Human influence, key to understand the biogeography of invasive species in the Anthropocene

B. Gallardo, L. Vila


Biological invasions have challenged the traditional concept of biogeography in the Anthropocene. This is because the geographical distribution of invasive species is no longer dependent on its movement ability and the presence of biogeographical barriers, rather on the human activities that promote the expansion of invasive species, intentionally or accidentally. Consequently, modelling techniques must take into account the idiosyncrasies of invasive species in order to effectively anticipate their potential distribution. In this study we use as reference a list of 57 of the worst invasive species in Europe (18 plants, 15 vertebrates, 12 invertebrates and 12 aquatic organisms) to compare the influence of climate and human activities on the large-scale distribution of invaders. We identified nine major vectors of distribution, highlighting transport, ornamental use and trade. We also located seven human variables that we could use as surrogates of those vectors in Ecological Niche Models (ENM): accessibility, population density, GDP, human influence index, urban and agriculture cover, distance to roads and commercial ports. Minimum annual temperature was the most important predictor in models integrating climatic and human variables, followed by distance to ports, GDP and accessibility. Surprisingly, integrated models were not statistically better than models based on climate variables only, yet they anticipated an average increase of 8% in the European surface susceptible to invasion. Such increment is especially notorious in areas under a high human influence where we can presume a higher propagule pressure. In the Iberian Peninsula, the integrated model suggests a higher risk of invasion than the climate model in the eastern coast, Ebro valley and surroundings of major cities. We conclude that climate is important, but not enough to effectively anticipate the spread of invasive species and thus information directly related with the vectors of species introduction must be included routinely in ENM to optimize resources invested in the prevention, rapid response and long-term control of invasive species.


Introduction vectors; species distribution models; ecological niche models; propagule pressure


Alonso, A., Castro-Díez, P. 2012. Tolerance to air exposure of the new zealand mudsnail Potamopyrgus antipodarum (Hydrobiidae, Mollusca) as a prerequisite to survival in overland translocations. NeoBiota 14, 67-74.

Araújo, M.B., New, M. 2007. Ensemble forecasting of species distributions. Trends in Ecology & Evolution 22, 42-47.

Banks, N.C., Paini, D.R., Bayliss, K.L., Hodda, M. 2014. The role of global trade and transport network topology in the human-mediated dispersal of alien species. Ecology Letters 18, 188-199.

Barbet-Massin, M., Jiguet, F., Albert, C.H., Thuiller, W. 2012. Selecting pseudo-absences for species distribution models: How, where and how many? Methods in Ecology and Evolution 3, 327-338.

Barbet-Massin, M., Rome, Q., Villemant, C., Courchamp, F. 2018. Can species distribution models really predict the expansion of invasive species? PLOS ONE 13, e0193085. https://doi. org/10.1371/journal.pone.0193085.

Beans, C.M., Kilkenny, F.F., Galloway, L.F. 2012. Climate suitability and human influences combined explain the range expansion of an invasive horticultural plant. Biological Invasions 14, 2067-2078.

Bellard, C., Leroy, B., Thuiller, W., Rysman, J.F., Courchamp, F. 2016. Major drivers of invasion risks throughout the world. Ecosphere 7, e01241.

Briski, E., Ghabooli, S., Bailey, S., MacIsaac, H. 2012. Invasion risk posed by macroinvertebrates transported in ships’ ballast tanks. Biological Invasions 14, 1843-1850. https://doi. org/10.1007/s10530-012-0194-0.

Broennimann, O., Guisan, A. 2008. Predicting current and future biological invasions: Both native and invaded ranges matter. Biology Letters 4, 585-589.

Bucklin, D.N., Basille, M., Benscoter, A.M., Brandt, L.A., Mazzotti, F.J., Romañach, S.S., Speroterra, C., Watling, J.I. 2014. Comparing species distribution models constructed with different subsets of environmental predictors. Diversity and Distributions 21, 23-35.

Callaway, R.M., Ridenour, W.M. 2004. Novel weapons: Invasive success and the evolution of increased competitive ability. Frontiers in Ecology and the Environment 2, 436-443.[0436:NWISAT]2.0.CO;2.

Capinha, C., Essl, F., Seebens, H., Moser, D., Pereira, H.M. 2015. The dispersal of alien species redefines biogeography in the Anthropocene. Science 348, 1248-1251.

Estrada, A., Morales-Castilla, I., Caplat, P., Early, R. 2016. Usefulness of species traits in predicting range shifts. Trends in Ecology & Evolution 31, 190-203. tree.2015.12.014.

Gallardo, B., Aldridge, D.C. 2013. The ‘dirty dozen’: socio-economic factors amplify the invasion potential of 12 high risk aquatic invasive species in great britain and ireland. Journal of Applied Ecology 50, 757-766.

Gallardo, B., Zu Ermgassen, P.S.E., Aldridge, D.C. 2013. Invasion ratcheting in the zebra mussel (Dreissena polymorpha) and the ability of native and invaded ranges to predict its global distribution. Journal of Biogeography 40, 2274-2284.

Gallardo, B., Zieritz, A., Aldridge, D.C. 2015. The importance of the human footprint in shaping the global distribution of terrestrial, freshwater and marine invaders. PLoS ONE 10, e0125801.

Gallardo, B., Aldridge, D.C., González-Moreno, P., Pergl, J., Pizarro, M., Pyšek, P., Thuiller, W., Yesson, C., Vilà, M. 2017. Protected areas offer refuge from invasive species spreading under climate change. Global Change Biology 23, 5331-5343.

Gallardo, B., Bogan, A.E., Harun, S., Jainih, L., Lopes-Lima, M., Pizarro, M., Rahim, K.A., Sousa, R., Virdis, S.G.P., Zieritz, A. 2018. Current and future effects of global change on a hotspot’s freshwater diversity. Science of The Total Environment 635, 750-760. https://doi. org/10.1016/j.scitotenv.2018.04.056.

Genovesi, P., Bacher, S., Kobelt, M., Pascal, M.,Scalera, R. 2009. Alien mammals of Europe. Handbook of alien species in europe, pp. 119-128. Springer.

Guisan, A.,Thuiller, W. 2005. Predicting species distribution: offering more than simple habitat models. Ecology Letters 8, 993-1009. Hampton, S.E., Strasser, C.A., Tewksbury, J.J., Gram, W.K., Budden, A.E., Batcheller, A.L., Duke, C.S., Porter, J.H. 2013. Big data and the future of ecology. Frontiers in Ecology and the Environment 11, 156-162.

Hijmans, R.J., Graham, C.H. 2006. The ability of climate envelope models to predict the effect of climate change on species distributions. Global Change Biology 12, 2272-2281.

Kark, S., Solarz, W., Chiron, F., Clergeau, P., Shirley, S. 2009. Alien birds, amphibians and reptiles of europe. Handbook of alien species in europe. Springer. pp. 105-118.

Katsanevakis, S., Bogucarskis, K., Gatto, F., Vandekerkhove, J., Deriu, I., Cardoso, A.C. 2012. Building the european alien species information network (EASIN): a novel approach for the exploration of distributed alien species data. BioInvasions Record 1, 235-245. http://doi. org/10.3391/bir.2012.1.4.01.

Lambdon, P.W., Pyšek, P., Basnou, C., Hejda, M., Arianoutsou, M., Essl, F., Jarošík, V., Pergl, J., Winter, M., Anastasiu, P. 2008. Alien flora of europe: species diversity, temporal trends, geographical patterns and research needs. Preslia 80, 101-149.

Lobo, J.M., Jimenez-Valverde, A., Real, R. 2008. AUC: A misleading measure of the performance of predictive distribution models. Global Ecology and Biogeography 17, 145-151.

Lockwood, J.L., Cassey, P., Blackburn, T. 2005. The role of propagule pressure in explaining species invasions. Trends in Ecology & Evolution 20, 223-228. tree.2005.02.004.

Merow, C., Smith, M.J., Silander, J.A. 2013. A practical guide to Maxent for modeling species’ distributions: what it does, and why inputs and settings matter. Ecography 36, 1058-1069.

Olden, J.D., Douglas, M.E., Douglas, M.R. 2005. The human dimensions of biotic homogenization. Conservation Biology 19, 2036-2038.

Olden, J.D., LeRoy Poff, N., Douglas, M.R., Douglas, M.E., Fausch, K.D. 2004. Ecological and evolutionary consequences of biotic homogenization. Trends in Ecology & Evolution 19, 18-24.

QGIS Development Team (2016) QGIS geographic information system. Open source geospatial foundation project.

R Core Team (2017) R: A language and environment for statistical computing. R Foundation for Statistical Computing

Roques, A., Rabitsch, W., Rasplus, J.-Y., Lopez-Vaamonde, C., Nentwig, W., Kenis, M. 2009. Alien terrestrial invertebrates of europe. Handbook of alien species in europe. Springer, pp. 63-79.

Roura-Pascual, N., Hui, C., Ikeda, T., Leday, G., Richardson, D.M., Carpintero, S., Espadaler, X., Gómez, C., Guénard, B., Hartley, S., Krushelnycky, P., Lester, P.J., McGeoch, M.A., Menke, S.B., Pedersen, J.S., Pitt, J.P.W., Reyes, J., Sanders, N.J., Suarez, A.V., Touyama, Y., Ward, D., Ward, P.S., Worner, S.P. 2011. Relative roles of climatic suitability and anthropogenic influence in determining the pattern of spread in a global invader. Proceedings of the National Academy of Sciences 108, 220-225.

Roy, H., Wajnberg, E. 2008. From biological control to invasion: The ladybird harmonia axyridis as a model species. BioControl 53, 1-4.

Sanderson, E.W., Jaiteh, M., Levy, M.A., Redford, K.H., Wannebo, A.V., Woolmer, G. 2002. The human footprint and the last of the wild. Bioscience 52, 891-904.[0891:thfatl];2.

Seebens, H., Blackburn, T.M., Dyer, E.E., Genovesi, P., Hulme, P.E., Jeschke, J.M., Pagad, S., Pyšek, P., Winter, M., Arianoutsou, M., Bacher, S., Blasius, B., Brundu, G., Capinha, C., Celesti-Grapow, L., Dawson, W., Dullinger, S., Fuentes, N., Jäger, H., Kartesz, J., Kenis, M., Kreft, H., Kühn, I., Lenzner, B., Liebhold, A., Mosena, A., Moser, D., Nishino, M., Pearman, D., Pergl, J., Rabitsch, W., Rojas-Sandoval, J., Roques, A., Rorke, S., Rossinelli, S., Roy, H.E., Scalera, R., Schindler, S., Štajerová, K., Tokarska-Guzik, B., van Kleunen, M., Walker, K., Weigelt, P., Yamanaka, T., Essl, F. 2017. No saturation in the accumulation of alien species worldwide. Nature Communications 8, 14435.

Seebens, H., Blackburn, T.M., Dyer, E.E., Genovesi, P., Hulme, P.E., Jeschke, J.M., Pagad, S., Pyšek, P., van Kleunen, M., Winter, M., Ansong, M., Arianoutsou, M., Bacher, S., Blasius, B., Brockerhoff, E.G., Brundu, G., Capinha, C., Causton, C.E., Celesti-Grapow, L., Dawson, W., Dullinger, S., Economo, E.P., Fuentes, N., Guénard, B., Jäger, H., Kartesz, J., Kenis, M., Kühn, I., Lenzner, B., Liebhold, A.M., Mosena, A., Moser, D., Nentwig, W., Nishino, M., Pearman, D., Pergl, J., Rabitsch, W., Rojas-Sandoval, J., Roques, A., Rorke, S., Rossinelli, S., Roy, H.E., Scalera, R., Schindler, S., Štajerová, K., Tokarska-Guzik, B., Walker, K., Ward, D.F., Yamanaka, T., Essl, F. 2018. Global rise in emerging alien species results from increased accessibility of new source pools. Proceedings of the National Academy of Sciences.

Soberón, J., Nakamura, M. 2009. Niches and distributional areas: concepts, methods, and assumptions. Proceedings of the National Academy of Sciences 106, 19644-19650. https://doi. org/10.1073/pnas.0901637106.

Thuiller, W. 2003. Biomod optimizing predictions of species distributions and projecting potential future shifts under global change. Global Change Biology 9, 1353-1362. https://doi. org/10.1046/j.1365-2486.2003.00666.x.

Thuiller, W., Georges, D., Engler, R. 2014. Biomod2: Ensemble platform for species distribution modeling.

Tylianakis, J.M., Didham, R.K., Bascompte, J., Wardle, D.A. 2008. Global change and species interactions in terrestrial ecosystems. Ecology Letters 11, 1351-1363.

Van Kleunen, M., Weber, E., Fischer, M. 2010. A meta-analysis of trait differences between invasive and non-invasive plant species. Ecology Letters 13, 235-245.

Zhu, G., Li, H., Zhao, L. 2016. Incorporating anthropogenic variables into ecological niche modeling to predict areas of invasion of Popillia japonica. Journal of Pest Science, 1-10.


Copyright (c) 2019 B. Gallardo, L. Vila

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

© Universidad de La Rioja, 2013

ISSN 0211-6820

EISSN 1697-9540