/Science and Education Administration, US. Govt. Printing Office, Washington, D.C.

Wollny, E. 1879. Forschungen auf dem Gebiete der Agrikultur-Physik. Carl Winter’s Universitätsbuchhandlung.

Zemke, J. 2017. Set-up and calibration of a portable small scale rainfall simulator for assessing soil erosion processes at interrill scale. Cuadernos de Investigación Geográfica 43 (1). DOI: http://doi.org/10.18172/cig.3129.

DOI: https://doi.org/10.18172/cig.3207

Copyright (c) 2017 M. Seeger

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

© Universidad de La Rioja, 2013

ISSN 0211-6820

EISSN 1697-9540