Recent evolution of the active layer in the Morenas Coloradas rock glacier, Central Andes, Mendoza, Argentina and its relation with kinematics

Authors

  • D. Trombotto-Liaudat IANIGLA (Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales), CCT Conicet Mendoza
  • E. Bottegal IANIGLA (Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales), CCT Conicet Mendoza

DOI:

https://doi.org/10.18172/cig.3946

Keywords:

rock glacier, permafrost, active layer, kinematics, Climatic variability

Abstract

Between 2008 and 2016 the Morenas Coloradas rock glacier in the Central Andes of Mendoza showed different thermal characteristics at three monitoring sites in active layers, Balcón I (3560 m a.s.l.), Balcón I Superior (3590 m a.s.l.) and Balcón II (3770 m a.s.l.). These can be explained by various factors, not only external ones related to the climatic variability and altitude, but also by thermal-hydrological factors that destabilized its internal cryogenic structure. At Balcón I, situated on a sloping terrace of the rock glacier, a transient layer even showed definitive signs of permafrost degradation in the recent years, transforming it in a thermal talik. Long-term studies of surficial boreholes showed that the 0°C isotherm is higher in altitude than the active front of the rock glacier and it has risen 40 m in altitude since the 1990s. As consequence of the thermal changes of the active layer, the rock glacier shows abrupt movements, particularly in its terminal part. Thus geodesic measurements to obtain different speeds and directions were made. At the monitoring area of Balcón I Superior, which lies on a superimposed lobe, the geodesic measurement points revealed significant kinematic activity in the period May 2015 – February 2016, when the largest displacement was approximately 2 m to the South, developing an advance of the front over Balcón I. At Balcón II however, the points moved much less, in the order of 0.30 m yr-1. The present studies suggest that the largest cryogenic sedimentary movements are superficial, that is to say, they are located in the active layer and the supra-permafrost and are due to internal movements produced by melting water coming from the top of the cryoform, and from both sides of the upper basin of the valley.

Downloads

Download data is not yet available.

References

Ahumada, A.L., Ibáñez Palacios, G.P., Carilla, J., Toledo, M.A., Páez, S.V. 2015. Observaciones geomorfológicas en glaciares de escombros de los Andes tropicales de Argentina. Acta Lilloana 27, 2, 63-76. https://doi.org/10.30550/j.agl.

Barsch, D. 1977. Alpiner permafrost: ein Beitrag zur Verbreitung, zum Charakter und zur Ökologie am Beispiel der Schweizer Alpen. In: H. Poser (Ed.), Formen, Formengesellschaften und Untergrenzen in den heutigen periglazialen Höhenstufen der Hochgebirge Europas und Afrikas zwischen Arktis and Äquator. Abhandlungen des Akademie Wissenchaften in Göttingen. Mathematisch-Physikalische Klasse Folge 3, 118-141. https://doi.org/10.3112/erdkunde.1976.04.07.

Barsch, D. 1996. Rockglaciers. Springer, Berlin, 331 pp. https://doi.org/10.1007/978-3642-80093-1.

Barsch, D., King, L. 1989. Origin and geoelectrical resistivity of rockglaciers in semi-arid subtropical mountains (Andes de Mendoza, Argentina). Zeitschrift für Geomorphologie 33 (2), 151-163.

Bennett, R.A., Hreinsdóttir, S., Velasco, M.S., Fay, N.P. 2007. GPS constraints on vertical crustal motion in the northern Basin and Range, Geophyical. Research Letters 34, L22319. https://doi.org/10.1029/2007GL031515.

Blewitt, G., Lavallée, D. 2002. Effect of annual signals on geodetic velocity. Journal of Geophysical Research: Solid Earth 107 (B7). https://doi.org/10.1029/2001JB000570.

Bodin, X., Malet, E., Vernier, F., Marsy, G., Hadri, H., Trombotto, D. 2017. L’apport d’appareils photo reflex autonomes pour le suivi quasi-continu de la dynamique des glaciers rocheux. exemples dans les Alpes et dans les Andes. Université de Savoie and CNRS, Monitoring en Milieux Naturels, Collection EDYTEM 19, 47-53.

Bodin, X., Trombotto, D. 2015. Evaluation of a terrestrial photogrammetry method for the study of high mountain dynamics: Quebrada del Medio rock glacier, Mendoza, Argentina. In: J. Jasiewicz, Z. Zwoliński, H. Mitasova, T. Hengl (Eds), Geomorphometry for Geosciences. Adam Mickiewicz University in Poznań, pp. 189-291.

Buk, E. 1983. Glaciares de escombros y su significación hidrológica. Acta Geocriogénica 1, 22-38.

Burn, C.R., Smith, C.A.S. 1988. Observations of the “thermal offset” in near-surface mean annual ground temperatures at several sites near Mayo, Yukon Territory, Canada. Arctic 41 (2), 99-104. https://doi.org/10.14430/arctic1700.

Caminos, R., 1979. Cordillera Frontal. Segundo Simposio de Geología Regional Argentina, Córdoba, pp. 397-453.

Catalano, L. 1926. Contribución al conocimiento de los fenómenos geofísicos atmosféricos. Buenos Aires: Dirección General de Minas, Geología e Hidrología, Publicación 24, 78 pp.

Corte, A.E. 1976a. Rock Glaciers. Biuletyn Peryglacjalny 26, 175-197.

Corte, A.E. 1976b. The hydrological significance of rock glaciers. Journal of Glaciology 17, 157-158. https://doi.org/10.1017/S0022143000030859.

Corte, A. 1997. Geocriología. El Frío en la Tierra. Ediciones Culturales de Mendoza, Fundar Editorial Gráfica, 398 pp.

Corte, A., Trombotto, D. 1984. Quartz grain surface textures in laboratory experiments and in field conditions of rock glaciers. Microscopía Electrónica y Biología Celular 8 (1), 71-79.

Delaloye, R., Perrouchoud, E., Avian, M., Kaufmann, V., Bodin, X., Hausmann, H., Ikeda, I., Kääb, A., Kellerer-Pirklbauer, A., Krainer, K., Lambiel, Ch., Mihajlovic, D., Staub, B., Roer, I., Thibert, E. 2008. Recent interannual variations of rock glacier creep in the European Alps. Proceedings of the 9th International Conference on Permafrost, Fairbanks, USA, pp. 343-348.

Giardino, J.R., Shroeder, Jr., Vitek, J. 1987. Rock Glaciers. Allen & Unwin, Winchester, 355 pp.

Delaloye, R., Lambiel, C., Roer, I. 2010. Overview of rock glacier kinematics research in the Swiss Alps. Seasonal rhythm, interannual variations and trends over several decades. Geographica Helvetica 65: 135-145. https://doi.org/10.5167/uzh-38562.

Götz, J., Keuschnig, M., Hartmeyer, I., Trombotto, D., Schrott, L. 2008. Geophysical prospection on a complex rock glacier system - Morenas Coloradas, revisited (Cordón del Plata, Mendoza, Argentina. In: L. Schrott, J. Otto (Eds.), 3 Mitteleuropäischen Geomorphologietagung. Tagungsband, Salzburg, p. 80.

Haeberli, W. 1985. Creep of Mountain Permafrost. Mitteilungen der Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie 77, 142 pp.

Haeberli, W., Huder, J., Keusen, H.R., Pika, J., Röthlisberger, H. 1988. Core drilling through rock glacier-permafrost. Vth-International Conference on Permafrost, Trondheim, Proceedings, V 1, Norway, pp. 937-941.

Halla, Ch., Blöthe, J., Trombotto Liaudat, D., Schrott, L. 2018. Permafrost in den argentinischen Anden – ein bedeutender Wasserspeicher. Geographische Rundschau 11, 36-40.

Hernández, J. 2002. Perforadora a percusión para suelos detríticos criogénicos. In: D. Trombotto, R. Villalba (Eds.), IANIGLA, 1973-2003: 30 años de Investigación Básica y Aplicada en Ciencias Ambientales, Editorial ZETA, Mendoza, pp. 71-72.

Ikeda, A., Matsuoka, N., Kääb, A. 2008. Fast deformation of perennially frozen debris in a warm rock-glacier in the Swiss Alps: an effect of liquid water. Journal of Geophysical Research 113, F01021. https://doi.org/10.1029/2007JF000859.

International Permafrost Association (IPA) 1998. Multilanguage Glossary of Permafrost and Related Ground-Ice Terms R.O. Van Everdingen (Ed.). The Arctic Institute of North America, The University of Calgary, Alberta.

Jones, P.D., Moberg, A. 2003. Hemispheric and large-scale surface air temperature variations: an extensive revision and an update to 2001. Journal of Climate 16, 206-223. https://doi.org/10.1175/152-0442(2003)016<02016:HALSSA>2.0.CO;2.

Kääb, A., Frauenfelder, R., Roer, I. 2007. On the response of rock glacier creep to surrface temperature increse. Global and Planetary Change 56, 172-187. https://doi.org/10.1016/j.gloplacha.2006.07.005.

Lambiel, C. 2011. Le glacier rocheux déstabilisé de Tsaté-Moiry: caractéristiques morphologiques et vítese de déplacement. In: C. Lambiel, E. Reynard, C Scapozza, C. (Eds), La géomorphologie alpine: entre patrimoine et contrainte. Actes du colloque de la Société Suisse de Géomorphologie. Géovisions 36, 211-224. http://www.unil.ch/igul/page84172.html [23 May 2013].

Lambiel, C., Delaloye, R. 2004. Contribution of real time kinematic GPS in the study of creeping mountain permafrost: examples from the Western Swiss Alps. Permafrost and periglacial Processes 15 (3), 229-241. https://doi.org/10.1002/ppp.496.

Little, J.D., Sandall, H., Walegur, M.T., Nelson, F.E. 2003. Application of differential global positioning systems to monitor frost heave and thaw settlement in tundra environments. Permafrost and Periglacial Processes 14 (4), 349-357. https://doi.org/10.1002/ppp.466.

Lliboutry, L., Corte, A.E. 1998. Glaciers of South America-Glaciers of Chile and Argentina. In: R. Williams, J. Ferrigno (Eds.), Satellite Image Atlas of Glaciers of the World: South America. United States Geological Survey, Washington, pp. 109-206. https://doi.org/10.3133/pp1386J.

Martini, M.A., Strelin, J.A., Astini, R.A. 2014. Monitoreo térmico y medición del flujo superficial del glaciar de escombros Varas, Sierra de Zenta, Cordillera Oriental (noroeste argentino). In: Actas XIX Congreso Geológico Argentino, Córdoba, Argentina.

Noetzli, J., Vonder Mühl, D. (Eds.). 2010. Permafrost in Switzerland. Glaciologial report (Permafrost) Nr.8/9, University of Zürich, SCNAT, 68 pp.

Rosenblüth, B., Fuenzalida, H.A., Aceituno, P. 1997. Recent temperature variations in southern South America. International Journal of Climatology 17, 67-85. https://doi.org/10.1002/(SICI)1097-0088(199701)17:1<67::AID-JOC120>3.0.CO;2-G.

Scapozza, C., Lambiel, Ch., Bozzini, C., Mari, S., Conedera, M. 2014. Assessing the rock glacier kinematics on three different timescales: a case study from the southern Swiss Alps. Earth Surface Processes and Landforms 39, 2056-2069. https://doi.org/10.1002/esp.3599.

Smith, S., Brown, J. 2009. Permafrost and seasonally frozen ground. Global Terrestrial Observing System, Rome, GTOS Secretariat, NRL, FAO, 22 pp.

Trombotto, D. 1985. Análisis preliminar de estructuras geocriogénicas mediante texturas de grano de cuarzo con la aplicación del microscopio electrónico. Revista de la Asociación Geológica Argentina 11 (3-4), 184-201.

Trombotto, D. 1991. Untersuchungen zum periglazialen Formenschatz und zu periglazialen Sedimenten in der “Lagunita del Plata”, Mendoza, Argentinien. Heidelberger Geographische Arbeiten 90, 171 pp.

Trombotto, D. 2003. Mapping of permafrost and the periglacial environment, Cordón del Plata, Argentina. In: W. Haeberli, D. Brandová (Eds.), 8th International Conference on Permafrost. Extended Abstracts, Reporting Current Research and New Information, Zürich, pp. 161-162.

Trombotto, D., Buk, E., Hernández, J. 1997. Monitoring of Mountain Permafrost in the Central Andes, Argentina. Permafrost and Periglacial Processes 8, 123-129. https://doi.org/10.1002(SICI)1099-1530(199701)8:1<123::AID-PPP242>3.3.CO;2-D.

Trombotto, D., Buk, E., Hernández, J. 1999. Rock glaciers in the Southern Central Andes (appr. 33 S.L.), Mendoza, Argentina: a review. Bamberger Geographische Schriften 19, 145-173.

Trombotto, D., Ahumada, A.L. 2005. Los Fenómenos Periglaciales. Identificación, Determinación y Aplicación. Opera Lilloana 45 Fundación “Miguel Lillo”, San Miguel de Tucumán, 131 pp.

Trombotto Liaudat, D., Blöthe, J.H., Keuschnig, M., Hernández, J., Götz, J., Hartmeyer, I., Schrott, L. 2008. Detection of permafrost aggradation at Balcón I, Morenas Coloradas Rockglacier, Mendoza, Argentina. In: L. Schrott, J. Otto (Eds.), 3 Mitteleuropäischen Geomorphologietagung. Salzburg, p. 81.

Trombotto, D., Borzotta, E. 2009. Indicators of present global warming through changes in active layer-thickness, estimation of thermal difussivity and geomorphological observations in the Morenas Coloradas rock glacier, Central Andes of Mendoza, Dry Andes, Argentina. Cold Regions Science and Technology 55, 321-330. https://doi.org/10.1016/j.coldregions.2008.08.009.

Trombotto Liaudat, D., Wainstein, P., Arenson, L.U. 2014. Terminological guide of the South American geocryology. Vázquez Mazzini Editores, Buenos Aires, 127 pp.

Trombotto Liaudat, D., Sileo, N., Dapeña, C. Submitted. Advances in the periglacial hydrology of the Stepanek rock glacier, Andes Centrales, Mendoza, Argentina. Permafrost and Periglacial Processes. Submitted.

United Nations Environment Programme (UNEP). 2007. Global Outlook for Ice and Snow. Birkenland Trykkeri A/S, Birkenland, Norway.

Van Everdingen, Robert O. (Eds.). 1998. Multilanguage Glossary of Permafrost and Related Ground-Ice Terms. International Permafrost Association, The Arctic Institute of North America, The University of Calgary, Alberta, 207 pp.

Wahrhaftig, C., Cox, A. 1959. Rock glaciers in the Alaska Range. Bulletin of the Geological Society of America 70, 383-436. https://doi.org/10.1130/0016-7606(1959)70[383:RGITAR]2.0.CO;2.

Downloads

Published

24-06-2020

How to Cite

1.
Trombotto-Liaudat D, Bottegal E. Recent evolution of the active layer in the Morenas Coloradas rock glacier, Central Andes, Mendoza, Argentina and its relation with kinematics. CIG [Internet]. 2020 Jun. 24 [cited 2024 Apr. 19];46(1):159-85. Available from: https://publicaciones.unirioja.es/ojs/index.php/cig/article/view/3946

Issue

Section

Articles