Permafrost model in coarse-blocky deposits for the Dry Andes, Argentina (28°-33° S)

Authors

  • C. Tapia-Baldis IANIGLA (Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales), CCT Conicet Mendoza
  • D. Trombotto-Liaudat IANIGLA (Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales), CCT Conicet Mendoza

DOI:

https://doi.org/10.18172/cig.3802

Keywords:

Mountain permafrost, Dry Andes, Argentina, Logistic regression model

Abstract

In this work, a statistical permafrost distribution model for coarse-blocky deposits in the Dry Andes of Argentina (28-33°S) is presented. The empiric mathematical formulation was based on a logistic regression. The final model is a combination of two independent occurrence probability models: a) a mean annual air temperature-terrain ruggedness model and, b) a mean annual air temperature-potential incoming solar radiation model. For all cases, calibration was made according the complete geomorphological characterization of a periglacial basin with 250 km2. Lately, the results of probabilistic model were extrapolated to the whole study area in the Dry Andes and compared with the Argentine rock glacier inventory data base. High permafrost likelihood, in coarse debris, is expected above 4200 and 5700 m a.s.l., from south to north in the study area and covers a surface of approximately 1200 km2. Medium permafrost likelihood is expected above 3400 and 4200 m a.s.l. with a surface of 6178 km2 while low permafrost likelihood, occurs between 3000 and 3400 m a.s.l. with an area of 11.060 km2. These findings indicate that permafrost may occur in several types of coarse-blocky deposits in the Dry Andes, not only restricted to rock glaciers. Thermal properties of the ground in coarse-blocky deposits allow permafrost permanence, even under unfavourable climatic conditions.

The performance of the permafrost model was also tested, considering the transition from cold paleoclimate Tardiglacial to present climatic conditions. During the warming, likely permafrost surface reduced from 56 to 13%. In the same way, rock glaciers with high and medium permafrost likelihood decrease from 62 to 30%, respectively while, rock glaciers with low likelihood and no permafrost category, increased 75% and 474%, respectively. Moreover, we identified some sites in which permafrost degradation is arguably expected. About that, 0.9% of the rock glaciers in the study area display possible permafrost degradation and 33% of them, likely permafrost degradation.

Downloads

Download data is not yet available.

Author Biography

C. Tapia-Baldis, IANIGLA (Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales), CCT Conicet Mendoza

PhD Researcher

Geocryology Unit

IANIGLA, CONICET

References

Akaike, H. 1974. A new look at the statistical model identification. IEEE Transaction on Automatic Control 19 (6), 716-723.

Arenson, L.U., Pastore, S., Trombotto, D., Bolling, S., Quiroz, M.A., Ochoa, X.L. 2010. Characteristics of two rock glaciers in the dry Argentinean Andes based on initial surface investigations. Proceedings 6th Canadian Permafrost Conference, Calgary, Alberta.

Azócar, G.F., Brenning, A. 2010. Hydrological and Geomorphological Significance of Rock Glaciers in the Dry Andes, Chile (27°-33°S). Permafrost and Periglacial Processes 21, 41-53. https://doi.org/10.1002/ppp.669.

Azócar, G.F., Brenning, A., Bodin, X. 2017. Permafrost distribution modelling in the semi-arid Chilean Andes. The Cryosphere 11, 877-890. https://doi.org/10.5194/tc-11-877-2017.

Balch, E.S. 1900. Glacieres, or freezing caverns. Allen Lane and Scott, Philadelphia.

Barsch, D. 1978. Active rock glaciers as indicators of discontinuous permafrost: an example from the Swiss Alps. Proceedings 3rd International Conference on Permafrost, Ottawa, pp. 349-352.

Barsch, D. 1996. Rock glaciers. Indicators for the present and former geo-ecology in high mountain environment. Springer-Verlag, Heidelberg, 331 pp.

Boeckli, A., Brenning, A., Gruber, S., Noetzli, J. 2012. A statistical approach to modelling permafrost distribution in the European Alps or similar mountain ranges. The Cryosphere 6 (1), 125-140. https://doi.org/10.5194/tc-6-125-2012.

Brenning, A. 2005. Geomorphological, hydrological and climatic significance of rock glaciers in the Andes of central Chile (33-35°S). Permafrost and Periglacial Processes 16 (3), 231-240. https://doi.org/10.1002/ppp.528.

Brenning, A., Trombotto, D. 2006. Logistic regression modeling of rock glacier and glacier distribution: Topographic and climatic control in the semi-arid Andes. Geomorphology 81, 141-154. https://doi.org/10.1016/j.geomorph.2006.04.003.

Brown, J., Christiansen H.H., Ferrians, O.J., Heginbottom, J.A., Melnikov, E.S. 1997. Circum-artic map of permafrost and ground ice conditions. U.S. Geological Survey Circum-Pacific Map Series, CP-45, 1 sheet, scale 1:10 000 000. http://nsidc.org/data/index.html.

Cao, B., Gruber, S., Zhang, T. 2017. REDCAPP (v1.0): Parameterizing valley inversions in air temperature data downscaled from re-analyses. Geoscientific Model Development 10, 2905-2923. https://doi.org/10.5194/gmd-10-2905-2017.

Croce, F., Milana, J.P. 2002. Internal structure and behavior of a rock glacier in the arid Andes of Argentina. Permafrost and Periglacial Processes 13, 289-299. https://doi.org/10.1002/ppp.431.

Delaloye, R., Lambiel, C. 2005. Evidence of winter ascending air circulation throughout talus slopes and rock glaciers situated in the lower belt of alpine discontinuous permafrost (Swiss Alps). Norwegian Journal of Geography 59 (2), 194-203. https://doi.org/10.1080/00291950510020673.

Delaloye, R., Reynard, E., Lambiel, C. 2003. Pergélisol et construction de remonteés mécaniques: l’example des Lapires (Mont-Gelé, Valais), Frost in der Geotechnik. Mitteilungen der Schweizerischen Gesellschaft für Boden- un Felsmechanik, 141, 103-113.

Deluigi, N., Lambiel, C., Kanevski, M. 2017. Data-driven mapping of the potential mountain permafrost distribution. Science of the Total Environment 590-591, 370-380. https://doi.org/10.1016/j.scitotenv.2017.02.041.

Drewes, J., Moreiras, S., Korup, O. 2018. Permafrost activity and atmospheric warming in the Argentinian Andes. Geomorphology 323, 13-24. https://doi.org/10.1016/j.geomorph.2018.09.005.

Ésper Angillieri, Y. 2009. A preliminary inventory of rock glaciers at 30° S latitude, Cordillera Frontal of San Juan, Argentina. Quaternary International 195, 151-157. https://doi.org/10.1016/j.quaint.2008.06.001.

Ésper Angillieri, M.Y. 2017. Permafrost distribution map of San Juan Dry Andes (Argentina) based on rock glacier sites. Journal of South American Earth Sciences 73, 42-49. https://doi.org/10.1016/j.jsames.2016.12.002.

García, A., Ulloa, C., Amigo, G., Milana, J.P. 2017. An inventory of cryospheric landforms in the arid diagonal of South America (high Central Andes, Atacama region, Chile). Quaternary International 438, 4-19. http://dx.doi.org/10.1016/j.quaint.2017.04.033.

Gruber, S. 2012. Derivation and analysis of a high-resolution estimate of global permafrost zonation. The Cryosphere 6 (1), 221-223. https://doi.org/10.5194/tc-6-221-2012.

Gruber, S., Hoelzle, M. 2008. The cooling effect of coarse blocks revisited: a modeling study of a purely conductive mechanism. In: D.L. Kane, K.M. Hinkel (Eds.), Proceedings of the 9th International Conference of Permafrost, Institute of Northern Engineering, Fairbanks, AK, pp. 581-586.

Gruber, S., Haeberli, W. 2009. Mountain permafrost. In: R. Magesin, R. (Ed.), Permafrost soils. Springer, Berlin, 33-34. https://doi.org/10.1007/978-3-540-69371-0_14.

Haeberli, W. 1985. Creep of mountain permafrost: internal structure and flow of alpine rock glaciers. Mitteilungen Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie, ETH Zürich, 77, 1-142.

Haeberli, W., Noetzli, J., Arenson, L., Delaloye, R., Gärtner-Roer, I., Gruber, S., Isaksen, K., Kneisel, C., Krautblatter, M., Phillips, M. 2010. Mountain permafrost: development and challenges of a young research field. Journal of Glaciology 56, 1043-1058. https://doi.org/10.3189/002214311796406121.

Halla, C., Blöthe, J.K., Tapia Baldis, C., Hauck, C., Schrott, L. 2018. Volumetric ice content in active rock glaciers derived from geophysical modelling (Central Andes of Argentina). Book of Abstracts, EUCOP 5, Chamonix Mont-Blanc, pp. 886-887.

Harris, C., Arenson, L., Christiansen, H.H. et al. 2009. Permafrost and climate in Europe: Monitoring and modelling thermal, geomorphological and geotechnical responses. Earth-Science Reviews 92, 117-171. https://doi.org/10.1016/j.earscirev.2008.12.002.

Hoelzle, M., Haeberli, W. 1995. Simulating the effects of mean annual air temperature changes on permafrost distribution and glacier size: An example from the Upper Engadin, Swiss Alps. Annals of Glaciology 21, 399-405. https://doi.org/10.3189/S026030550001613X

Hosmer, D. W. and Lemeshow, S. 2000. Applied logistic regression. John Wiley & Sons, Biosphere Reserves. UNESCO, Paris, pp. 28-39.

Humlum, O. 1996. Origin of rock glaciers: observations from Mellemfjord, Disko Island, central West Greenland. Permafrost and Periglacial Processes 7 (4), 361-380.

IANIGLA, 2017. Inventario nacional de glaciares. CONICET MENDOZA. Url: http://www.glaciaresargentinos.gob.ar (Accessed November 2017).

Isacks, B., Jordan, T.E., Allmendiger, R.W., Ramos, V.A. 1982. La segmentación tectónica de los Andes Centrales y su relación con la Placa de Nazca subductada. V Congreso Latinoamericano de Geología, Actas III, pp. 587-606. Buenos Aires.

Johansen, O. 1975. Thermal conductivity of soils. Ph.D. Thesis, Trondheim, Norway. (CRREL Draft Translations 637, 1977).

Jordan, T.E, Isacks, B.L., Allmendiger, R.W., Brewer, J.A., Ramos, V.A., Ando, C.J. 1983. Andean tectonics related to geometry of subducted Nazca Plate. Geological Society of America, Bulletin 94 (3), 341-361. https://doi.org/10.1130/0016-7606(1983)94<341:ATRTGO>2.0.CO;2.

Juliussen, H., Humlum, O. 2008. Thermal regime of openwork block fields on the mountains Elgåhogna and Sølen, central‐eastern Norway, Permafrost and Periglacial Processes 19, 1-18. https://doi.org/10.1002/ppp.607.

Kleinbaum, D.G., Klein, M. 2010. Logistic regression. A self-learning text. Third edition. Springer, New York, Dordrecht, Heidelberg, London, 702 pp.

Kull, C., Grosjean, M., Veit, H. Modeling Modern and Late Pleistocene Glacio-Climatological Conditions in the North Chilean Andes (29-30°). Climatic Change 52, 359-381. https://doi.org/10.1023/A:1013746917257.

Lliboutry, L. 1998. Glaciers of Wet Andes. In: W.M.J. Ferrigno (Ed.), Satellite image atlas of glaciers of the world. US Government Printing Office, Washington DC, pp. 109-206.

Martini, M.A, Strelin, J.A., Astini, R.A. 2013. Inventario y caracterización morfoclimática de los glaciares de roca en la Cordillera Oriental argentina (entre 22° y 25° S). Revista Mexicana de Ciencias Geológicas 30 (3), 569-581.

Mendoza, M., Villarroel, C.D., Tapia Baldis, C., Forte, A.P., Gianni, R., Krusse, E. 2016. Aspectos hidrológicos del ambiente periglacial en la cuenca del Río Santa Cruz, provincia de San Juan. Actas del IX Congreso Argentino de Hidrogeología, San Fernando del Valle de Catamarca, Argentina, 197- 204.

Marcer, M., Bodin, X., Brenning, A., Schoeneich, P., Charvet, R., Gottardi, F. 2017. Permafrost favorability index: Spatial modeling in the French Alps using rock glacier inventory. Frontiers in Earth Science 5, 1-17. https://doi.org/10.3389/feart.2017.00105.

Marcer, M., Serrano, C., Brenning, A., Bodin, X., Goetz, J., Schoeneich, P. 2019. Evaluating the destabilization susceptibility of active rock glaciers in the French Alps. The Cryosphere 13, 141-155. https://doi.org/10.5194/tc-13-141-2019

Montecinos, A., Aceituno, P. 2003. Seasonality of the ENSO-related rainfall variability in the Central Chile and associated circulation anomalies. Journal of Climate 16, 281-296. https://doi.org/10.1175/1520-0442(2003)016<0281:SOTERR>2.0.CO;2.

Osterkamp, T.E. 2007. Characteristics of the recent warming of permafrost in Alaska. Journal of Geophysical Research-Earth Surface 112, 10 (F02S02). https://doi.org/10.1029/2006JF000578.

Perucca, L.P., Ésper Angillieri, M.Y. 2008. A preliminary inventory of periglacial landforms in the Andes of La Rioja and San Juan, Argentina, at about 28° S. Quaternary International, 190, 171-179. https://doi.org/10.1016/j.quaint.2007.10.007.

Ramos, V.A., Cegarra, M., Lo Forte, G., Comínguez, A. 1997. El frente orogénico en la Sierra de Pedernal (San Juan, Argentina): su migración a través de los depósitos orogénicos. Actas VIII Congreso Geológico Chileno 3, 1709-1713. Antofagasta, Chile.

Riseborough, D., Shiklomanov, N., Etzelmüller, B., Gruber, S., Marchenko, S. 2008. Recent advances in permafrost modelling. Permafrost and Periglacial Processes 19 (2), 137-156. https://doi.org/10.1002/ppp.615.

Ryley, S.J., DeGloria, S.D., Elliot, R. 1999. A terrain ruggedness index that quantifies topographic heterogeneity. Intermountain Journal of Sciences 5, 23-27.

Romanovsky, V.E., Smith, S.L., Christiansen, H.H. 2010. Permafrost thermal state in the Polar Northern Hemisphere during the International Polar Year 2007-2009: A Synthesis. Permafrost and Periglacial Processes 21, 106-116. https://doi.org/10.1002/ppp.689.

Saha, S., Moorthi, H., Pan, X., et al. 2010. NCEP Climate Forecast System Reanalysis (CFSR) 6-hourly Products, January 1979 to December 2010. Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory. https://doi.org/10.5065/D69K487J (Accessed 02 november 2015).

Saito, K., Trombotto Liaudat, D., Yoshikawa, K., Mori, J., Sone, T., Marchenkon, S., Romanovsky, V., Walsh, J., Hendricks, A., Bottegal, E. 2016. Late Quaternary permafrost distributions downscaled for South America: Examinations of GCM-based maps with observations. Permafrost and Periglacial Processes 27, 43-55. https://doi.org/10.1002/ppp.1863.

Sattler, K., Anderson, B., Makintosh, A., Norton, K., de Róiste, M. 2016. Estimating permafrost distribution in the maritime Southern Alps, New Zealand, based on climatic conditions at rock glacier sites. Frontiers in Earth Science 4 (4), 1-17. https://dx.doi.org/10.3389/feart.2016.00004.

Schauwecker, S., Pellicciotti, F., McPhee, J. 2011. Near-surface temperature lapse rates in a mountainous catchment in the Chilean Andes. Proceedings from AGU Fall Meeting, San Francisco, California, USA.

Scherler, M., Schneider, S., Hoelzle, M., Hauck, C. 2014. A two-sided approach to estimate heat transfer processes within the active layer of the Muertèl-Corvatsch rock glacier. Earth Surface Dynamics 2, 141-154. https://doi.org/10.5194/esurf-2-141-2014.

Scholl, K.H. 2002. Geomorphological mapping of the periglacial level in the Semiarid Andes. In: D. Trombotto, D., R. Villalba (Eds.), IANIGLA, 30 años de investigación básica y aplicada en ciencias ambientales, IANIGLA-CONICET, Mendoza, 269 pp.

Schrott, L. 1996. Some geomorphological – hydrological aspects of rock glaciers in the Andes (San Juan, Argentina). Zeitung für Geomorphologie 104, 161-173.

Tapia Baldis, C. 2018. Distribución y características del ambiente periglacial en el extremo oeste del departamento Calingasta, Provincia de San Juan, Argentina. Tesis Doctoral, Universidad Nacional de San Juan (Inédita), San Juan, 390 pp.

Trombotto, D. 1991. Unterschungen zum periglazialesn Formenschatz und zu periglazialen Sedimenten in der “lagunita del Plata”, Mendoza, Argentinien. Heidelberger Geographische Arbeiten 90, 171 pp.

Trombotto, D. 2000. Survey of cryogenic processes, periglacial forms and permafrost conditions in South America. Revista do Instituto Geológico Sao Paulo, 21 (1-2), 33-55.

Trombotto, D. 2002. El ambiente criogénico actual y el paleopermafrost en el extremo austral de América del Sur. In: D. Trombotto, D., R. Villalba (Eds.), IANIGLA, 30 años de investigación básica y aplicada en ciencias ambientales, IANIGLA-CONICET, Mendoza, 269 pp.

Trombotto, D. 2003. Mapping of permafrost and the periglacial environment, Cordón del Plata, Argentina. Proceedings of the 8th International Conference on Permafrost. Zürich, pp. 161-162.

Trombotto, D., Borzotta, E. 2009. Indicators of present global warming through changes in active layer-thickness, estimation of thermal diffusivity and geomorphological observations in the Morenas Coloradas rockglacier Central Andes of Mendoza, Argentina. Cold Regions Science and Technology 55, 321- 330. https://doi.org/10.1016/j.coldregions.2008.08.009.

Trombotto, D., Buk, E., Hernández J. 1997. Monitoring of mountain permafrost in the Central Andes, Cordón del Plata, Mendoza, Argentina. Permafrost and Periglacial Processes 8, 123-129. https://doi.org/10.1002/(SICI)1099-1530(199701)8:1<123::AID-PPP242>3.0.CO;2-M.

Trombotto, D., Buk, E., Hernández, J. 1999. Rock glaciers in the southern Central Andes (approx. 33° - 34° S), Cordillera Frontal, Mendoza, Argentina. Bamberger Geographische Schriften 19, 145-173.

Trombotto Liaudat, D., Wainstein, P., Arenson, L.U. 2014. Guía Terminológica de la Geocriología Sudamericana, Vazquez Mazzini Editores, Mendoza, 127 pp.

Unidad de Geocriología, 2009-2014. Monitoreo geocriológico valle del Pachón y zonas cercanas, San Juan, Argentina. (Unpublished Technical Report).

Van Everdingen, R. 1998. Multi-language Glossary of Permafrost and Related Ground-Ice Terms, National Snow and Ice Data Center. World Data Center for Glaciology, Boulder, Colorado.

Villarroel, C.D., Tamburini Beliveau, G., Forte, A.P., Monserrat, O., Morvillo, M. 2018. DInSAR for a Regional Inventory of Active Rock Glaciers in the Dry Andes Mountains of Argentina and Chile with Sentinel-1 Data. Remote Sensing 10 (10), 1588. https://doi.org/10.3390/rs10101588.

Wicky, J. and Hauck, C. 2017. Numerical modelling of convective heat transport by air flow in permafrost talus slopes. The Cryosphere 11, 1311-1325. https://doi.org/10.5194/tc-11-1311-2017.

Zech, J., Terrizzano, C., García-Morabito, E., Veit, H., Zech, R. 2017. Timing and extent of late Pleistocene glaciation in the arid Central Andes of Argentina and Chile (22°-41°S). Cuadernos de Investigación Geográfica / Geographical Research Letters 43 (2), 697-718. http://doi.org/10.18172/cig.3235.

Zhao, S.P., Nan, Z.T., Huang, Y.B., Zhao, L. 2017. The Application and evaluation of simple permafrost distribution models on the Qinhai-Tibet Plateau. Permafrost and Periglacial Processes 28 (2), 391-404. https://doi.org/10.1002/ppp.1939.

Zou, D., Zhao, L, Sheng, Y. et al. 2017. A new map of permafrost distribution on the Tibetan Plateau. The Cryosphere 11, 2527-2542. https://doi.org/10.5194/tc-11-2527-2017.

Downloads

Published

24-06-2020

How to Cite

1.
Tapia-Baldis C, Trombotto-Liaudat D. Permafrost model in coarse-blocky deposits for the Dry Andes, Argentina (28°-33° S). CIG [Internet]. 2020 Jun. 24 [cited 2024 Apr. 19];46(1):33-58. Available from: https://publicaciones.unirioja.es/ojs/index.php/cig/article/view/3802

Issue

Section

Articles