Temporal variations of trends in the Central England Temperature series


  • J.C. González-Hidalgo Department of Geography, Zaragoza University, Spain
  • D. Peña-Angulo Instituto Pirenaico de Ecología, Consejo Superior de Investigaciones Científicas (IPE-CSIC)
  • S. Beguería Estación Experimental Aula Dei, Consejo Superior de Investigaciones Científicas (EEAD-CSIC)




Central England Temperature, climatic trend, climatic variability, signal/noise


Variations in trend rates of annual values of the Central England Temperature series (CET) over the period1659-2017 were analysed using moving windows of different length, to identify the minimum period in which the trend expresses a climate signal not hidden by the noise produced by natural variability. Trend rates exhibit high variability and irregular shifting from positive to negative values unless very long window lengths (of 100 years or more) are used. In general, as the duration of the length of the temporal window analysed increases, the absolute range of the trend rates decreases and the signal-to-noise (S/N) ratio increases. The relationship between the S/N ratio and the window length also depended on the total length of the series, so high S/N values are achieved faster when shorter time series are considered. This prevents suggesting a minimum window length for undertaking trend analyses.

A comparison between CET and the average continental series in the Berkeley Earth Surface Temperature (BEST) database in their common period (1753-2017) repeats the patterns described for 1659-2017, although the average values of the rates, ranges and the "threshold period" in years change, and are more variable in CET than in BEST.

Analysis of both series suggests that the recent warming started early and can be linked to the recovery of temperatures after the Little Ice Age. This process has characterised by progressively increasing trend rates, but also includes periods of deceleration or even negative trends spanning less than 50 years. The behaviour of the two long-term temperature records analysed agrees with a long-term persistence (LTP) process. We estimated the Hurst exponent of the CET series to be around 0.72 and 0.8, which reinforces the LTP hypothesis. This implies that the currently widespread statistical framework assuming a stationary, short-memory process in which departures from the norm can be easily assessed by monotonic trend analysis should not be accepted for long climatic series. In brief, relevant questions relative to the recent evolution of temperatures such as the distinction between natural variability and departures from stationarity; attribution of the causes of variability at different time scales; determination of the shortest window length to detect a trend; and other similar ones have still not been answered and may require adoption of an alternative analytical framework.


Download data is not yet available.


Allen, M.R., Dube, O.P., Solecki, W. Aragón-Durand, F., Cramer, W., Humphreys, S., Kainuma, M., Kala, J., Mahowald, N., Mulugetta, Y., Perez, R., Wairiu, M., Zickfeld, K. 2018. Framing and Context. In: Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty (Masson-Delmotte, V. et al., Eds). In Press.

Baliunas, S., Frick, P., Sokoloff, D., Soon, W. 1997. Time scales and trends in the central England temperature data (1659-1990): A wavelet analysis. Geophysical Research Letters 24, 1351-1354. https://doi.org/10.1029/97GL01184.

Benner, T.C. 1999. Central England temperatures: Long-term variability and teleconnections. International Journal of Climatology 19, 391-403. https://doi.org/10.1002.((SICI)1097-0088(19990330)19:4<391::AID-JOC365>3.0.CO;2-Z.

Cohn, T.A., Lins, H.F. 2005. Nature’s style: naturally trendy. Geophysical Research Letters 32: L23402. https://doi.org/10.1029/2005GL024476.

Cohen, J.L., Furtado, J.C., Barlow, M., Alexeev, V.A., Cherry, J.E. 2012. Asymmetric seasonal temperature trends. Geophysical Research Letters 39, L04705. https://doi.org/10.1029/2011GL050582.

Croxton, P.J., Huber, K., Collinson, N., Sparks, T.H. 2006. How well do the Central England Temperature and the England and Wales Precipitation Series represent the climate of the UK? International Journal of Climatology 26, 2287-2292. https://doi.org/10.1002/joc.1378.

de Souza, J., Duarte-Queiros, S.M., Grimm, A.M. 2013. Components of multifractality in the central England temperature anomaly series. Chaos 23, 023130. https://doi.org/10.1063/1.4811546.

Easterling, D, Wehner, M.F. 2009. Is the climate warming or cooling? Geophysical Research Letter 36, L08706. https://doi.org/0.1029/2009GL037810.

Foster, G., Rahmstorf, S. 2011. Global temperature evolution 1979-2010. Environmental Research Letter 6, 044022. https://doi.org/10.1088/1748-9327/6/4/044022.

Fyfe, J.C., Gillett, N.P., Zwiers, F.W. 2013. Overestimated global warming over the past 20 years. Nature Climate Change 3, 767-769. https://doi.org/10.1038/nclimate1972.

Fyfe, J.C., Meehl, G.A., England, M.H., Mann, M.A., Sante, B.D., Flato, G.M., Hawkins, E., Gillett, N.P., Xie, S.P., Kosaka, Y., Swart, N.C. 2016. Making sense of the early 2000s warming slowdown. Nature Climate Change 6, 224-228. https://doi.org/10.1038/nclimate2938.

Gil-Alana, L.A. 2015. Linear and segmented trends in sea surface temperature data. Journal of Applied Statistics 42, 1531-1546. https://doi.org/10.1080/2664763.2014.1001328.

González-Hidalgo, J.C., Peña-Angulo, D., Brunetti, M., Cortesi, C. 2016. Recent trend in temperature evolution in Spanish mainland (1951-2010): from warming to hiatus. International Journal of Climatology 36, 2405-2416. https://doi.org/10.1002/joc.4519.

Gruzdev, A., Bezberkhnii, V. 2019. Analysis of relation of Central England surface air temperature to the 11-year solar cycle. 24th International Symposium on Atmospheric and Ocean Optics - Atmospheric Physics, Tomsk, RUSSIA

Harvey, D.I., Mills, T.C. 2003. Modelling trends in central England temperature. Journal of Forecasting 22, 35-47. https://doi.org/10.1002/for.857.

Hurst, H.E. 1951. Long-term storage capacity of reservoirs. Transactions of the American Society of Civil Engineers 116, 770-808.

Karl, T.R., Arguez, A., Huang, B., Lawrimore, J.H., McMahon, J.R., Menne, M.J., Peterson, T.C., Vose, R.S., Zhang, H.M. 2015. Possible artifacts of data biases in the recent global surface warming hiatus. Science 348, 1469-1472. https://doi.org/10.1126/science.aaa5632.

Karoly, D.J., Stott, P.A. 2006. Anthropogenic warming of central England temperature. Atmospheric Sciences Letters 7, 81-85. https://doi.org/10.1002/asl.136.

Kaufmann, R.K., Kauppi, H., Mann, M.L., Stock, J.H. 2011. Reconciling anthropogenic climate change with observed temperature 1998-2008. Proceedings of the National Academy of Sciences 108, 11790-11793. https://doi.org/10.1073/pnas.1102467108.

King, A., van Oldenborgh, G.J., Karoly, D.J. Lewis, S.C., Cullen, H. 2015. Attribution of the record high Central England temperature of 2014 to anthropogenic influences. Environmental Research Letter 10, 054002. https://doi.org/10.1088/1748-9326/10/5/054002.

Lennartz, S., Bunde, A. 2009. Trend evaluation in records with long term memory: Application to global warming. Geophysical Research Letters 36, L16706, https://doi.org/10.1029/2009GL039516.

Lewis, N., Curry, J.A. 2015. The implications for climate sensitivity of AR5 forcing and heat uptake estimates. Climate Dynamic 45, 1009-1023. https://doi.org/10.1007/s00382-014-2342-y.

Li, L., Zha, Y. 2019. Satellite-based regional warming hiatus in China and its implication. Science of Total Environment 648, 1394-1402. https://doi.org/10.1016/j.scitotenv.2018.08.233.

Liebmann, B., Dole, R.M., Jones, C., Bladé, I., Allured, D. 2010. Influence of choice of time on global surface temperature trend estimated. Bulletin of the American Meteorological Society 91, 1485-149. https://doi.org/10.1175/2010BAMS3030.1.

Lloyd, P.J. 2015. An estimate of the centennial variability of global temperatures. Energy & Environment 26, 417-424. https://doi.org/10.1260/0958-305X.26.3.417.

Loehle, C. 2009. Trend analysis of satellite global temperature data. Energy and Environment 20, 1087-1098. https://doi.org/10.1260/095830509789876808.

Lüdecke, H.J., Link, R., Ewert, F.K. 2011. How natural is the recent centennial warming? An Analysis of 2249 surface temperature records. Journal of Modern Physics 22, 1139-1159. https://doi.org/10.1142/SO1291831111016798.

Manley, G. 1953. The mean temperature of Central England, 1698 to 1952. Quarterly Journal of the Royal Meteorological Society 79, 242-261. https://doi.org/10.1002/qj.49707934006.

Manley, G. 1974. Central England temperatures: monthly means 1659 to 1973. Quarterly Journal of the Royal Meteorological Society 100, 389-405. https://doi.org/10.1002/qj.49710042511.

Markonis, Y., Koutsoyiannis, D. 2013. Climatic variability over time scales spanning nine orders of magnitude: Connecting Milankovitch cycles with Hurst–Kolmogorov dynamics. Surveys in Geophysics 34, 181-207. https://doi.org/10.1007/s10712-012-9208-9.

McKitrick, R.R. 2014. HAC-robust measurement of the duration of a trendless subsample in a Global Climate Time Series. Open Journal of Statistics 4, 527-535. https://doi.org/10.4236/ojs.2014.47050.

Medhaug, I., Stolpe, M.B., Fischer, E.M., Knutti, R. 2017. Reconciling controversies about the ‘global warming hiatus’. Nature 545, 41-47. https://doi.org/10.1038/nature22315.

Meehl, G.A. 2015. Decadal climate variability and the early-2000s hiatus. US Clivar Variations 13, 1-6.

Münch, T., Laepple, T. 2018. What climate signal is contained in decadal- to centennial-scale isotope variations from Antarctic ice cores? Climate of the past 14, 2053-2070. https://doi.org/10.5194/cp-14-2053-2018.

Parker, D.E. 2010. Uncertainties in early Central England temperatures. International Journal of Climatology 30, 1105-1113. https://doi.org/10.1002/joc.1967.

Parker, D.E., Horton, E.B. 2005. Uncertainties in Central England Temperature 1878-2003 and some improvements to the maximum and minimum series. International Journal of Climatology 25, 1173-1188. https://doi.org/10.1002/joc.1190.

Parker, D.E., Legg, T.P., Folland, C.K. 1992. A new daily Central England Temperature Series, 1772-1991. International Journal of Climatology 12, 317-342. https://doi.org/10.1002/joc.3370120402.

Plaut, G., Ghil, M., Vautard, R. 1995. Interannual and interdecadal variability in 335 years of CET. Science 268, 710-713. https://doi.org/10.1126/science.268.5211.710.

Proietti, T., Hillebrand, E. 2017. Seasonal changes in central England temperatures. Journal of the Royal Statistical Society, Series A-Statistics in Society 180, 769-791. https://doi.org/10.2139/ssrn.2618452.

Rohde, R., Muller, R.A., Jacobsen, R., Muller, E., Perimutter, S., Rosenfeld, A., Wurtele, J., Groom, D., Wickham, C. 2013. A New Estimate of the Average Earth Surface Land Temperature Spanning 1753 to 2011. Geoinformatics & Geostatistics: An Overview 1, 1. https://doi.org/10.4172/2327-4581.1000101.

Rapp, D. 2014. Assessing Climate Change. Springer, 3ª ed., 816 pp.

Robinson, P.M. 1994. Semiparametric analysis of long-memory time series, Annals of Statistics 22, 515-539.

Santer, B.D., Mears, C., Doutriaux, C., Caldwell, P., Gleckler, P.J., Wigley, T.M.L., Solomon, S., Gillett, N.P., Ivanova, D., Karl, T.R., Lanzante, J.R., Meehl, G.A., Stott, P.A., Taylor, K.E., Thorne, P.W., Wehner, M.F., Wentz, F.J. 2011. Separating signal and noise in atmospheric temperature changes: the importance of timescales. Journal of Geophysical Research 116, D22105. https://doi.org/10.1029/2011JD016263.

Schmidt, G.A., Shindell, D.T., Tsigaridis, K. 2014. Reconciling warming trends. Nature Geoscience 7, 158-160. https://doi.org/10.1038/ngeo2105.

Sen, P.K.1968. Estimates of the regression coefficient based on Kendall's tau. Journal of the American Statistical Association 63, 1379-1389. https://doi.org/10.2307/2285891.

Stockwell, D.R. 2009. Recent climate observations: disagreement with projections. Energy & Environment 20, 595-596. https://doi.org/10.1260/095830509788707347.

Sun, X., Ren, G., Xu, W., Li, Q., Ren, Y. 2017. Global land Surface air temperature change based on the new CMA GLSAT data set. Science Bulletin 62, 236-238.

Trenberth, K.E., Fasullo, J.T., Branstator, G., Phillips, A.S. 2014. Seasonal aspects of the recent pause in surface warming. Nature Climate Change 4, 911-916. https://doi.org/10.1038/nclimate2341.

Tung, K., Chen, X. 2018. Understanding the recent global surface warming slowdown: a review. Climate 6, 82. https://doi.org/10.3390/cli6040082.

Weron, R. 2002, Estimating long range dependence: finite sample properties and confidence intervals. Physica A: Statistical Mechanics and its Applications 312, 285-299. https://doi.org/10.1016/S0378-4371(02)00961-5.

Yue, S., Pilon, P., Phinney, B., Cavadias, G. 2002. The influence of autocorrelation on the ability to detect trend in hydrological series. Hydrological Processes 16: 1807-1829. https://doi.org/10.1002/hyp.1095.

Zorita, E., Stocker, T.F., von Storch, H. 2008. How unusual is the recent series of warm years? Geophysical Research Letters 35, L24706. https://doi.org/10.1029/2008GL036228.




How to Cite

González-Hidalgo J, Peña-Angulo D, Beguería S. Temporal variations of trends in the Central England Temperature series. CIG [Internet]. 2020 Sep. 15 [cited 2023 Sep. 22];46(2):345-69. Available from: https://publicaciones.unirioja.es/ojs/index.php/cig/article/view/4377