Structural health assessment of Puente del Inca natural monument using the integration of instruments and technologies

Authors

  • E. Lannutti Instituto argentino de Nivología, Glaciología y Ciencias Ambientales, CONICET-MENDOZA
  • M.G. Lenzano Instituto argentino de Nivología, Glaciología y Ciencias Ambientales, CONICET-MENDOZA
  • J. Barón Instituto de Estudios del Ambiente y Recursos Naturales (IDEARN), Universidad Nacional de Cuyo, Mendoza, Argentina
  • S. Moragues Instituto argentino de Nivología, Glaciología y Ciencias Ambientales, CONICET-MENDOZA
  • L. Lenzano Instituto argentino de Nivología, Glaciología y Ciencias Ambientales, CONICET-MENDOZA

DOI:

https://doi.org/10.18172/cig.4390

Keywords:

Natural bridge, Puente del Inca, geobiological system, computational structural modeling

Abstract

Puente del Inca is a natural monument standing over the Cuevas river in Mendoza, Argentina. The bridge currently exhibits structural deterioration due to natural and anthropic factors. This article seeks to offer a contribution to the conservation and restoration works of Puente del Inca by integrating instruments and technologies that allow the assessment of the health state of the natural bridge. The study relied on visual inspection, accretion-erosion rate measurements, hydrothermal flow characterization, ground-penetrating radar, soil dielectric sensor, Global Navigation Satellite System, laboratory testing, Structure from Motion, the Finite Element Method and ambient vibration testing. The results show that the morphology and health of the natural bridge depend on the dynamic balance between the erosion and the geobiological system intervening in the formation of the travertine constituting the natural bridge. The computational structural modeling demonstrates that there is a controversy between the benefit of irrigating the geological formation with thermal water and the loss of stability of the bridge under saturation conditions. Nevertheless, a continuous monitoring and an efficient administration of thermal water may ensure the deceleration of most of the erosive processes as well as the improvement of the geobiological system health.

Downloads

Download data is not yet available.

References

Aguirre Urreta, M.B., Ramos, V.A. 1996. Áreas de interés. In: V.F.A. Ramos (Ed.) Geología de la región del Aconcagua. Anales de la Dirección Nacional del Servicio Geológico, Subsecretaría de Minería 24 (15), Buenos Aires, pp. 471-480.

Ariza, G.F. 2012. Calibración del modelo numérico existente de una edificación de valor histórico mediante mediciones de vibración ambiental. Caso de estudio: templo de San Francisco de Asís de Bucaramanga. Universidad Industrial de Santander–UIS. Bucaramanga, Santander, Colombia, pp. 12-100.

Bathe, K.J. 2008. Finite element method. John Wiley & Sons, Inc.

Bayari, C.S. 2002. A rare landform: Yerköprü travertine bridges in the Taurids Karst Range, Turkey. Earth Surface Processes and Landforms 27 (6), 577-590. https://doi.org/10.1002/esp.337.

Bayari, C.S., Kurttaş, T. 1997. Algae: An important agent in deposition of karstic travertines: Observations on natural-bridge Yerköprü Travertines, Aladağlar, Eastern Taurids, Turkey. Karst Waters & Environmental Impacts, 269-279.

Biskup, K., Lorenzo, H., Arias, P. 2005. Aplicabilidad del radar de subsuelo para el estudio de la zona no saturada del suelo: ejemplos en ambientes arenosos costeros. In: VII Jornadas de Investigación en la Zona No Saturada del Suelo: ZNS'05. A Coruña, España. Servizo de Publicacións, pp. 197-204.

Carson, J.S. 2002. Model verification and validation. Simulation Conference. IEEE Proceedings of the Winter 1, pp. 52-58.

Cheng, P., John, W., Zheng, W. 2002. Large structure health dynamic monitoring using GPS technology. In FIG XXII International Congress, Washington, DC USA.

Chen X., Liu Y. 2014. Finite element modeling and simulation with ANSYS Workbench. CRC Press.

Cignoni, P., Callieri, M., Corsini, M., Dellepiane, M., Ganovelli, F., Ranzuglia, G. 2008. Meshlab: An open-source mesh processing tool. In: Eurographics Italian Chapter Conference, pp. 129-136.

Cole, H.A. 1968. On-the-line analysis of random vibrations. AIAA Paper 68, 288 pp.

Cole, H.A. 1973. On-line failure detection and damping measurements of aerospace structures by random decrement signature. NASA CR-2205.

Cornejo, L. 2008. El sitio inka Puente de Tierra (Alto río Maipo, Chile) y la frontera sur del Tawantinsuyu. Revista Clava 7, 73-84.

Dach, R., Hugentobler, U., Fridez, P., Meindl, M. 2007. Bernese GPS software version 5.0. Astronomical Institute, University of Bern.

Darwin, C. 1838. Journal of researches into the natural history and geology of the countries visited during the voyage of the H.M.S. Beagle around the World. John Murray, London, 512 pp.

De-ren LI. 2007. On geomatics in multi-discipline integration [J]. Acta Geodaetica et Cartographica Sinica 4: 002, Wuhan, China.

Di Crescenzo, G., Santo, A. 2007. High-resolution mapping of rock fall instability through the integration of photogrammetric, geomorphological and engineering–geological surveys. Quaternary International 171, 118-130. https://doi.org/10.1016/j.quaint.2007.03.025.

Fauqué, L., Hermanns, R., Hewitt, K., Rosas, M., Wilson, C., Baumann, V., Lagorio, S., Di Tommaso, I. 2009. Mega-deslizamientos de la Pared Sur del Cerro Aconcagua y su relación con depósitos asignados a la glaciación Pleistocena. Revista de la Asociación Geológica Argentina 65 (4), 691-712.

Felber, A.J. 1993. Development of a hybrid bridge evaluation system. PhD Thesis, University of British Columbia, Vancouver.

Ferrari, S.G., Italiano, M.C, Silva, H.J. 2002. Effect of a cyanobacterial community on calcium carbonate precipitation in Puente del Inca (Mendoza, Argentina). Acta Botánica Croatica 61(1), 1-9. https://hrcak.srce.hr/3479.

Feth, J.H., Barnes, I. 1979. Spring-deposited travertine in eleven western states. U.S. Geological Survey Water Resources Investigation, Open file report, pp. 79-35.

Fouke, B.W. 2011. Hot-spring systems geobiology: Abiotic and biotic influences on travertine formation at Mammoth Hot Springs, Yellowstone National Park, USA. Sedimentology 58 (1), 170-219. https://doi.org/10.1111/j.1365-3091.2010.01209.x.

Galán-Martín, D., Martínez-Marín, R., Marchamalo-Sacristán, M., & Sánchez-Sobrino, J. A. (2011). Control de movimientos en presas mediante DGPS: Aplicación a la presa de La Aceña, España. Tecnología y ciencias del agua 2 (3), 159-176.

Gandin, A., Capezzuoli, E. 2014. Travertine: Distinctive depositional fabrics of 584 carbonates from thermal spring systems. Sedimentology 61, 264-290. https://doi.org/10.1111/sed.12087.

Goyal, V.K. 2012. Elements of machine design I. PhD Thesis, Department of Mechanical Engineering, University of Puerto Rico at Mayaguez, Mayaguez, Puerto Rico.

Hammer, Ø., Dysthe, D.K., Jamtveit, B. 2007. The dynamics of travertine dams. Earth and Planetary Science Letters 256 (1), 258-263. https://doi.org/10.1016/j.epsl.2007.01.033.

Howard, A.P. 1948. An unusual type of natural bridge. American Journal of Science 246, 593. https://doi:10.2475/ajs.246.9.593.

Kazhdan, M., Bolitho, M., Hoppe, H. 2006. Poisson surface reconstruction. Proceedings of the Fourth Eurographics symposium on Geometry processing 7, pp. 61–70.

Kittl, E. 1941. El Puente del Inca, su formación y conservación. Revista Minera 12 (3-4), 110-122, Buenos Aires.

Konak, A., Coit, D.W., Smith, A.E. 2006. Multi-objective optimization using genetic algorithms: A tutorial. Reliability Engineering & System Safety 91 (9), 992-1007. https://doi.org/10.1016/j.ress.2005.11.018.

La Touche, T.D. 1906. Note on the Natural Bridge in the Gokteik Gorge. Record of the Geological Survey of India 33, 49-54.

Lambot, S., Slob, E., Chavarro, D., Lubczynski, M., Vereecken, H. 2008. Measuring soil surface water content in irrigated areas of southern Tunisia using full-waveform inversion of proximal GPR data. Near Surface Geophysics 6 (6), 403-410. https://doi.org/10.3997/1873-0604.2008028.

Lannutti, E., Lenzano, M.G., Barón, J., Lenzano, L.E. 2017. Using ground-penetrating radar to investigate the internal structure of Puente del Inca, Mendoza, Argentina. Near Surface Geophysics 15 (2), 175-186. https://doi.org/10.3997/1873-0604.2017004.

Lannutti, E. 2017. Modelado numérico mediante la técnica de SHM (Structure Health Monitoring) aplicado a una estructura natural. Caso de estudio: Monumento Natural Puente del Inca. Tesis de Doctorado. Facultad de Ingeniería. Universidad Nacional de Cuyo. Argentina.

Larson, M.G., Bengzon, F. 2013. The finite element method: Theory, implementation, and applications (Vol. 10). Springer Science & Business Media.

Lawrence, K.L. 2012. ANSYS workbench tutorial release 14. SDC publications.

Lazaridis, G., Vavliakis, E., Pennos, C. 2005. Temporal earth pyramids in caves. An example from Zesta Nera cave of Sidirokastro, Serres (Macedonia, Greece). School of Geology, Aristotle University (A.U. TH.), 54 124 Thessaloniki. Hellenic Speleological Society. 14th International Congress of Speleology.

Lee, H.H. 2015. Finite Element Simulation with ANSYS Workbench 16. SDC publications.

Logan, D.L. 2011. A first course in the finite element method. Cengage Learning.

López, J.O., Reyes, L.V., Vera, C.O. 2017. Structural health assessment of a R/C building in the coastal area of Concepción, Chile. Procedia Engineering 199, 2214-2219. https://doi.org/10.1016/j.proeng.2017.09.185.

Lorenzoni, F. 2013. Integrated methodologies based on structural health monitoring for the protection of cultural heritage buildings. Doctoral dissertation, University of Trento.

Magalhães, F.M.R.L. 2012. Identificação modal estocástica para validação experimental de modelos numéricos. Faculdade de Engenharia, Universidade do Porto, Porto, 208 pp.

Mahmoudzadeh, M.R., Francés, A.P., Lubczynski, M., Lambot, S. 2012. Using ground penetrating radar to investigate the water table depth in weathered granites—Sardon case study, Spain. Journal of Applied Geophysics 79, 17-26. https://doi.org/10.1016/j.jappgeo.2011.12.009.

Marchamalo, M., Galán, D., Sánchez, J.A., Martínez, R. 2011. La Tecnología DGPS en la construcción: Control de movimientos en grandes estructuras. Informes de la Construcción 63 (522), 93-102. https://doi.org/10.3989/ic.10.008.

Martínez-Martínez, J., Benavente, D., García-del-Cura, M.A. 2012. Comparison of the static and dynamic elastic modulus in carbonate rocks. Bulletin of Engineering Geology and the Environment 71 (2), 263-268. https://doi.org/10.1007/s10064-011-0399-y.

Masciotta, M.G., Roque, J.C, Ramos, L.F., Lourenço, P.B. 2016. A multidisciplinary approach to assess the health state of heritage structures: The case study of the Church of Monastery of Jerónimos in Lisbon. Construction and Building Materials 116, 169-187. https://doi.org/10.1016/j.conbuildmat.2016.04.146.

Monteverde, A. 1946. Origen del Puente del Inca. Revista La Ingeniería 866, 775-791.

Monteverde, A. 1967. Preservación del Puente del Inca. Revista Caminos, 34 (295), 33-36.

Najibi, A.R., Ghafoori, M., Lashkaripour, G.R., Asef, M.R. 2015. Empirical relations between strength and static and dynamic elastic properties of Asmari and Sarvak limestones, two main oil reservoirs in Iran. Journal of Petroleum Science and Engineering 126, 78-82.

Nicod, J. 1981. Répartition, classification, relation avec les milieux karstiques et karstification. Bulletin de l'Association des Géographes Françaises, 479-480, 181-187. https://doi.org/10.1016/j.petrol.2014.12.010.

Parloo, E. 2003. Application of frequency-domain system identification techniques in the field of operational modal analysis. Vrije Universiteit Brussel, Belgium.

Pentecost, A. 2005. Travertine. Springer Science & Business Media.

Pérez González, M.J. 2010. Análisis tensodeformacional de un tornillo. Master Thesis, Universidad Carlos III de Madrid, Departamento de Mecánica de Medios Continuos y Teoría de Estructuras.

Polat, S. 2011. Türkiye’de traverten oluşumu, yayiliş alani ve korunmasi. Marmara Coğrafya Dergisi, 23 pp.

Potts, D.M., Zdravković, L. 2001. Finite element analysis in geotechnical engineering: application (2). Thomas Telford.

Ramos, V.A. 1993. Geología y estructura de Puente del Inca y el control tectónico de sus aguas termales. Simposio sobre puente del Inca. 12º Congreso Geológico Argentino y 2° Congreso de Exploración de Hidrocarburos, Actas 5, Buenos Aires, pp. 8-19.

Ren, W.X, Peng, X.L. 2005. Baseline finite element modeling of a large span cable-stayed bridge through field ambient vibration tests. Computers & Structures 83 (8-9), 536-550. https://doi.org/10.1016/j.compstruc.2004.11.013.

Ribeiro, D., Calçada, R., Delgado, R., Brehm, M., Zabel, V. 2012. Finite element model updating of a bowstring-arch railway bridge based on experimental modal parameters. Engineering Structures 40, 413-435. https://doi.org/10.1016/j.engstruct.2012.03.013.

Rimoldi, H. 1993. Puente del Inca un monumento natural comprometido. XII Congreso Geológico Argentino. II Congreso de Exploración de Hidrocarburos. Actas TV, pp. 20-23.

Rodrigues, J., Brincker, R., Andersen, P. 2004. Improvement of frequency domain output only modal identification from the application of the Random Decrement Technique. In: Proceedings of IMAC-22: A Conference on Structural Dynamics, Society for Experimental Mechanics, Dearborn, MI, pp. 92-100.

Rubio, H.A., Santilli, C.A., Salomón, M.A. 1993. Puente del Inca: Restauración y preservación. 12° Congreso Geológico Argentino y 2° Congreso de Exploración de Hidrocarburos, Actas 5, Buenos Aires, pp. 20-23.

Salvini, R., Francioni, M., Riccucci, S., Fantozzi, P.L., Bonciani, F., Mancini, S. 2011. Stability analysis of “Grotta delle Felci” Cliff (Capri Island, Italy): structural, engineering–geological, photogrammetric surveys and laser scanning. Bulletin of Engineering Geology and the Environment 70 (4), 549-557. https://doi.org/10.1007/s10064-011-0350-2.

Sekelj, T. 1944. Tempestad sobre el Aconcagua: 22-25. Buenos Aires.

Sequera Gutiérrez, D.A., Solano Rodríguez, L.F. 2013. Algoritmo para la calibración de modelos estructurales en elementos finitos de puentes usando Ansys. Bachelor Thesis, Pontificia Universidad Javeriana, Facultad de Ingeniería, Bogotá.

Seyfried, M.S., Murdock, M.D. 2004. Measurement of Soil Water Content with a 50-MHz Soil Dielectric Sensor. Soil Science Society of America Journal Abstract - DIVISION S-1—SOIL PHYSICS, 68 (2), 394-403. https://doi.org/ 10.2136/sssaj2004.3940.

Shen, W., Hao, Q., Mak, H., Neelamkavil, J., Xie, H., Dickinson, J., Thomas, R., Pardasani, A., Xue, H. 2010. Systems integration and collaboration in architecture, engineering, construction, and facilities management: A review. Advanced engineering informatics 24 (2), 196-207. https://doi.org/10.1016/j.aei.2009.09.001.

Shervais, K. (UNAVCO). 2015. Structure from motion introductory guide. Version Oct 22, 2015.

Slingerland, R., Kump, L. 2011. Mathematical modeling of Earth's dynamical systems: A primer. Princeton University Press.

Smith, M.W., Carrivick, J.L., Quincey, D.J. 2015. Structure from motion photogrammetry in Physical Geography. Progress in Physical Geography 40 (2), 247-275. https://doi.org/10.1177/0309133315615805.

Takasu, T. 2009. RTKLIB: open source program package for RTK-GPS. FOSS4G 2009, Tokyo, Japan.

To, T., Nguyen, D., Tran, G. 2015. Automated 3D architecture reconstruction from photogrammetric structure-and-motion: A case study of the One Pilla pagoda, Hanoi, Vienam. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences 40 (7), 1425. https://doi.org/10.5194/isprsarchives-XL-7-W3-1425-2015.

Veysey, J., Fouke, B.W., Kandianis, M.T., Schickel, T.J., Johnson, R.W., Goldenfeld, N. 2008. Reconstruction of water temperature, pH, and flux of ancient hot springs from travertine depositional facies. Journal of Sedimentary Research 78 (2), 69-76. https://doi.org/10.2110/jsr.2008.013.

Welch, P.D. 1967. The use of Fast Fourier Transform for the estimation of power spectra: a method based on time averaging over short modified periodograms, IEEE Transaction on Audio and Electro-Acoustics, AU-15 (2).

Westoby, M.J., Brasington, J., Glasser, N.F., Hambrey, M.J., Reynolds, J.M. 2012. Structure-from-motion photogrammetry: A low-cost, effective tool for geoscience applications. Geomorphology 179, 300-314. https://doi.org/10.1016/j.geomorph.2012.08.021.

Wiese, P.R., John, P. 2003. Engineering design in the multi-discipline era: a systems approach. Wiley.

Wilson, J.M.B. 2013. Patrimonio geológico del proyecto geoparque Cajón del Maipo (Región Metropolitana-Chile). Tesis de Maestría, Escola de Ciências, Universidade do Minho, 143 pp.

Wu, C. 2007. SiftGPU: A GPU Implementation of scale invariant feature transform (SIFT), http://cs.unc.edu/~ccwu/siftgpu, 2007.

Wu, C. 2011. Visual SFM: A visual structure from motion system. http://ccwu.me/vsfm/

Wu, C., Agarwal, S., Curless, B., Seitz, S.M. 2011. Multicore Bundle adjustment. In: Computer vision and pattern recognition (CVPR), 2011 IEEE Conference on: 3057-3064. IEEE.

Wu, C. 2013. Towards linear-time incremental structure from motion. In: 2013 International Conference on 3D Vision-3DV 2013, pp. 127-134. IEEE. https://doi.org/10.1109/3DV.2013.25.

Zong, Z., Lin, X., Niu, J. 2015. Finite element model validation of bridge based on structural health monitoring Part I: Response surface-based finite element model updating. Journal of Traffic and Transportation Engineering 2 (4), 258-278. https://doi.org/10.1016/j.jtte.2015.06.001.

Downloads

Published

15-09-2020

How to Cite

1.
Lannutti E, Lenzano M, Barón J, Moragues S, Lenzano L. Structural health assessment of Puente del Inca natural monument using the integration of instruments and technologies. CIG [Internet]. 2020 Sep. 15 [cited 2024 Mar. 29];46(2):447-76. Available from: https://publicaciones.unirioja.es/ojs/index.php/cig/article/view/4390

Issue

Section

Articles