Spatial and temporal variation of soil hydrological processes on steep slope vineyards (Ruwel-Mosel Valley, Gemany)


  • J. Rodrigo-Comino Departamento de Geografía Física (Universidad de Trier, Alemania) y Geografía (Universidad de Málaga, España)
  • M. Seeger Universidad de Trier
  • J. M. Senciales Universidad de Málaga
  • J. D. Ruiz-Sinoga Universidad de Málaga
  • J. B. Ries Universidad de Trier



Vineyards, Ruwer-Mosel valley, Guelph permeameter, infiltration, hydrologycal processes


The vineyards of Ruwer-Mosel valley (Germany) cultivated on steep slopes showed a high spatial and temporal variability of hydrological dynamics. Forty two experiments were carried out using a Guelph permeameter in old and young vines to measure the infiltration rates, the hydraulic conductivity and the soil matrix flux potential. The essays were performed before (spring-summer) and after (autumn) the harvest with dry soil conditions and without soil tillage signals, and with humid soil conditions, signals of soil farming (wheel traffic and footprints) and a decrease of organic matter, respectively.

In general, the results of the young vineyards were higher than the values of the old vineyards. Furthermore, all the rates increased after the harvest. For the young vineyards, the most elevated values were registered on the middle slope (398.5 mm h-1 infiltration rate, 89.2 mm h-1 hydraulic conductivity and 62.8 mm2 h-1 soil matrix flux potential). For its part, a decrease of the infiltration from the upper slope to the foot slope was observed (from 42.5 to 16.8 mm h-1). Hydraulic conductivity and soil matrix flux potential showed the same hydro-dynamic: from 13.2 to 5.4 mm h-1 and from 5.5 to 2.5 mm2 h-1, respectively. Finally, it was observed that the most correlated factor with these hydrological processes was the soil moisture content and the soil tillage practices.


Download data is not yet available.

Author Biography

J. Rodrigo-Comino, Departamento de Geografía Física (Universidad de Trier, Alemania) y Geografía (Universidad de Málaga, España)

Licenciado en Geografía  por la Universidad de Málaga en el curso   2011-2012. Realizó el Trabajo Fin de Carrera (tesina) bajo la dirección   del Dr. Senciales titulado: “Los suelos de la provincia de Málaga:   Revisión en función de los criterios de la clasificación de FAO-WRB   (2006)”. También con él, ha publicado una serie de artículos   relacionados con cuestiones geomorfológicas en los Montes de Málaga o   las plataformas travertínicas. Ha participado en actividades de  Didáctica de la  Geografía con jóvenes preuniversitarios, publicando  resultados de esta  actividad en revistas de la Asociación de Geógrafos  Españoles junto con  el Dr. Delgado Peña. Está preparando la tesis  doctoral sobre procesos geomorfológicos en viñedos (Valle del Mosela y Axarquía),en colaboración con la Universidad de Trier (Alemania) con los profesores  Johannes Ries y Manuel Seeger y con el Departamento de Geografía de la Universidad de Málaga con los profesores José Damián Ruiz Sinoga y José María Senciales.


Archer, N.A.L., Bonell, M., Coles, N., MacDonald, A.M., Auton, C.A., Stevenson, R. 2013. Soil characteristics and landcover relationships on soil hydraulic conductivity at a hillslope scale: A view towards local flood management. Journal of Hydrology 497, 208–222. Doi: 10.1016/j.jhydrol.2013.05.043

Arnáez, J., Lasanta, T., Ruiz-Flaño, P., Ortigosa, L. 2007. Factors affecting runoff and erosion under simulated rainfall in Mediterranean vineyards. Soil & Tillage Research 93, 324–334. Doi: 10.1016/j.still.2006.05.013

Bagarello, V., 1997. Influence of well preparation on field-saturated hydraulic conductivity measured with the Guelph Permeameter. Geoderma 80, 169–180. Doi: 10.1016/S0016-7061(97)00051-7

Bagarello, V., Castellini, M., Di Prima, S., Iovino, M. 2014. Soil hydraulic properties determined by infiltration experiments and different heights of water pouring. Geoderma 213, 492–501. Doi: 10.1016/j.geoderma.2013.08.032

Biddoccu, M., Ferraris, S., Cavallo, E., Opsi, F., Previati, M., Canone, D. 2013. Hillslope Vineyard Rainfall-Runoff Measurements in Relation to Soil Infiltration and Water Content. Procedia Environmental Sciences 19, 351–360. Doi: 10.1016/j.proenv.2013.06.040

Blavet, D., De Noni, G., Le Bissonnais, Y., Leonard, M., Maillo, L., Laurent, J.Y., Asseline, J., Leprun, J.C., Arshad, M.A., Roose, E. 2009. Effect of land use and management on the early stages of soil water erosion in French Mediterranean vineyards. Soil & Tillage Research 106, 124–136. Doi: 10.1016/j.still.2009.04.010

Bodner, G., Scholl, P., Loiskandl, W., Kaul, H.P. 2013. Environmental and management influences on temporal variability of near saturated soil hydraulic properties. Geoderma 204-205, 120–129. Doi: 10.1016/j.geoderma.2013.04.015

Bruggisser, O.T., Schmidt-Entling, M.H., Bacher, S. 2010. Effects of vineyard management on biodiversity at three trophic levels. Biological Conservation 143, 1521–1528. Doi: 10.1016/j.biocon.2010.03.034

Cadot, Y., Caillé, S., Thiollet-Scholtus, M., Samson, A., Barbeau, G., Cheynier, V. 2012. Characterisation of typicality for wines related to terroir by conceptual and by perceptual representations. An application to red wines from the Loire Valley. Food Quality and Preference 24, 48–58. Doi: 10.1016/j.foodqual.2011.08.012

Casalí, J., Giménez, R., De Santisteban, L., Álvarez-Mozos, J., Mena, J., Del Valle de Lersundi, J. 2009. Determination of long-term erosion rates in vineyards of Navarre (Spain) using botanical benchmarks. Catena 78, 12–19. Doi: 10.1016/j.catena.2009.02.015

Cerdà, A., 1997. Soil erosion after land abandonment in a semiarid environment of southeastern Spain. Arid Soil Research 11, 163–176. Doi: 10.1080/15324989709381469

Chevigny, E., Quiquerez, A., Petit, C., Curmi, P. 2014. Lithology, landscape structure and management practice changes: Key factors patterning vineyard soil erosion at metre-scale spatial resolution. Catena 121, 354–364. Doi: 10.1016/j.catena.2014.05.022

Corbane, C., Jacob, F., Raclot, D., Albergel, J., Andrieux, P. 2012. Multitemporal analysis of hydrological soil surface characteristics using aerial photos: A case study on a Mediterranean vineyard. Int. J. Appl. Earth Obs. Geoinformation 18, 356–367. Doi: 10.1016/j.jag.2012.03.009

Costantini, E.A.C., Agnelli, A.E., Fabiani, A., Gagnarli, E., Mocali, S., Priori, S., Simoni, S., Valboa, G. 2015. Short-term recovery of soil physical, chemical, micro- and mesobiological functions in a new vineyard under organic farming. SOIL 1, 443–457. Doi: 10.5194/soil-1-443-2015

Davies, B.E. 1974. Loss-on-Ignition as an Estimate of Soil Organic Matter. Soil Science Society of America Journal 38. Doi: 10.2136/sssaj1974.03615995003800010046x

De Baets, S., Poesen, J., Meersmans, J., Serlet, L. 2011. Cover crops and their erosion-reducing effects during concentrated flow erosion. Catena 85, 237–244. Doi: 10.1016/j.catena.2011.01.009

Elrick, D.E., Reynolds, W.D. 1992. Methods for analyzing constant-head well Permeameter data. Soil Science Society of America Journal 56, 320–323. Doi: 10.2136/sssaj1992.03615995005600010052x

Fischer, U., Roth, D., Christmann, M. 1999. The impact of geographic origin, vintage and wine estate on sensory properties of Vitis vinifera cv. Riesling wines. Food Quality and Preference 10, 281–288. Doi: 10.1016/S0950-3293(99)00008-7

Follain, S., Ciampalini, R., Crabit, A., Coulouma, G., Garnier, F. 2012. Effects of redistribution processes on rock fragment variability within a vineyard topsoil in Mediterranean France. Geomorphology 175–176, 45–53. Doi: 10.1016/j.geomorph.2012.06.017

Galati, A., Gristina, L., Crescimanno, M., Barone, E., Novara, A. 2015. Towards More Efficient Incentives for Agri-environment Measures in Degraded and Eroded Vineyards. Land Degradation & Development 26, 557–564. Doi: 10.1002/ldr.2389

Gruber, B., Kosegarten, H., 2002. Depressed growth of non-chlorotic vine grown in calcareous soil is an iron deficiency symptom prior to leaf chlorosis. Journal of Plant Nutrition and Soil Science 165, 111–117. Doi: 10.1002/1522-2624(200202)165:1<111::AID-JPLN111>3.0.CO;2-B

Gupta, R.K., Rudra, R.P., Dickinson, W.T., Patni, N.K., Wall, G.J. 1993. Comparison of saturated hydraulic conductivity measured by various field methods. Transactions of the ASAE 36, 51–55. Doi: 10.13031/2013.28313

Gupta, R.K., Rudra, R.P., Parkin, G. 2006. Analysis of spatial variability of hydraulic conductivity at field scale. Canadian Biosystems Engineering 48, 1.55–1.62.

Gwenzi, W., Hinz, C., Holmes, K., Phillips, I.R., Mullins, I.J. 2011. Field-scale spatial variability of saturated hydraulic conductivity on a recently constructed artificial ecosystem. Geoderma 166, 43–56. Doi: 10.1016/j.geoderma.2011.06.010

Hewlett, J.D., Hibbert, A.R. 1967. Factors affecting the response of small watersheds to precipitation in humid areas. En: Sopper, W.E. y Lull, H.W., (eds.), Classics in physical geography revisited. New York, Pergamon Press For. Hydrol., pp. 275–290.

Huang, M., Rodger, H., Barbour, S.L. 2014. An evaluation of air permeability measurements to characterize the saturated hydraulic conductivity of soil reclamation covers. Canadian Journal of Soil Science 95, 15–26. Doi: 10.4141/cjss-2014-072

Huang, M., Zettl, J.D., Lee Barbour, S., Pratt, D. 2016. Characterizing the spatial variability of the hydraulic conductivity of reclamation soils using air permeability. Geoderma 262, 285–293. Doi: 10.1016/j.geoderma.2015.08.014

Imeson, A.C., Lavee, H., 1998. Soil erosion and climate change: the transect approach and the influence of scale. Geomorphology 23, 219–227. Doi: 10.1016/S0169-555X(98)00005-1

IUSS Working Group WRB 2014. World Reference Base for Soil Resources 2014. World Soil Resources Report. FAO, Roma.

IUSS Working Group WRB 2007. Land Evaluation. Towards a revised framework. 2nd ed., Land and Water discussion paper, FAO, Roma.

IUSS Working Group WRB 2006. Guidelines for constructing smallscale map legends using the WRB. 2nd ed., World Soil Resources. FAO, Roma.

Jačka, L., Pavlásek, J., Kuráž, V., Pech, P. 2014. A comparison of three measuring methods for estimating the saturated hydraulic conductivity in the shallow subsurface layer of mountain podzols. Geoderma 219–220, 82–88. Doi: 10.1016/j.geoderma.2013.12.027

Jackson, R.S., 2014. Wine science. Principles and Applications. Fourth Edition, Elsevier, London, 984 pp.

Jirků, V., Kodešová, R., Nikodem, A., Mühlhanselová, M., Žigová, A. 2013. Temporal variability of structure and hydraulic properties of topsoil of three soil types. Geoderma 204–205, 43–58. Doi: 10.1016/j.geoderma.2013.03.024

Kodešová, R., Šimůnek, J., Nikodem, A., Jirků, V. 2010. Estimation of the Dual-Permeability Model Parameters using Tension Disk Infiltrometer and Guelph Permeameter. Vadose Zone Journal 9. Doi: 10.2136/vzj2009.0069

Köpppen, W., Geiger, R. 1954. Klima der Erde. Justus Perthes Ed., Darmstadt.

Kosmas, C., Danalatos, N., Cammeraat, L.H., Chabart, M., Diamantopoulos, J., Farand, R., Gutierrez, L., Jacob, A., Marques, H., Martinez-Fernandez, J., Mizara, A., Moustakas, N., Nicolau, J.M., Oliveros, C., Pinna, G., Puddu, R., Puigdefabregas, J., Roxo, M., Simao, A., Stamou, G., Tomasi, N., Usai, D., Vacca, A. 1997. The effect of land use on runoff and soil erosion rates under Mediterranean conditions. Catena 29, 45–59. Doi: 10.1016/S0341-8162(96)00062-8

Kumar, S., Sekhar, M., Reddy, D.V., Mohan Kumar, M.S. 2010. Estimation of soil hydraulic properties and their uncertainty: comparison between laboratory and field experiment. Hydrological Processes 24, 3426–3435. Doi: 10.1002/hyp.7775

Leonard, J., Andrieux, P. 1998. Infiltration characteristics of soils in Mediterranean vineyards in Southern France. Catena 32, 209–223. Doi: 10.1016/S0341-8162(98)00049-6

Lesch, S.M., Corwin, D.L. 2003. Using the dual-pathway parallel conductance model to determine how different soil properties influence conductivity survey data. Agronomy Journal 95, 365–379. Doi: 10.2134/agronj2003.3650

Lieskovský, J., Kenderessy, P. 2014. Modelling the effect of vegetation cover and different tillage practices on soil erosion in vineyards: a case study in Vráble (Slovakia) using WATEM/SEDEM. Land Degradation & Development 25, 288–296. Doi: 10.1002/ldr.2162

Likar, M., Vogel-Mikuš, K., Potisek, M., Hančević, K., Radić, T., Nečemer, M., Regvar, M. 2015. Importance of soil and vineyard management in the determination of grapevine mineral composition. Science of the Total Environment 505, 724–731. Doi: 10.1016/j.scitotenv.2014.10.057

López-Piñeiro, A., Muñoz, A., Zamora, E., Ramírez, M. 2013. Influence of the management regime and phenological state of the vines on the physicochemical properties and the seasonal fluctuations of the microorganisms in a vineyard soil under semi-arid conditions. Soil & Tillage Research 126, 119–126. Doi: 10.1016/j.still.2012.09.007

MacDonald, A.M., Maurice, L., Dobbs, M.R., Reeves, H.J., Auton, C.A. 2012. Relating in situ hydraulic conductivity, particle size and relative density of superficial deposits in a heterogeneous catchment. Journal of Hydrology 434–435, 130–141. Doi: 10.1016/j.jhydrol.2012.01.018

Martínez-Casasnovas, J.A., Ramos, M.C., García-Hernández, D. 2009. Effects of land-use changes in vegetation cover and sidewall erosion in a gully head of the Penedès region (northeast Spain). Earth Surface Processes and Landforms 34, 1927–1937. Doi: 10.1002/esp.1870

Martínez-Murillo, J.F., Nadal-Romero, E., Regüés, D., Cerdà, A., Poesen, J. 2013. Soil erosion and hydrology of the western Mediterranean badlands throughout rainfall simulation experiments: A review. Catena 106, 101–112. Doi: 10.1016/j.catena.2012.06.001

Martínez-Murillo, J.F., Ruiz-Sinoga, J.D. 2003. Incidencia de algunas propiedades físicas de suelos en su respuesta hidrológica ante diferentes usos bajo condiciones mediterráneas (Montes de Málaga). Edafología 10, 57–62.

Morvan, X., Naisse, C., Malam Issa, O., Desprats, J.F., Combaud, A., Cerdan, O. 2014. Effect of ground-cover type on surface runoff and subsequent soil erosion in Champagne vineyards in France. Soil Use and Management 30, 372–381. Doi: 10.1111/sum.12129

Nasri, B., Fouché, O., Torri, D. 2015. Coupling published pedotransfer functions for the estimation of bulk density and saturated hydraulic conductivity in stony soils. Catena 131, 99–108. Doi: 10.1016/j.catena.2015.03.018

Novara, A., Gristina, L., Guaitoli, F., Santoro, A., Cerdà, A. 2013. Managing soil nitrate with cover crops and buffer strips in Sicilian vineyards. Solid Earth 4, 255–262. Doi: 10.5194/se-4-255-2013

Novara, A., Gristina, L., Saladino, S.S., Santoro, A., Cerdà, A. 2011. Soil erosion assessment on tillage and alternative soil managements in a Sicilian vineyard. Soil & Tillage Research 117, 140–147. Doi: 10.1016/j.still.2011.09.007

Ortigosa Izquierdo, L.M., Lasanta Martínez, T. 1984. El papel de la escorrentía en la organización textural de suelos cultivados en pendiente: modelos en viñedos de La Rioja. Cuadernos de Investigación Geográfica 9, 99–111.

Paroissien, J.B., Lagacherie, P., Le Bissonnais, Y. 2010. A regional-scale study of multi-decennial erosion of vineyard fields using vine-stock unearthing–burying measurements. Catena 82, 159–168. Doi: 10.1016/j.catena.2010.06.002

Peter, K.D., Ries, J.B. 2013. Infiltration rates affected by land levelling measures in the Souss valley, South Morocco. Zeitschrift für Geomorphologie 57, 59–72.

Poesen, J., van Wesemael, B., Govers, G., Martínez-Fernandez, J., Desmet, P., Vandaele, K., Quine, T., Degraer, G. 1997. Patterns of rock fragment cover generated by tillage erosion. Geomorphology 18, 183–197.

Porta, J., López-Acevedo, M., Poch, R. 2014. Edafología: uso y protección de suelos. Tercera ed., Mundiprensa, Madrid.

Price, K., Jackson, C.R., Parker, A.J. 2010. Variation of surficial soil hydraulic properties across land uses in the southern Blue Ridge Mountains, North Carolina, USA. Journal of Hydrology 383, 256–268. Doi: 10.1016/j.jhydrol.2009.12.041

Prosdocimi, M., Cerdà, A., Tarolli, P. 2016a. Soil water erosion on Mediterranean vineyards: A review. Catena 141, 1–21. Doi: 10.1016/j.catena.2016.02.010

Prosdocimi, M., Jordán, A., Tarolli, P., Keesstra, S., Novara, A., Cerdà, A. 2016b. The immediate effectiveness of barley straw mulch in reducing soil erodibility and surface runoff generation in Mediterranean vineyards. Science of the Total Environment 547, 323–330. Doi: 10.1016/j.scitotenv.2015.12.076

Quiquerez, A., Chevigny, E., Allemand, P., Curmi, P., Petit, C., Grandjean, P. 2014. Assessing the impact of soil surface characteristics on vineyard erosion from very high spatial resolution aerial images (Côte de Beaune, Burgundy, France). Catena 116, 163–172. Doi: 10.1016/j.catena.2013.12.002

Ramos, M.C., Benito, C., Martínez-Casasnovas, J.A., 2015. Simulating soil conservation measures to control soil and nutrient losses in a small, vineyard dominated, basin. Agriculture, Ecosystems, Environment 213, 194 – 208. Doi :

Ramos, M.C., Martínez-Casasnovas, J.A. 2006. Impact of land levelling on soil moisture and runoff variability in vineyards under different rainfall distributions in a Mediterranean climate and its influence on crop productivity. Journal of Hydrology 321, 131–146. Doi: 10.1016/j.jhydrol.2005.07.055

Ramos, M.C., Nacci, S., Pla, I. 2000. Soil sealing and its influence on erosion rates for some soils in the Mediterranean area. Soil Science 165, 398–403.

Resolution OIV/VITI 333/2010, 2010. Definition of vitivinicultural“Terroir”. T. Asamblea General del OIV, Tbilisi, Georgia.

Reynolds, W.D. 1986. The Guelph Permeameter method for in situ measurement of field-saturated hydraulic conductivity and matric flux potential. Unpublished PhD, Guelph University, Guelph, Ontario, Canadá.

Reynolds, W.D., Elrick, D.E. 2002. Constant head well permeameter (vadose zone). In: J.H. Dane, G.C. Topp (Eds.), Methods of Soil Analysis, Physical Methods. Soil Science Society of America, Inc., Madison, WI (USA), pp. 844–858.

Reynolds, W.D., Lewis, J.K. 2012. A drive point application of the Guelph Permeameter method for coarse-textured soils. Geoderma 187–188, 59–66. Doi: 10.1016/j.geoderma.2012.04.004

Richter, G. 1980. On the Soil Erosion Problem in the Temperate Humid Area of Central Europe. GeoJournal 4, 279–287.

Richter, G. 1979. Bodenerosion in Rebanlagen des Moselgebietes. Ergebnisse quantitativer Untersuchungen 1974-1977. Universitat Trier, Ed. Forschungsstelle Bodenerosion d. Univ. Trier, Trier.

Richter, G. 1975. Der Aufbau der Forschungsstelle Bodenerosion und die ersten Messungen in Weinbergslagen. Forschungsstelle Bodenerosion der Universitat Trier, Trier.

Rienzner, M., Gandolfi, C. 2014. Investigation of spatial and temporal variability of saturated soil hydraulic conductivity at the field-scale. Soil & Tillage Research 135, 28 – 40. Doi:

Rodrigo-Comino, J., Brings, C., Lassu, T., Iserloh, T., Senciales, J., Martínez-Murillo, J., Ruiz-Sinoga, J., Seeger, M., Ries, J., 2015a. Rainfall and human activity impacts on soil losses and rill erosion in vineyards (Ruwer Valley, Germany). Solid Earth 6, 823–837. Doi: 10.5194/se-6-823-2015

Rodrigo Comino, J., Lassu, T., González, J.M.S., Ruiz-Sinoga, J.D.R., Seeger, K.M., Ries, J.B. 2015b. Estudio de procesos geomorfodinámicos en campos cultivados de viñedos sobre laderas en pendientes en el valle del Ruwer (Alemania). Cuadernos Geográficos 54, 6–26.

Rodrigo-Comino, J., Iserloh, T., Morvan, X., Malam Issa, O., Naisse, C., Keesstra, S.D., Cerdà, A., Prosdocimi, M., Arnáez, J., Lasanta, T., Ramos, M.C., Marqués, M.J., Ruiz Colmenero, M., Bienes, R., Ruiz-Sinoga, J.D., Seeger, M., Ries, J.B., 2016. Soil Erosion Processes in European Vineyards: A Qualitative Comparison of Rainfall Simulation Measurements in Germany, Spain and France. Hydrology 3, 1-19. doi:10.3390/hydrology3010006

Rodrigo Comino, J., Senciales González, J.M., 2015. Ratio LE para el ajuste de perfiles longitudinales en cursos fluviales de montaña. Aplicación a la cuenca del río Almáchar (Málaga, España). Cuaternario y Geomorfología 29, 31–56.

Ronayne, M.J., Houghton, T.B., Stednick, J.D. 2012. Field characterization of hydraulic conductivity in a heterogeneous alpine glacial till. Journal of Hydrology 458–459, 103–109. Doi: 10.1016/j.jhydrol.2012.06.036

Rosell, R.A., Gasparoni, J.C., Galantini, J.A. 2001. Soil organic matter evaluation. In: R. Lal, J. Kimble, R. Follet, B. Stewart (Eds.), Assessment Methods for Soil Carbon. Lewis Publishers, USA, pp. 311–322.

Ruiz-Sinoga, J.D., Martinez-Murillo, J.F. 2009. Effects of soil surface components on soil hydrological behaviour in a dry Mediterranean environment (Southern Spain). Geomorphology 108, 234–245. Doi: 10.1016/j.geomorph.2009.01.012

Salome, C., Coll, P., Lardo, E., Villenave, C., Blanchart, E., Hinsinger, P., Marsden, C., Le Cadre, E. 2014. Relevance of use-invariant soil properties to assess soil quality of vulnerable ecosystems: The case of Mediterranean vineyards. Ecological Indicators 43, 83–93. Doi: 10.1016/j.ecolind.2014.02.016

Soil moisture Equipment Corp. 2008. Model 2800K1 Guelph Permeameter Operating Instructions, Soil moisture Equipment Corp. ed. Santa Barbara, CA.

Taylor, J.A., Coulouma, G., Lagacherie, P., Tisseyre, B. 2009. Mapping soil units within a vineyard using statistics associated with high-resolution apparent soil electrical conductivity data and factorial discriminant analysis. Geoderma 153, 278–284. Doi: 10.1016/j.geoderma.2009.08.014

van Leeuwen, C., Bois, B., De Resseguier, L., Roby, J.P. 2010. New methods and technologies to describe the environment in terroir studies. In: VIII International Terroir Congress, Consiglio per la Ricerca e la Sperimentazione in Agricoltura, Centro di Ricerca per la Viticoltura, Soave, Italia, pp. 2-13.

Wu, L., Swan, J.B., Paulson, W.H., Randall, G.W. 1992. Tillage effects on measured soil hydraulic properties. Soil & Tillage Research 25, 17–33. Doi: 10.1016/0167-1987(92)90059-K

Xiang, J. 1994. Improvements in evaluating constant-head permeameter test data. Journal of Hydrology 162, 77–97. Doi: 10.1016/0022-1694(94)90005-1

Zhang, Z.F., Groenevelt, P.H., Parkin, G.W. 1998. The well-shape factor for the measurement of soil hydraulic properties using the Guelph Permeameter. Soil & Tillage Research 49, 219–221. Doi: 10.1016/S0167-1987(98)00174-3



How to Cite

Rodrigo-Comino J, Seeger M, Senciales JM, Ruiz-Sinoga JD, Ries JB. Spatial and temporal variation of soil hydrological processes on steep slope vineyards (Ruwel-Mosel Valley, Gemany). CIG [Internet]. 2016 Jun. 27 [cited 2023 Jun. 9];42(1):281-306. Available from: