Numerical modelling of ice-front oscillations and ice-dam occurrence at Glaciar Perito Moreno, the Southern Patagonia Icefield

E. Lannutti, M.G. Lenzano, M. Durand, A. Lo Vecchio, S. Moragues, L. Lenzano

Abstract


The present study conducts the design and development of a computational numerical model to describe the behavior of the seasonal oscillatory cycle of advance and recession of the Perito Moreno glacier, named MO-ACAR. Within its oscillatory behavior, in some years the glacier advances and reaches the Magellan Peninsula forming an ice-dam that break down due to the water pressure of the lake after a certain time. Thus, the main goal of the MO-ACAR model is to simulate the daily ice-front position of the glacier and the events occurrence of the ice-dam formation during 1994-2018 period. The model is calibrated and validated from an iterative optimization process, based on the maximization of correlation values and minimization of distance errors to the Magallanes Peninsula. The simulation of the ice-dam’s formation and the oscillation of the frontal position achieved high performance, reaching optimal correlation values (0.99) and small errors in the position (9.56 ± 13.94 m), respectively. The results show that glacier dynamics and ice-dam’s formation respond to different time-scales; whilst in short-, intermediate-term (daily seasonal scales), the occurrence depends as much on the characteristics of the event as on the phase and intensity of the previous event. On the contrary, in long-term periods (scales greater than one year), low-frequency modulation of the ice flow velocity, caused by variations in air temperature, controls the periods with the formation of ice-dams and free of them.

Keywords


Perito Moreno Glacier; ice-front oscillations; ice-dam; freshwater calving glacier; numerical modelling

References


Aniya, M., Skvarca, P. 1992. Characteristics and variations of Upsala and Moreno glaciers, southern Patagonia. Bulletin Glacier Research 10, 39-53. http://www.seppyo.org/bgr/pdf/10/BGR10P39.PDF.

Aniya, M., Sato, H., Naruse, R., Skvarca, P., Casassa, G. 1996. The use of Satellite and Airborne Imagery to Inventory Outlet Glaciers of the Southern Patagonia Icefield, South America. Photogrammetric Engineering & Remote Sensing 62 (12), 1361-1369. http://worldcat.org/issn/00991112.

Abuelma'atti, M.T. 1993. A simple algorithm for fitting measured data to Fourier‐series models. Integrated Education 24 (1), 107-112. https://doi.org/10.1080/0020739930240114.

Benn, D., Evans, D.J. 2014. Glaciers and glaciation. Routledge. https://doi.org/10.4324/9780203785010.

Ciappa, A., Pietranera, L., Battazza, F. 2010. Perito Moreno Glacier (Argentina) flow estimation by COSMO SkyMed sequence of high-resolution SAR-X imagery. Remote Sensing of Environment 114 (9), 2088-2096. https://doi.org/10.1016/j.rse.2010.04.014.

Cuffey, K.M., Paterson, W.S.B. 2010. The physics of glaciers. Academic Press.

Dahabreh, I.J., Chan, J.A., Earley, A., Moorthy, D., Avendano, E.E., Trikalinos, T.A., Balk, E.M., Wong, J.B. 2017. Modeling and Simulation in the Context of Health Technology Assessment: Review of Existing Guidance, Future Research Needs, and Validity Assessment. https://www.ncbi.nlm.nih.gov/pubmed/28182366.

Ferguson, D.E. 1960. Fibonaccian searching. Communications of the ACM 3 (12), 648. https://doi.org/10.1145/367487.367496.

Foresta, L., Gourmelen, N., Weissgerber, F., Nienow, P., Williams, J.J., Shepherd, A., Drinkwater, M.R., Plummer, S. 2018. Heterogeneous and rapid ice loss over the Patagonian Ice Fields revealed by CryoSat-2 swath radar altimetry. Remote Sensing of Environment 211, 441-455. https://doi.org/10.1016/j.rse.2018.03.041.

Guerrido, C.M., Villalba, R., Rojas, F. 2014. Documentary and tree-ring evidence for a long-term interval without ice impoundments from Glaciar Perito Moreno, Patagonia, Argentina. The Holocene 24 (12), 1686-1693. https://doi.org/10.1177/0959683614551215.

Hauthal, R. 1904. Gletscherbilder aus der argentinischen Cordillere. Zeitschrift des Deutschen und Österreichischen Alpenvereins 35, 30-56.

Jaber, A. 2016. Derivation of mass balance and surface velocity of glaciers by means of high resolution synthetic aperture radar: application to the Patagonian Icefields and Antarctica (Doctoral dissertation, Technische Universität München).

Jansson, P., Hock, R., Schneider, T. 2003. The concept of glacier storage: a review. Journal of Hydrology 282 (1-4), 116-129. https://doi.org/10.1016/S0022-1694(03)00258-0.

Lenzano, M.G., Lannutti, E., Toth, C., Lenzano, L., Lo Vecchio, A., Falaschi, D., Vich, A. 2018. Analyzing the oscillations of the Perito Moreno glacier, using time lapse image sequences. Cold Region and Science Technology 146, 155-166. https://doi.org/10.1016/j.coldregions.2017.11.015.

Liss, V.C. 1970. Der Morenogletscher in der Patagonischen Kordillere: sein ungewohnliches verhalten seit 1899 und der eisdamm durchbruch des jahres 1966. Zeitschrift fur Gletscherkunde und Glazialgeologie (1), 161-180.

Lo Vecchio, A., Lenzano, M.G., Durand, M., Lannutti, E., Bruce, R., Lenzano, L. 2018. Estimation of surface flow speed and ice surface temperature from optical satellite imagery at Viedma glacier, Argentina. Global and Planetary Change 169, 202-213. https://doi.org/10.1016/j.gloplacha.2018.08.001.

Malz, P., Meier, W., Casassa, G., Jaña, R., Skvarca, P., Braun, M. 2018. Elevation and mass changes of the Southern Patagonia Icefield derived from TanDEM-X and SRTM data. Remote Sensing, 10 (2), 188. https://doi.org/10.3390/rs10020188.

Mandel, J. 1964. The Statistical Analysis of Experimental Data. New York: Interscience. https://archive.org/stream/MandelJ.TheStatisticalAnalysisOfExperimentalData1964/Mandel+J.+-+The+statistical+analysis+of+experimental+data+%281964%29_djvu.txt

Meier, M.F., Post, A. 1987. Fast tidewater glaciers. Journal of Geophysical Research: Solid Earth 92 (B9), 9051-9058. https://doi.org/10.1029/JB092iB09p09051.

Minowa, M., Sugiyama, S., Sakakibara, D., Sawagaki, T. 2015. Contrasting glacier variations of glaciar perito moreno and glaciar ameghino, southern Patagonia icefield. Annals of Glaciology, 56 (70), 26-32. https://doi.org/10.3189/2015AoG70A020.

Minowa, M., Sugiyama, S., Sakakibara, D., Skvarca, P. 2017. Seasonal variations in ice-front position controlled by frontal ablation at Glaciar Perito Moreno, the Southern Patagonia Icefield. Frontiers in Earth Science 5, UNSP-1. https://doi.org/10.3389/feart.2017.00001.

Minowa, M. 2017. Frontal ablation of Glaciar Perito Moreno, a lake-terminating glacier in Patagonia. PhD Thesis. Course in Cryosphere Science Hokkaido University. 129. https://eprints.lib.hokudai.ac.jp/dspace/.../Masahiro_Minowa.pdf.

Pasquini, A.I., Depetris, P.J. 2011. Southern Patagonia’s Perito Moreno glacier, Lake Argentino, and Santa Cruz River hydrological system: an overview. Journal of Hydrology 405 (1): 48-56. https://doi.org/10.1016/j.jhydrol.2011.05.009.

Rao, S.S. 2009. Engineering optimization: theory and practice. John Wiley & Sons. https://doi.org/10.1002/9780470549124.

Richter, A., Groh, A., Horwath, M., Ivins, E., Marderwald, E., Hormaechea, J. L.,... Dietrich, R. 2019. The Rapid and Steady Mass Loss of the Patagonian Icefields throughout the GRACE Era: 2002-2017. Remote Sensing, 11 (8), 909. https://doi.org/10.3390/rs11080909.

Rignot, E., Rivera, A., Casassa, G. 2003. Contribution of the Patagonia Icefields of South America to sea level rise. Science 302, 434-437. https://doi.org/10.1126/science.1087393.

Rivera, A. 1992. El Glaciar Pío XI: avances y retrocesos, el impacto sobre su entorno durante el presente siglo. Revista Geográfica de Chile Terra Australis 36, 33-62.

Rivera, A., Lange, H., Aravena, J. C., Casassa, G. 1997. The 20th-century advance of Glaciar Pio XI, Chilean Patagonia. Annals of Glaciology 24, 66-71. https://doi.org/10.3189/S0260305500011952.

Rivera, A., Casassa, G. 1999. Volume changes on Pio XI glacier, Patagonia: 1975-1995. Global and Planetary Change 22 (1-4), 233-244. https://doi.org/10.1016/S0921-8181(99)00040-5.

Rott, H., Stuefer, M., Siegel, A., Skvarca, P., Eckstaller, A. 1998. Mass fluxes and dynamics of Moreno glacier, southern Patagonia icefield. Geophysical Research Letters, 25 (9), 1407-1410. https://doi.org/10.1029/98GL00833.

Sakakibara, D., Sugiyama, S. 2014. Ice‐front variations and speed changes of calving glaciers in the Southern Patagonia Icefield from 1984 to 2011. Journal of Geophysical Research: Earth Surface 119 (11), 2541-2554. https://doi.org/10.1002/2014JF003148.

Sersic, J.L., 1988. Ensayos sobre el glaciar Moreno. Academia Nacional de Ciencias, Argentina.

Skvarca, P., Naruse, R. 1997. Dynamic behavior of Glaciar Perito Moreno, southern Patagonia. Annals of Glaciology 24, 268-271. https://doi.org/10.3189/S0260305500012283.

Skvarca, P., Naruse, R. 2005. Correspondence. Overview of the ice-dam formation and collapse of Glaciar Perito Moreno, southern Patagonia, in 2003/2004. Journal of Glaciology 52 (177), 318-320. https://doi.org/10.3189/S0022143000208666.

Solomina, O.N., Bradley, R.S., Jomelli, V., Geirsdottir, A., Kaufman, D.S., Koch, J., MaKay, N.P., Masiokas, M., Miller, G., Nesje, A., Nicolussi, K., Owen, L.A., Putnam, A.E., Wanner, H., Wiles, G., Yang, B. 2016. Glacier fluctuations during the past 2000 years. Quaternary Science Reviews, 149 (October), 61-90. https://doi.org/10.1016/j.quascirev.2016.04.008.

Stuefer, M. 1999. Investigations on mass balance and dynamics of Moreno Glacier based on field measurements and satellite imagery. PhD Thesis. Dissertation zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften an der Leopold-Franzens-Universitat Innsbruck. 163.

Subasi, M., Yildirim, N., Yildiz, B. 2004. An improvement on Fibonacci search method in optimization theory. Applied Mathematics and Computation 147 (3), 893-901. https://doi.org/10.1016/S0096-3003(02)00828-7.

Sugiyama, S., Skvarca, P., Naito, N., Enomoto, H., Tsutaki, S., Tone, K., Marinsek, S., Aniya, M. 2011. Ice speed of a calving glacier modulated by small fluctuations in basal water pressure. Nature Geoscience 4 (9), 597. https://doi.org/10.1038/ngeo1218.

Sugiyama, S., Minowa, M., Sakakibara, D., Skvarca, P., Sawagaki, T., Ohashi, Y., Naito, N., Chikita, K. 2016. Thermal structure of proglacial lakes in Patagonia. Journal of Geophysical Research: Earth Surface 121 (12), 2270-2286. https://doi.org/10.1002/2016JF004084

Villalba, R., Lara, A., Boninsegna, J.A., Masiokas, M., Delgado, S., Aravena, J.C., Roig, F.A., Schmelter, A., Wolodarsky, A., Ripalta, A. 2003. Large-scale temperature changes across the southern Andes: 20th-century variations in the context of the past 400 years. In: Climate Variability and Change in High Elevation Regions: Past, Present & Future. Springer, Dordrecht, pp. 177-232. https://doi.org/10.1007/978-94-015-1252-7_10.

Walder, J.S., Costa, J.E. 1996. Outburst floods from glacier-dammed lakes: the effect of mode of lake drainage on flood magnitude. Earth Surface Processes and Landforms 21 (8), 701-723. https://doi.org/10.1002/(SICI)1096-9837(199608)21:8<701::AID-ESP615>3.0.CO;2-2.

Warren, C.R., Rivera, A., Post, A. 1997. Greatest Holocene advance of glaciar Pío XI, Chilean Patagonia: possible causes. Annals of Glaciology 24, 1-115. https://doi.org/10.3189/S026030550001185X.

Willis, M.J., Melkonian, A.K., Pritchard, M.E., Rivera, A. 2012. Ice loss from the Southern Patagonian Ice Field, South America, between 2000 and 2012. Geophysical Research Letters 39, 1-6. https://doi.org/10.1029/2012GL053136.

Wu, D., Lu, Z., Wang, Y., Cheng, L. 2015. Model validation and calibration based on component functions of model output. Reliability Engineering & System Safety 140, 59-70.




DOI: https://doi.org/10.18172/cig.4213

Copyright (c) 2020 E. Lannutti, M.G. Lenzano, M. Durand, A. Lo Vecchio, S. Moragues, L. Lenzano

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

© Universidad de La Rioja, 2013

ISSN 0211-6820

EISSN 1697-9540