Effects of gravel mining on suspended sediment transport in mountain rivers (Upper river Cinca, Central Pyrenees)

Authors

  • M. Béjar Fluvial Dynamics Research Groups (RIUS), Universidad de Lleida, Lleida http://orcid.org/0000-0002-4248-829X
  • D. Vericat Fluvial Dynamics Research Groups (RIUS), Universidad de Lleida, Lleida, España Centre Tecnològic Forestal de Catalunya, Solsona, España http://orcid.org/0000-0002-5685-4895
  • I. Nogales Fluvial Dynamics Research Groups (RIUS), Universidad de Lleida, Lleida, España
  • F. Gallart Instituto de Diagnóstico Ambiental y Estudios del Agua, CSIC, Barcelona, España http://orcid.org/0000-0002-7050-2204
  • R.J. Batalla Fluvial Dynamics Research Groups (RIUS), Universidad de Lleida, Lleida, España Institut Català de Recerca de l’Aigua, Girona, España. Facultad de Ciencias Forestales y Recursos Naturales, Universidad Austral de Chile, Valdivia. http://orcid.org/0000-0001-8454-2314

DOI:

https://doi.org/10.18172/cig.3256

Keywords:

channel maintenance works, gravel mining, suspended sediment transport, grain-size distribution, deposition, River Cinca

Abstract

This paper examines the effects of gravel mining on the suspended sediment transport in the Upper River Cinca (Central Pyrenees). Discharge, sediment transport and sediment grain-size distribution were measured, sampled and further determined in five monitoring sections along a 5-km river reach. Samples were taken at a section upstream from the mined area (i.e. reference section) and in four sections downstream (0, 200, 500 and 1500 meters). The results show that sediment concentrations downstream from the target site were up to one order of magnitude higher than in the reference section. Average concentrations during the impact were similar to those observed during floods, with maximum values attaining 6 g/l. Total load ranged from 2.2 to 17 Mg/day between sections; these values include the effects of the earth-moving works performed before the mining started. Concentrations at the lowermost section of the study reach were similar to those observed at the upstream reference section, suggesting that most of the suspended material was deposited in the channel. The transported material was coarse than that sampled under reference conditions; nevertheless, largest particles settled quickly, suggesting a selective transport downstream. This study constitutes a first step towards a better understanding of local sediment dynamics in rivers affected by maintenance works and related activities, such as gravel mining, and, overall, supports the comprehensive assessment of the effects of human actions on channel morphodynamics and the ecological functioning of mountain fluvial systems.

Downloads

Download data is not yet available.

Author Biographies

M. Béjar, Fluvial Dynamics Research Groups (RIUS), Universidad de Lleida, Lleida

Departamento de Medio Ambiente y Ciencias del Suelo

D. Vericat, Fluvial Dynamics Research Groups (RIUS), Universidad de Lleida, Lleida, España Centre Tecnològic Forestal de Catalunya, Solsona, España

Departamento de Medio Ambiente y Ciencias del Suelo

I. Nogales, Fluvial Dynamics Research Groups (RIUS), Universidad de Lleida, Lleida, España

Departamento de Medio Ambiente y Ciencias del Suelo

R.J. Batalla, Fluvial Dynamics Research Groups (RIUS), Universidad de Lleida, Lleida, España Institut Català de Recerca de l’Aigua, Girona, España. Facultad de Ciencias Forestales y Recursos Naturales, Universidad Austral de Chile, Valdivia.

Departamento de Medio Ambiente y Ciencias del Suelo

References

Béjar, M., Gibbins, C.N., Vericat, D., Batalla, R.J. 2017. Effects of suspended sediment transport on invertebrate drift. River Research and Applications (en prensa). http://doi.org/10.1002/rra.3146.

Bilotta, G.S., Brazier, R.E. 2008. Understanding the effects of suspended solids on water quality and aquatic biota. Water Research 42, 2849-2861. http://doi.org/10.1016/j.watres.2008.03.018.

Bladé, E., Cea, L., Corestein, G., Escolano, E., Puertas, J., Vázquez-Cendón, M.E., Dolz, J., Coll, A. 2014. Iber–Herramienta de simulación numérica del flujo en ríos. Revista Internacional de Métodos Numéricos 30, 1-10. http://doi.org/10.1016/j.rimni.2012.07.004.

Brown, A.V., Lyttle, M.M., Brown, K.B. 1998. Impacts of gravel mining on gravel bed streams. Transactions of the American Fisheries Society 127, 979-994. http://doi.org/10.1577/1548-8659(1998)127<0979:IOGMOG>2.0.CO;2.

Bryce, M.N. 1977. A study of sediment movements downstream from a hydraulic dredge. Unpublished Bachelor of Arts thesis, University of New South Wales.

Buendía, C., Gibbins, C.N., Vericat, D., López-Tarazón, J.A., Batalla, R.J. 2011. Influence of naturally high fine sediment loads on aquatic insect larvae in a montane river. Scottish Geographical Journal 127, 315-334. http://doi.org/10.1080/14702541.2012.670006.

Folk, R.S., Ward, W.C. 1957. Brazos river bar: a study in the significance of grain size parameters. Journal of Sedimentary Petrology 27, 3-26. http://doi.org/10.1306/74D70646-2B21-11D7-8648000102C1865D.

Forshage, A., Carter, N.E. 1973. Effect of gravel dredging on the Brazos River. Proceedings of the 27th Annual Conference, Southeastern Association Game and Fish Commission 24, 695-708. http://doi.org/10.1080/02705060.2008.9664250.

García-Anquela, J.A., Tena, J.M., Mandado, J.A. 1985. Las explotaciones de áridos como factor modificador de los cauces fluviales naturales. Cuadernos de Investigación Geográfica, 11, 83-90. http://doi.org/10.18172/cig.945.

Gilbert, G.K. 1917. Hydraulic Mining Debris in the Sierra Nevada. US Geological Survey Professional Paper, 105.

Julien, P.Y. 1998. Erosion and sedimentation. Cambridge, Cambridge University Press, 280 pp.

Jones, J.I., Murphy, J.F., Collins, A.L., Sear, D.A., Naden, P.S., Armitage, P.D. 2012. The impact of fine sediment on macro-invertebrates. River Research and Applications 28, 1055-1071. http://doi.org/10.1002/rra.1516.

Kondolf, G.M. 1994. Geomorphic and environmental effects of instream gravel mining. Landscape and Urban Planning 28, 225-243. http://doi.org/10.1016/0169-2046(94)90010-8.

Kondolf, G.M. 1997. Hungry Water: Effects of Dams and Gravel Mining on River Channels. Environmental Management 21 (4), 533-551. http://doi.org/10.1007/s002679900048.

Lagasse, P.F., Winkley, B.R., Simons, D.B. 1980. Impact of gravel mining and river system stability. Journal of the Waterways, Port, Coastal and Ocean Division 106 (3), 389-404.

Lisle, T.E. 1989. Sediment transport and resulting deposition in spawning gravels, north Coastal California. Water Resources Research 25, 1303-1319. http://doi.org/10.1029/WR025i006p01303.

Llena, M., Vericat D., Martínez-Casasnovas, J.A. 2016. Cambios geomorfológicos en el Alto Cinca (Periodo 1927-2014). Comprendiendo el relieve: del pasado al futuro. In: J.J. Durán Valsero, M. Montes Santiago, A. Robador Moreno, A. Salazar Rincón, Actas de la XIV Reunión Nacional de Geomorfología, Málaga, 2016, IGME: Madrid, pp. 339-347.

Lobera, G., Muñoz, I., López-Tarazón, J.A., Vericat, D., Ramon, R.J. 2016a. Effects of flow regulation on river bed dynamics and invertebrate communities in a Mediterranean River. Hydrobiologia 784, 283-304. http://doi.org/10.1007/s10750-016-2884-6.

Lobera, G., Batalla, R.J., Vericat, D., López-Tarazón, J.A., Tena, A. 2016b. Sediment transport in two Mediterranean regulated rivers. Science of The Total Environment 540, 101-113. http://doi.org/10.1016/j.scitotenv.2015.08.018.

López-Tarazón, J.A., Batalla, R.J., Vericat, D. 2011. In-channel sediment storage in a highly erodible catchment: the River Isábena (Ebro basin, Southern Pyrenees). Zeitschrift für Geomorphologie 55 (3), 365-382. http://doi.org/10.1127/0372-8854/2011/0045

Mori, N., Brancelj, A. 2011. Invertebrate drift during in-stream gravel extraction in the River Bača, Slovenia. Fundamental and Applied Limnology 178 (2), 121-130. http://doi.org/10.1127/1863-9135/2011/0178-0121.

Newcombe, C.P., Macdonald, D.D. 1991. Effects of Suspended Sediments on Aquatic Ecosystems. North American Journal of Fisheries Management 11 (1), 72-82. http://doi.org/10.1577/1548-8675(1991)011<0072:EOSSOA>2.3.CO;2.

Nogales, I. 2016. Dinámica del transporte de sedimentos en suspensión en un río de montaña afectado por extracciones de áridos (Alto Cinca, Pirineo Central). Trabajo Fin de Máster. Universidad de Lleida.

Parkhill, K.L., Gulliver, J.S. 2002. Effect of inorganic sediment on whole-stream productivity. Hydrobiologia 472, 5-17. http://doi.org/10.1023/A:1016363228389.

Piqué, G., López-Tarazón, J.A., Batalla, R.J. 2014. Variability of in-channel sediment storage in a river draining highly erodible areas (the Isábena, Ebro Basin). Journal of Soils and Sediments, 14, 2031. http://doi.org/10.1007/s11368-014-0957-6.

Pretty, J.L., Hildrew, A.G., Trimmer, M. 2006. Nutrient dynamics in relation to surface-subsurface hydrological exchange in a groundwater fed chalk stream. Journal of Hydrology 330, 84-100. http://doi.org/10.1016/j.jhydrol.2006.04.013.

Rinaldi, M., Wyżga, B., Surian, N. 2005. Sediment mining in alluvial channels: physical effects and management perspectives. River Research and Applications 21, 805-828. http://doi.org/10.1002/rra.884.

Rovira, A., Batalla, R.J., Sala, M., 2005. Response of a river sediment budget after historical gravel mining (the lower Tordera, NE Spain). River Research and Applications, 21 (7), 829-847. http://doi.org/10.1002/rra.885.

Vericat, D., Batalla, R.J. 2006. Sediment transport in a large impounded river: the lower Ebro, NE Iberian Peninsula. Geomorphology 79, 72-92. http://doi.org/10.1016/j.geomorph.2005.09.017

Vericat, D., Muñoz-Narciso, E., Béjar, M., Ramos-Madrona, E. 2016. Case study: Multi-temporal reach-scale topographic models in a wandering river –uncertainties and opportunities. En: J.L. Carrivick, M.W. Smith, D.J. Quincey (Eds.), Structure from Motion in the Geosciences. New Analytical Methods in Earth and Environmental Sciences, Wiley Blackwell, John Wiley & Sons, Chichester, UK, pp 194.

Waters, T.F. 1995. Sediment in streams Sources, biological effects, and control. American Fisheries Society Monograph 7, 1-251.

Warner, R.F., McLean, E.J., Pickup G. 1977. Changes in an urban water resource, an example from Sydney, Australia. Earth Surface Processes 2, 29-38. http://doi.org/10.1002/esp.3290020104.

Weeks, J.M., Sims, I., Lawson, C., Harrison, DJ. 2003. River mining: assessment of the ecological effects of river mining in the Rio Minho and Yallahs rivers, Jamaica. Brithish Geological Survey Commissioned Report 53.

Williams, G.P., Wolman, M.G. 1984. Downstream effects of dams on alluvial rivers. US Geological Survey Professional Paper 1286, 83. http://doi.org/10.1002/rrr.3450010210.

Wood, P.J., Armitage, P.D. 1997. Biological effects of fine sediment in the Lotic environment. Environmental Management 21, 203-217. http://doi.org/10.1007/s002679900019.

Published

29-06-2018

How to Cite

1.
Béjar M, Vericat D, Nogales I, Gallart F, Batalla R. Effects of gravel mining on suspended sediment transport in mountain rivers (Upper river Cinca, Central Pyrenees). CIG [Internet]. 2018 Jun. 29 [cited 2024 Apr. 26];44(2):641-58. Available from: https://publicaciones.unirioja.es/ojs/index.php/cig/article/view/3256

Issue

Section

Articles