Timing and extent of late pleistocene glaciation in the arid Central Andes of Argentina and Chile (22°-41°S)

Authors

  • J. Zech Institute of Geography, University of Bern, Switzerland Max Planck Institute for the Science of Human History, Germany
  • C. Terrizzano Institute of Geography, University of Bern, Hallerstrasse 12, 3012 Bern
  • E. García-Morabito Institute of Geography, University of Bern, Hallerstrasse 12, 3012 Bern, Switzerland Instituto de Estudios Andinos “Don Pablo Groeber”, Universidad de Buenos Aires - Conicet, Buenos Aires, Argentina.
  • H. Veit Institute of Geography, University of Bern, Hallerstrasse 12, 3012 Bern
  • R. Zech Institute of Geography, University of Bern, Hallerstrasse 12, 3012 Bern

DOI:

https://doi.org/10.18172/cig.3235

Keywords:

glacial chronology, arid Central Andes of Argentina and Chile, 10Be surface exposure dating, paleoclimate reconstruction

Abstract

The arid Central Andes are a key site to study changes in intensity and movement of the three main atmospheric circulation systems over South America: the South American Summer Monsoon (SASM), the Westerlies and the El Niño Southern Oscillation (ENSO). In this semi-arid to arid region glaciers are particularly sensitive to precipitation changes and thus the timing of past glaciation is strongly linked to changes in moisture supply. Surface exposure ages from study sites between 41° and 22°S suggest that glaciers advanced: i) prior to the global Last Glacial Maximum (gLGM) at ~40 ka in the mid (26°- 30°S) and southern Central Andes (35°-41°S), ii) in phase with the gLGM in the northern and southern Central Andes and iii) during the late glacial in the northern Central Andes. Deglaciation started synchronous with the global rise in atmospheric CO2 concentration and increasing temperature starting at ~18 ka. The pre-gLGM glacial advances likely document enhanced precipitation related to the Southern Westerlies, which shifted further to the North at that time than previosuly assumed. During the gLGM glacial advances were favored by decreased temperatures in combination with increased humidity due to a southward shifted Intertropical Convergence Zone (ITCZ) and SASM. During the late-glacial a substantial increase in moisture can be explained by enhanced upper tropospheric easterlies as response to an intensified SASM and sustained La Niña-like conditions over the eastern equatorial Pacific that lead to glacial advances in the northern Central Andes and the lake level highstand Tauca (18-14 ka) on the Altiplano. In the southernmost Central Andes at 39º-41°S, further north at 31°S and in the northernmost Central Andes at 22°S glacial remnants even point to precipitation driven glaciations older than ~115 ka and 260 ka.

Downloads

Download data is not yet available.

References

Ammann C, Jenny, B., Kammer, K., Messerli, B. 2001. Late Quaternary Glacier response to humidity changes in the arid Andes of Chile (18-29◦S). Palaeogeography, Palaeoclimatology, Palaeoecology 172, 313-326. http://doi.org/10.1016/S0031-0182(01)00306-6.

Baker, P.A., Rigsby, C.A., Seltzer, G.O., Fritz, S.C., Lowenstein, T.K., Bacher, N.P., and Veliz, C. 2001. Tropical climate changes at millenial and orbital timescales on the Bolivian Altiplano. Nature 409, 698-701. http://doi.org/10.1038/35055524.

Berger, A., Loutre, M.F. 1991. Insolation values for the climate of the last 10 million years. Quaternary Sciences Reviews 10 (4), 297-317. http://doi.org/10.1016/0277-3791(91)90033-Q.

Bianchi, A.R., Yáñez, C.E. 1992. Las Precipitaciones en el Noroeste Argentino. Instituto Nacional de Tecnología Agropecuaria (INTA), Argentina.

Blard, P.-H., Lave, J., Farley, K.A., Fornari, M., Jimenez, N., Ramirez,V. 2009. Late local glacial maximum in the Central Altiplano triggered by cold and locally-wet conditions during the paleolake Tauca episode (17-15 ka, Heinrich 1). Quaternary Science Reviews 27-28, 3414-3427. http://doi.org/10.1016/j.quascirev.2009.09.25.

Bova, S.C., Herbert, T., Rosenthal, Y., Kalansky, J., Altabet, M., Chazen, C., Mojarro, A., Zech, J. 2015. Links between eastern equatorial Pacific stratification and atmospheric CO2 rise during the last deglaciation. Paleoceanography 30, 11, 1407-1424. http://doi.org/10.1002/2015PA002816.

Briner, J.P., Kaufman, D.S., Manley, W.F., Finkel, R.C., Caffee, M.W. 2005. Cosmogenic exposure dating of late Pleistocene moraine stabilization in Alaska. Geological Society of America Bulletin 117, 1108-1120.

Chmeleff, J., von Blanckenburg, F., Kossert, K., Jakob, D. 2010. Determination of the 10Be half-life by multicollector ICP-MS and liquid scintillation counting. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 268 (2), 192-199. http://doi.org/10.1016/j.nimb.2009.09.012.

Clapperton, C.M., Clayton, J.D., Benn, D.I., Marden, C.J., Argollo, J. 1997. Late Quaternary glacier advances and paleolake highstands in the Bolivian Altiplano. Quaternary International 38-39, 49-59. http://doi.org/10.1016/S1040-6182(96)00020-1.

Clark, P.U., Dyke, A.S., Shakun, J.D., Carlson, A.E., Clark, J., Wohlfarth, B., Mitrovica, J.X., Hostetler, S.W., McCabe, A.M. 2009. The Last Glacial Maximum. Science 325, 710.

Clayton, J.D., Clapperton, C.M. 1997. Broad synchrony of a Late-Glacial glacier advance and the highstand of Palaeolake Tauca in the Bolivian Altiplano. Journal of Quaternary Science 12, 169-182.

Denton, G.H., Lowell, T.V., Heusser, C.J., Schlüchter, C., Andersen, B.G., Heusser, L.E., Moreno, P.I., Marchant, D.R. 1999. Geomorphology, stratigraphy, and radiocarbon chronology of Llanquihue drift in the area of the southern Lake District, Seno Reloncavi, and Isla Grande de Chiloe, Chile. Geografiska Annaler 81A, 167-229. http://doi.org/10.1111/1468-0459.00057.

Espizua, L.E. 2004. Pleistocene glaciations in the Mendoza Andes, Argentina. In: J. Ehlers, P.L. Gibbard (Eds.), Quaternary Glaciations - Extent and Chronology. Part III: South America, Asia, Africa, Australasia, Antarctica. Cambridge, Elsevier.

Farber, D.L., Hancock, G.S., Finkel, R.C., Rodbell, D.T. 2005. The age and extent of tropical alpine glaciation in the Cordillera Blanca, Peru. Journal of Quaternary Science 20, 759-776. http://doi.org/10.1002/jqs.994.

Garreaud, R., Aceituno, P. 2001. Interannual Rainfall Variability over the South American Altiplano. Journal of Climate 14 12, 2779-2789.

Garreaud, R., Aceituno, P. 2007. Atmospheric circulation and climatic variability. In: T.T. Veblen, K.R. Young, A.R. Orme (Eds.) The physical geography of South America. Oxford University Press, Oxford.

Garreaud, R., Vuille, M., Clement, A.C. 2003. The climate of the Altiplano: observed current conditions and mechanisms of past changes. Palaeogeography, Palaeoclimatology, Palaeoecology 194 1-3, 5-22. http://doi.org/10.1016/S0031-0182(03)00269-4.

Garreaud, R.D., Vuille, M., Compagnucci, R., Marengo, J. 2009. Present-day South American climate. Palaeogeography, Palaeoclimatology, Palaeoecology 281 3-4, 180-195. http://doi.org/10.1016/j.palaeo.2007.10.032.

Haselton, K., Hilley, G, Strecker, M.R. 2002. Average Pleistocene Climatic Patterns in the Southern Central Andes: Controls on Mountain Glaciation and Paleoclimate Implications. The Journal of Geology 110 (2), 211-226. http://doi.org/10.1086/338414.

Heinrich, H. 1988. Origin and consequences of cyclic ice rafting in the Northeast Atlantic Ocean during the past 130,000 years. Quaternary Research 29 (2), 142-152. http://doi.org/10.1016/0033-5894(88)90057-9.

Hemming, S.R. 2004. Heinrich Events: Massive late Pleistocene detritus layers of the North Atlantic and their global climate imprint. Reviews of Geophysics 42, RG1005. http://doi.org/10.1029/2003RG000128.

Heyman, J., Stroeven, A.P., Harbor, J.M., Caffee, M.W. 2011. Too young or too old: Evaluating cosmogenic exposure dating based on an analysis of compiled boulder exposure ages. Earth and Planetary Science Letters 302 (1-2), 71-80. http://doi.org/10.1016/j.epsl.2010.11.040.

Kaiser, J., Lamy, F., Hebbeln, D. 2005. A 70-kyr sea surface temperature record off southern Chile (Ocean Drilling Program Site 1233). Paleoceanography 20 (4), PA4009. http://doi.org/10.1029/2005PA001146.

Kaiser, J., Schefuß, E., Lamy, F., Mohtadi, M., Hebbeln, D. 2008. Glacial to Holocene changes in sea surface temperature and coastal vegetation in north central Chile: high versus low latitude forcing. Quaternary Science Reviews 27, 2064-2075. http://doi.org/10.1016/j.quascirev.2008.08.025.

Kienast, M., Kienast, S.S., Calvert, S.E., Eglington, T.I., Mollenhauer, G., Francois, R., Mix, A.C. 2006. Eastern Pacific cooling and Atlantic overturning circulation during the last deglaciation. Nature 443, 846-849. http://doi.org/10.1038/nature05222.

Kubik, P.W., Christl, M. 2010. 10Be and 26Al measurements at the Zurich 6 MV Tandem AMS facility. Nuclear Instruments and Methods in Physics Research B Beam Interactions with Materials and Atoms 268 (7-8), 880-883. http://doi.org/10.1016/j.nimb.2009.10.054.

Korschinek, G., Bergmaier, A., Faestermann, T., Gerstmann, U.C., Knie, K., Rugel, G., Wallner, A., Dillmann, I., Dollinger, G., von Gostomski, C.L., Kossert, K., Maiti, M., Poutivtsev, M., Remmert, A. 2010. A new value for the half-life of 10Be by Heavy-Ion Elastic Recoil Detection and liquid scintillation counting. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 268, (2), 187-191. http://doi.org/10.1016/j.nimb.2009.09.020.

Kull, C., Grosjean, M. Veit, H. 2002. Modeling Modern and Late Pleistocene Glacio-Climatological Conditions in the North Chilean Andes (29-30°). Climatic Change 52, 359-381. http://doi.org/10.1023/A:1013746917257.

Kull, C., Imhof, S., Grosjean, M., Zech, R., and Veit, H. 2008. Late Pleistocene glaciation in the Central Andes: Temperature versus humidity control - A case study from the eastern Bolivian Andes (17°S) and regional synthesis. Global and Planetary Change 60, 148-164. http://doi.org/10.1016/j.gloplacha.2007.03.011

Lamy, F., Hebbeln, D., Wefer, G. 1999. High-Resolution Marine Record of Climatic Change in Mid-latitude Chile during the Last 28,000 Years Based on Terrigenous Sediment Parameters. Quaternary Research 51 (1), 83-93.

Latorre, C., Betancourt, J.L., Arroyo, M.T.K. 2006. Late Quaternary vegetation and climate history of a perennial river canyon in the Rio Salado basin (22°S) of Northern Chile. Quaternary Research 65 3, 450-466. http://doi.org/10.1016/j.yqures.2006.02.002.

Lifton, N., Sato, T., Dunai, T.J. 2014. Scaling in situ cosmogenic nuclide production rates using analytical approximations to atmospheric cosmic-ray fluxes. Earth and Planetary Science Letters 386, 149-160. http://doi.org/10.1016/j.epsl.2013.10.052.

Lowell, T.V., Heusser, C.J., Andersen, B.G., Moreno, P.I., Hauser, A., Heusser, L.E., Schlüchter, C., Marchant, D.R., Denton, G.H. 1995. Interhemispheric correlations of Late Pleistocene glacial events. Science 269, 1541-1549. http://doi.org/10.1126/science.269.5230.1541.

Maldonado, A., Betancourt, J.L., Latorre, C., Villagran, C. 2005. Pollen analyses from a 50 000-yr rodent midden series in the southern Atacama Desert (25° 30' S). Journal of Quaternary Science 20 5, 493-507. http://doi.org/10.1002/jqs.936.

Marrero, S.M., Phillips, F.M., Borchers, B., Lifton, N., Aumer, R., Balco, G. 2016. Cosmogenic nuclide systematics and the CRONUScalc program. Quaternary Geochronology, 31, 160-187.

May, J.-H., Zech, J., Zech, R., Preusser, F., Argollo, J., Kubik, P., Veit, H. 2011. Reconstruction of a complex late Quaternary glacial landscape in the Cordillera de Cochabamba (Bolivia) based on a morphostratigraphic and multiple dating approach. Quarternary Research 76, 106-118. http://doi.org/10.1016/j.yqres.2011.05.003.

Moreiras, S.M., Páez, M.S., Lauro, C., Jeanneret, P. 2016. First cosmogenic ages for glacial deposits from the Plata range (33°S): New inferences for Quaternary landscape evolution in the Central Andes. Quaternary International, http://dx.doi.org/10.1016/j.quaint.2016.08.041.

Peltier, W.R., Fairbanks, R.G. 2006. Global glacial ice volume and Last Glacial Maximum duration from an extended Barbados sea level record. Quaternary Science Reviews 25, 3322-3337. http://doi.org/10.1016/j.quascirev.2006.04.010.

Phillips, F.M., Argento, D.C., Balco, G., Caffee, M.W., Clem, J., Dunai, T.J., Finkel, R., Goehring, B., Gosse, J.C., Hudson, A.M., Jull, A.J.T., Kelly, M.A., Kurz, M., Lal, D., Lifton, N., Marrero, S.M., Nishiizumi, K., Reedy, R.C., Schaefer, J., Stone, J.O.H., Swanson, T., and Zreda, M.G. 2016. The CRONUS-Earth Project: A Synthesis, Quaternary Geochronology 31, 119-154. http://doi.org/10.1016/j.quageo.2015.09.006.

Placzek, C., Quade, J., Patchett, J.P. 2006. Geochronology and stratigraphy of late Pleistocene lakes cycles on the southern Bolivian Altiplano: Implications for causes of tropical climate change. Geological Society of America Bulletin 118, 515-532.

Placzek, C., Quade, J., Patchett, P.J. 2011. Isotopic tracers of paleohydrologic change in large lakes of the Bolivian Altiplano. Quaternary Research 75 (1), 231-244. http://doi.org/10.1016/j.yqres.2010.08.004.

Putkonen, J. Swanson, T. 2003. Accuracy of cosmogenic ages for moraines. Quarternary Research 59, 255-261. http://doi.org/10.1016/S0033-5894(03)00006-1.

Quade, J., Rech, J.A., Betancourt, J.L., Latorre, C., Quade, B., Rylander, K.A., Fisher, T. 2008. Paleowetlands and regional climate change in the central Atacama Desert, northern Chile. Quaternary Research 69 (3), 343-360. http://doi.org/10.1016/j.yqres.2008.01.003.

Riquelme, R., Rojas, C., Aguilar, G., Flores, P. 2011. Late Pleistocene-early Holocene paraglacial and fluvial sediment history in the Turbio valley, semiarid Chilean Andes. Quaternary Research 75 (1), 166-175. http://doi.org/10.1016/j.yqres.2010.10.001.

Rodbell, D.T., Smith, J.A., Mark, B.G. 2009. Glaciation in the Andes during the Lateglacial and Holocene. Quaternary Science Reviews 28, 2165-2212. http://doi.org/10.1016/j.quascirev.2009.03.012.

Sáez, A., Valero-Garcés, B.L., Giralt, S., Moreno, A., Bao, R., Pueyo, J.J., Hernández, A., Casas, D. 2009. Glacial to Holocene climate changes in the SE Pacific. The Raraku Lake sedimentary record (Easter Island, 27°S). Quaternary Science Reviews 28 (25-26), 2743-2759. http://doi.org/10.1016/j.quascirev.2009.06.018.

Shakun, J.D., Clark, P.U., He, F., Lifton, N.A., Liu, Z., Otto-Bliesner, B.L. 2015. Regional and global forcing of glacier retreat during the last deglaciation. Nature Communications 6, 8059. http://doi.org/10.1038/ncomms9059.

Smith, C.A., Lowell, T.V., Owen, L.A., Caffee, M.W. 2011. Late Quaternary glacial chronology on Nevado Illimani, Bolivia, and the implications for paleoclimatic reconstructions across the Andes. Quaternary Research 75 (1), 1-10. http://doi.org/10.1016/j.yqres.2010.07.001.

Terrizzano, C., Zech, R., García Morabito, E., Haghipour, N., Christl, M., Likermann, J., Tobal, J., Yamin, M. 2016. Surface exposure dating of moraines and alluvial fans in the Southern Central Andes. Geophysical Research Abstracts, 18, EGU2016-15358.

Tripaldi, A., Forman, S.L. 2016. Eolian depositional phases during the past 50 ka and inferred climate variability for the Pampean Sand Sea, western Pampas, Argentina. Quaternary Science Reviews 139, 77-93. http://doi.org/10.1016/j.quascirev.2016.03.007.

Valero-Garcés, B.L., Jenny, B., Rondanelli, M., Delgado-Huertas, A., Burns, S.J., Veit, H., Moreno, A. 2005. Palaeohydrology of Laguna de Tagua Tagua (34° 30' S) and moisture fluctuations in Central Chile for the last 46 000 yr. Journal of Quaternary Science 20 (7-8), 625-641. http://doi.org/10.1002/jqs.988.

Veit, H., May, J-H., Madella, A., Delunel, R., Schlunegger, F., Szidat, S., Capriles, J.M. 2016. Palaeo-geoecological significance of Pleistocene trees in the Lluta Valley, Atacama Desert. Journal of Quaternary Science 31 (3), 203-213. http://doi.org/10.1002/jqs.2857.

Vuille, M. Ammann, C. 1997. Regional snowfall patterns in the high, arid Andes (South America). Climatic Change 36, 413-423. http://doi.org/10.1023/A:1005330802974.

Vuille, M., Bradley, R.S., Keimig, F. 2000. Interannual climate variability in the Central Andes and its relation to tropical Pacific and Atlantic forcing. Journal of Geophysical Research 105 D10, 12447-12460. http://doi.org/10.1029/2000JD900134.

Vuille, M., Keimig, F. 2004. Interannual variability of summertime convective cloudiness and precipitation in the Central Andes derived from ISCCP-B3 Data. Journal of Climate 17, 3334-3348. http://doi.org/10.1175/1520-0442(2004)017<3334:IVOSCC>2.0.CO;2.

Wäger, P., 2009. Glacier-climate modelling in Las Leñas, Central Andes of Argentina. Master Thesis, Faculty of Sciences, University of Bern, 135 p.

Zech, J., Zech, R., Kubik, P.W., Veit, H. 2009. Glacier and climate reconstruction at Tres Lagunas, NW Argentina, based on 10Be surface exposure dating and lake sediment analyses. Palaeogeography, Palaeoclimatology, Palaeoecology 284, 180-190. http://doi.org/10.1016/j.palaeo.2009.09.23

Zech, R., Glaser, B., Sosin, P., Kubik, P.W., Zech, W. 2005. Evidence for long-lasting landform surface instability on hummocky moraines in the Pamir Mountains (Tajikistan) from 10Be surface exposure dating. Earth and Planetary Science Letters 237 (3-4), 453-461. http://doi.org/10.1016/j.epsl.2005.06.31.

Zech, R., Kull, C., Kubik, P.W., Veit, H. 2007. LGM and Late Glacial glacier advances in the Cordillera Real and Cochabamba (Bolivia) deduced from 10Be surface exposure dating. Climate of the Past 3, 623-635.

Zech, R., May, J.-H., Kull, C., Ilgner, J., Kubik, P.W., Veit, H. 2008. Timing of the late Quaternary glaciation in the Andes from ~15 to 40° S. Journal of Quaternary Science 23, 635-647. http://doi.org/10.1002/jqs.1200.

Zech, R., Smith, J., Kaplan, M. 2009. Chronologies of the LGM and its Termination in the Andes based on Surface Exposure Dating. In: F. Vimeux, F. Sylvestre, M. Khodri (Eds.), Past climate variability in South America and surrounding regions. From the Last Glacial Maximum to the Holocene. Springer, pp. 61-87.

Zhou, J., Lau, K.M. 1998. Does a monsoon climate exist over South America? Journal of Climate 11, 1020-1040.

Zreda, M., Clapperton, C., Argollo, J., Shanahan, T. 2001. Evidence for contemporary lakes and glaciers in the southern Altiplano during late glacial time. Fifth Iberian Quaternary Meeting (extended abstract), Lisboa, Portugal.

Downloads

Published

15-09-2017

How to Cite

1.
Zech J, Terrizzano C, García-Morabito E, Veit H, Zech R. Timing and extent of late pleistocene glaciation in the arid Central Andes of Argentina and Chile (22°-41°S). CIG [Internet]. 2017 Sep. 15 [cited 2024 Mar. 19];43(2):697-718. Available from: https://publicaciones.unirioja.es/ojs/index.php/cig/article/view/3235

Issue

Section

Articles