La influencia humana, clave para entender la biogeografía de especies invasoras en el Antropoceno

Autores/as

DOI:

https://doi.org/10.18172/cig.3627

Palabras clave:

Vector de introducción, modelos de distribución de especies, modelos ecológicos de nicho, presión de propágulos

Resumen

Las invasiones biológicas han revolucionado el concepto de biogeografía en el Antropoceno, ya que su distribución geográfica ya no depende de su capacidad intrínseca de movimiento y las barreras biogeográficas clásicas, sino que depende directamente de actividades humanas que favorecen, intencionada o accidentalmente, su expansión. Por tanto, las técnicas de modelización geográfica han de tener en cuenta las particularidades de las especies invasoras para poder anticipar su distribución potencial en el futuro. En este estudio, utilizamos un listado de 57 de las peores especies invasoras en Europa (18 plantas, 15 vertebrados, 12 invertebrados y 12 organismos acuáticos) para comparar la influencia climática y humana en la distribución a gran escala de especies invasoras. Identificamos un total de nueve grandes vectores de introducción, entre los que destacan el transporte, el cultivo ornamental y el comercio. Localizamos siete variables relacionadas con estos vectores de introducción que utilizamos junto con variables climáticas como predictores en Modelos Ecológicos de Nicho (MEN): accesibilidad, densidad de población, PIB, grado de antropización, cobertura de uso agrícola y urbano, distancia a carreteras y puertos comerciales. La temperatura mínima anual es el predictor más importante en los modelos, seguida de la distancia a puertos, el PIB y la accesibilidad. Sorprendentemente, los modelos que incluyen variables humanas no son estadísticamente mejores que los basados en variables climáticas únicamente, si bien predicen un aumento medio del 8% en la superficie europea susceptible a la invasión. Tal incremento se produce fundamentalmente en zonas muy antropizadas donde la posibilidad de invasión es obviamente mayor. En el caso de la Península Ibérica, esto se traduce en un aumento del riesgo de invasión en la zona de levante, valle del Ebro y alrededores de grandes ciudades. Concluimos por tanto que el clima es importante, pero no suficiente para anticipar efectivamente la expansión de especies invasoras, y por tanto, cualquier información disponible que esté directamente relacionada con los vectores de introducción ha de ser incorporada de forma rutinaria en los MEN para optimizar los recursos dedicados a la prevención, respuesta rápida y control a largo plazo de especies invasoras.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

B. Gallardo, Instituto Pirenaico de Ecología (IPE-CSIC)

Dept. Conservación de la Biodiversidad y Restauración de Ecosistemas

Grupo de Restauración Ecológica

Investigadora postdoctoral

Citas

Alonso, A., Castro-Díez, P. 2012. Tolerance to air exposure of the new zealand mudsnail Potamopyrgus antipodarum (Hydrobiidae, Mollusca) as a prerequisite to survival in overland translocations. NeoBiota 14, 67-74. https://doi.org/10.3897/neobiota.14.3140.

Araújo, M.B., New, M. 2007. Ensemble forecasting of species distributions. Trends in Ecology & Evolution 22, 42-47. https://doi.org/10.1016/j.tree.2006.09.010.

Banks, N.C., Paini, D.R., Bayliss, K.L., Hodda, M. 2014. The role of global trade and transport network topology in the human-mediated dispersal of alien species. Ecology Letters 18, 188-199. https://doi.org/10.1111/ele.12397.

Barbet-Massin, M., Jiguet, F., Albert, C.H., Thuiller, W. 2012. Selecting pseudo-absences for species distribution models: How, where and how many? Methods in Ecology and Evolution 3, 327-338. https://doi.org/10.1111/j.2041-210X.2011.00172.x.

Barbet-Massin, M., Rome, Q., Villemant, C., Courchamp, F. 2018. Can species distribution models really predict the expansion of invasive species? PLOS ONE 13, e0193085. https://doi. org/10.1371/journal.pone.0193085.

Beans, C.M., Kilkenny, F.F., Galloway, L.F. 2012. Climate suitability and human influences combined explain the range expansion of an invasive horticultural plant. Biological Invasions 14, 2067-2078. https://doi.org/10.1007/s10530-012-0214-0.

Bellard, C., Leroy, B., Thuiller, W., Rysman, J.F., Courchamp, F. 2016. Major drivers of invasion risks throughout the world. Ecosphere 7, e01241. https://doi.org/10.1002/ecs2.1241.

Briski, E., Ghabooli, S., Bailey, S., MacIsaac, H. 2012. Invasion risk posed by macroinvertebrates transported in ships’ ballast tanks. Biological Invasions 14, 1843-1850. https://doi. org/10.1007/s10530-012-0194-0.

Broennimann, O., Guisan, A. 2008. Predicting current and future biological invasions: Both native and invaded ranges matter. Biology Letters 4, 585-589. https://doi.org/10.1098/rsbl.2008.0254.

Bucklin, D.N., Basille, M., Benscoter, A.M., Brandt, L.A., Mazzotti, F.J., Romañach, S.S., Speroterra, C., Watling, J.I. 2014. Comparing species distribution models constructed with different subsets of environmental predictors. Diversity and Distributions 21, 23-35. https://doi.org/10.1111/ddi.12247.

Callaway, R.M., Ridenour, W.M. 2004. Novel weapons: Invasive success and the evolution of increased competitive ability. Frontiers in Ecology and the Environment 2, 436-443. https://doi.org/10.1890/1540-9295(2004)002[0436:NWISAT]2.0.CO;2.

Capinha, C., Essl, F., Seebens, H., Moser, D., Pereira, H.M. 2015. The dispersal of alien species redefines biogeography in the Anthropocene. Science 348, 1248-1251. https://doi.org/10.1126/science.aaa8913.

Estrada, A., Morales-Castilla, I., Caplat, P., Early, R. 2016. Usefulness of species traits in predicting range shifts. Trends in Ecology & Evolution 31, 190-203. https://doi.org/10.1016/j. tree.2015.12.014.

Gallardo, B., Aldridge, D.C. 2013. The ‘dirty dozen’: socio-economic factors amplify the invasion potential of 12 high risk aquatic invasive species in great britain and ireland. Journal of Applied Ecology 50, 757-766. https://doi.org/10.1111/1365-2664.12079.

Gallardo, B., Zu Ermgassen, P.S.E., Aldridge, D.C. 2013. Invasion ratcheting in the zebra mussel (Dreissena polymorpha) and the ability of native and invaded ranges to predict its global distribution. Journal of Biogeography 40, 2274-2284. https://doi.org/10.1111/jbi.12170.

Gallardo, B., Zieritz, A., Aldridge, D.C. 2015. The importance of the human footprint in shaping the global distribution of terrestrial, freshwater and marine invaders. PLoS ONE 10, e0125801. https://doi.org/10.1371/journal.pone.0125801.

Gallardo, B., Aldridge, D.C., González-Moreno, P., Pergl, J., Pizarro, M., Pyšek, P., Thuiller, W., Yesson, C., Vilà, M. 2017. Protected areas offer refuge from invasive species spreading under climate change. Global Change Biology 23, 5331-5343. https://doi.org/10.1111/gcb.13798.

Gallardo, B., Bogan, A.E., Harun, S., Jainih, L., Lopes-Lima, M., Pizarro, M., Rahim, K.A., Sousa, R., Virdis, S.G.P., Zieritz, A. 2018. Current and future effects of global change on a hotspot’s freshwater diversity. Science of The Total Environment 635, 750-760. https://doi. org/10.1016/j.scitotenv.2018.04.056.

Genovesi, P., Bacher, S., Kobelt, M., Pascal, M.,Scalera, R. 2009. Alien mammals of Europe. Handbook of alien species in europe, pp. 119-128. Springer.

Guisan, A.,Thuiller, W. 2005. Predicting species distribution: offering more than simple habitat models. Ecology Letters 8, 993-1009. https://doi.org/10.1111/j.1461-0248.2005.00792.x. Hampton, S.E., Strasser, C.A., Tewksbury, J.J., Gram, W.K., Budden, A.E., Batcheller, A.L., Duke, C.S., Porter, J.H. 2013. Big data and the future of ecology. Frontiers in Ecology and the Environment 11, 156-162. https://doi.org/10.1890/120103.

Hijmans, R.J., Graham, C.H. 2006. The ability of climate envelope models to predict the effect of climate change on species distributions. Global Change Biology 12, 2272-2281. https://doi.org/10.1111/j.1365-2486.2006.01256.x.

Kark, S., Solarz, W., Chiron, F., Clergeau, P., Shirley, S. 2009. Alien birds, amphibians and reptiles of europe. Handbook of alien species in europe. Springer. pp. 105-118.

Katsanevakis, S., Bogucarskis, K., Gatto, F., Vandekerkhove, J., Deriu, I., Cardoso, A.C. 2012. Building the european alien species information network (EASIN): a novel approach for the exploration of distributed alien species data. BioInvasions Record 1, 235-245. http://doi. org/10.3391/bir.2012.1.4.01.

Lambdon, P.W., Pyšek, P., Basnou, C., Hejda, M., Arianoutsou, M., Essl, F., Jarošík, V., Pergl, J., Winter, M., Anastasiu, P. 2008. Alien flora of europe: species diversity, temporal trends, geographical patterns and research needs. Preslia 80, 101-149.

Lobo, J.M., Jimenez-Valverde, A., Real, R. 2008. AUC: A misleading measure of the performance of predictive distribution models. Global Ecology and Biogeography 17, 145-151. https://doi.org/10.1111/j.1466-8238.2007.00358.x.

Lockwood, J.L., Cassey, P., Blackburn, T. 2005. The role of propagule pressure in explaining species invasions. Trends in Ecology & Evolution 20, 223-228. https://doi.org/10.1016/j. tree.2005.02.004.

Merow, C., Smith, M.J., Silander, J.A. 2013. A practical guide to Maxent for modeling species’ distributions: what it does, and why inputs and settings matter. Ecography 36, 1058-1069. https://doi.org/10.1111/j.1600-0587.2013.07872.x.

Olden, J.D., Douglas, M.E., Douglas, M.R. 2005. The human dimensions of biotic homogenization. Conservation Biology 19, 2036-2038. https://doi.org/10.1111/j.1523-1739.2005.00288.x.

Olden, J.D., LeRoy Poff, N., Douglas, M.R., Douglas, M.E., Fausch, K.D. 2004. Ecological and evolutionary consequences of biotic homogenization. Trends in Ecology & Evolution 19, 18-24. https://doi.org/10.1016/j.tree.2003.09.010.

QGIS Development Team (2016) QGIS geographic information system. Open source geospatial foundation project.

R Core Team (2017) R: A language and environment for statistical computing. R Foundation for Statistical Computing

Roques, A., Rabitsch, W., Rasplus, J.-Y., Lopez-Vaamonde, C., Nentwig, W., Kenis, M. 2009. Alien terrestrial invertebrates of europe. Handbook of alien species in europe. Springer, pp. 63-79.

Roura-Pascual, N., Hui, C., Ikeda, T., Leday, G., Richardson, D.M., Carpintero, S., Espadaler, X., Gómez, C., Guénard, B., Hartley, S., Krushelnycky, P., Lester, P.J., McGeoch, M.A., Menke, S.B., Pedersen, J.S., Pitt, J.P.W., Reyes, J., Sanders, N.J., Suarez, A.V., Touyama, Y., Ward, D., Ward, P.S., Worner, S.P. 2011. Relative roles of climatic suitability and anthropogenic influence in determining the pattern of spread in a global invader. Proceedings of the National Academy of Sciences 108, 220-225. https://doi.org/10.1073/pnas.1011723108.

Roy, H., Wajnberg, E. 2008. From biological control to invasion: The ladybird harmonia axyridis as a model species. BioControl 53, 1-4. https://doi.org/10.1007/s10526-007-9127-8.

Sanderson, E.W., Jaiteh, M., Levy, M.A., Redford, K.H., Wannebo, A.V., Woolmer, G. 2002. The human footprint and the last of the wild. Bioscience 52, 891-904. https://doi.org/10.1641/0006-3568(2002)052[0891:thfatl]2.0.co;2.

Seebens, H., Blackburn, T.M., Dyer, E.E., Genovesi, P., Hulme, P.E., Jeschke, J.M., Pagad, S., Pyšek, P., Winter, M., Arianoutsou, M., Bacher, S., Blasius, B., Brundu, G., Capinha, C., Celesti-Grapow, L., Dawson, W., Dullinger, S., Fuentes, N., Jäger, H., Kartesz, J., Kenis, M., Kreft, H., Kühn, I., Lenzner, B., Liebhold, A., Mosena, A., Moser, D., Nishino, M., Pearman, D., Pergl, J., Rabitsch, W., Rojas-Sandoval, J., Roques, A., Rorke, S., Rossinelli, S., Roy, H.E., Scalera, R., Schindler, S., Štajerová, K., Tokarska-Guzik, B., van Kleunen, M., Walker, K., Weigelt, P., Yamanaka, T., Essl, F. 2017. No saturation in the accumulation of alien species worldwide. Nature Communications 8, 14435. https://doi.org/10.1038/ncomms14435.

Seebens, H., Blackburn, T.M., Dyer, E.E., Genovesi, P., Hulme, P.E., Jeschke, J.M., Pagad, S., Pyšek, P., van Kleunen, M., Winter, M., Ansong, M., Arianoutsou, M., Bacher, S., Blasius, B., Brockerhoff, E.G., Brundu, G., Capinha, C., Causton, C.E., Celesti-Grapow, L., Dawson, W., Dullinger, S., Economo, E.P., Fuentes, N., Guénard, B., Jäger, H., Kartesz, J., Kenis, M., Kühn, I., Lenzner, B., Liebhold, A.M., Mosena, A., Moser, D., Nentwig, W., Nishino, M., Pearman, D., Pergl, J., Rabitsch, W., Rojas-Sandoval, J., Roques, A., Rorke, S., Rossinelli, S., Roy, H.E., Scalera, R., Schindler, S., Štajerová, K., Tokarska-Guzik, B., Walker, K., Ward, D.F., Yamanaka, T., Essl, F. 2018. Global rise in emerging alien species results from increased accessibility of new source pools. Proceedings of the National Academy of Sciences. https://doi.org/10.1073/pnas.1719429115.

Soberón, J., Nakamura, M. 2009. Niches and distributional areas: concepts, methods, and assumptions. Proceedings of the National Academy of Sciences 106, 19644-19650. https://doi. org/10.1073/pnas.0901637106.

Thuiller, W. 2003. Biomod optimizing predictions of species distributions and projecting potential future shifts under global change. Global Change Biology 9, 1353-1362. https://doi. org/10.1046/j.1365-2486.2003.00666.x.

Thuiller, W., Georges, D., Engler, R. 2014. Biomod2: Ensemble platform for species distribution modeling.

Tylianakis, J.M., Didham, R.K., Bascompte, J., Wardle, D.A. 2008. Global change and species interactions in terrestrial ecosystems. Ecology Letters 11, 1351-1363. https://doi.org/10.1111/j.1461-0248.2008.01250.x.

Van Kleunen, M., Weber, E., Fischer, M. 2010. A meta-analysis of trait differences between invasive and non-invasive plant species. Ecology Letters 13, 235-245. https://doi.org/10.1111/j.1461-0248.2009.01418.x.

Zhu, G., Li, H., Zhao, L. 2016. Incorporating anthropogenic variables into ecological niche modeling to predict areas of invasion of Popillia japonica. Journal of Pest Science, 1-10. https://doi.org/10.1007/s10340-016-0780-5.

Descargas

Publicado

2019-06-18

Cómo citar

1.
Gallardo B, Vila L. La influencia humana, clave para entender la biogeografía de especies invasoras en el Antropoceno. CIG [Internet]. 18 de junio de 2019 [citado 22 de febrero de 2025];45(1):61-86. Disponible en: https://publicaciones.unirioja.es/ojs/index.php/cig/article/view/3627

Número

Sección

Artículos