Annual maximum flow regionalization of Colorado River System, Argentina

Authors

  • C. Lauro IANIGLA-CCT MENDOZA
  • A. Vich Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales, CCT-Mendoza, CONICET, ARGENTINA Instituto de Estudios del Ambiente y los Recursos Naturales (IDEARN), Facultad de Filosofía y Letras, Universidad Nacional de Cuyo, ARGENTINA
  • S.M. Moreiras Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales, CCT-Mendoza, CONICET, ARGENTINA Cátedra de Edafología, Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo, ARGENTINA
  • Luis Bastidas Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales, CCT-Mendoza, CONICET, ARGENTINA
  • S. Otta Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales, CCT-Mendoza, CONICET, ARGENTINA
  • E. Vaccarino Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales, CCT-Mendoza, CONICET, ARGENTINA

DOI:

https://doi.org/10.18172/cig.4465

Keywords:

regionalization, flood, regression models, return period

Abstract

The prediction of the maximum annual flow is necessary for flood management. Large amounts of hydrological information are required to make meaningful estimates. The Colorado River System basins have a topography that makes it difficult to maintain hydrometric stations, so there is a lack of continuity in records and in several cases there are ungauged basins. Regionalization methods consist of transferring information from gauged to ungauged sites in order to make predictions. The objective is to find regional regression models that relate the climate and morphometric characteristics of the basins with the maximum annual flow. For this purpose simple linear regression models were used. From this relationship and the regional frequency curve it will be possible to predict the maximum annual flows for different return periods in ungauged basins of the Colorado River System, Argentina. Regionalization models show that the best estimates occur when the predictor variable is the area and perimeter of the basin. Errors in the regionalization models of various sites in the system resulted between 6% and 67%. The models found are a tool for flood management in central-western Argentina.

Downloads

Download data is not yet available.

References

Blöschl, G., Sivapalan, M., Wagener, T., Viglione, A., Savenije, H. 2013. Runoff prediction in ungauged basins. Synthesis across processes, places and scales. Cambridge University Press. 490 p.

Cara, L., Masiokas, M., Viale, M., Villalba, R. 2016. Análisis de la cobertura nival de la cuenca superior del río Mendoza a partir de imágenes MODIS. Meteorológica 41(1), 21-36.

Cassalho, F., Beskow, S., de Mello, C.R., de Moura, MM. 2018. Regional flood frequency analysis using L-moments for geographically defined regions: An assessment in Brazil. Journal of Flood Risk Management 12 (2). https://doi.org/10.1111/jfr3.12453

Compagnucci, R.H., Agosta, E.A., Vargas, W.M. 2002. Climatic change and quasi-oscillations in central-west Argentina summer precipitation: main features and coherent behavior with southern African region. Climate Dynamics 18, 421-435. https://doi.org/10.1007/s003820100183

Costa, V. 2017. Correlation and regression. In: M. Naghettini (Ed.), Fundamentals of statistical hydrology (pp. 391-440). Switzerland: Springer. https://doi.org/10.1007/978-3-319-43561-9

Franchini, M., Suppo, M. 1996. Regional analysis of flow duration curves for a limestone region. Water Resources Management 10(3), 199-218. https://doi.org/10.1007/BF00424203

Garreaud, R., Fuenzalida, H. 2007. The Influence of Andes on cutoff lows: A modeling study. Monthly Weather Review 135, 1596-1613. https://doi.org/10.1175/MWR3350.1

Harris, I., Jones, P.D., Osborna, T.J., Lister, D.H. 2014. Updated high-resolution grids of monthly climatic observations–the CRU TS3.10 Dataset. International Journal of Climatology 34 (3), 623-642. https://doi.org/10.1002/joc.3711

Heras, R. 1972. Manual de hidrología. Tomo IV: hidrología de las crecidas. Servicio de Edición del Centro de Estudios Hidrográficos y Dirección General de Obras Hidráulicas.

Horton R.E. 1932. Drainage-Basin characteristics. EOS, Transactions American Geophysical Union. 13 (1), 350-361. https://doi.org/10.1029/TR013i001p00350

Hosking, J., Wallis, J. 1997. Regional Frequency Analysis. An approach based on L-Moments. Cambridge University Press. U K. 240 p.

IGN. 2014. Modelo Digital de elevaciones de la República Argentina MDE-Ar (2014). http://www.ign.gob.ar/NuestrasActividades/Geodesia/ModeloDigitalElevaciones/Mapa

Kuzmin, V., Pivovarova, I., Shemanaev, K., Sokolova, D., Batyrov, A., Tran, N., Dang D. 2019. Method of Prediction of the Stream Flows in Poorly Gauged and Ungauged Basins. Journal of Ecological Engineering 20(1), 180-187. https://doi.org/10.12911/22998993/94915.

Lauro, C., Vich, A., Moreiras, S.M. 2018. Regional flood frequency analysis in the Central Western River Basins (28°-37°S) of Argentina. River Research and Applications 34 (7), 721-733. https://doi.org/10.1002/rra.3319

Lauro, C., Vich, A., Moreiras, S.M. 2019. Streamflow variability and its relationship with climate indexes in western river basins of Argentina. Hydrological Science Journal 57 (1). http://doi.org/10.1080/02626667.2019.1594820

Linsley, R.K., Kholer, M.A., Paulus, J.L.H. 1977. Hidrología para ingenieros. McGraw-Hill Latinoamericana. Bogotá. 398 p.

Lujano, A., Quispe, J., Lujano, E., Tapia, B. 2017. Regionalización de caudales mensuales en la región hidrográfica del Tititaca, Perú. Revista Investigaciones Altoandinas 19 (2), 219-230. http://dx.doi.org/10.18271/ria.2017.281

Lujano, A., Lujano, E., Quispe, J.P. 2016. Regionalización de caudales anuales en cuencas del altiplano peruano. Revista de Investigaciones Altoandinas 18(2), 189-194. http://dx.doi.org/10.18271/ria.2016.199

Malekinezhad, H., Nachtnebel, H.P., Klik, A. 2011. Comparing the index-flood and multiple-regression methods using L-moments. Physics and Chemistry of the Earth 36, 54-60. https://doi.org/10.1016/j.pce.2010.07.013

Masiokas, M., Villalba, R., Luckman, B., Le Quesne, C., Aravena, J.C. 2006. Snowpack variations in the Central Andes of Argentina and Chile, 1951-2005: Large-scale atmospheric influences and implications for water resources in the region. Journal of Climate 19, 6334-6352. https://doi.org/10.1175/JCLI3969.1

Mesa, Ó.J., Vélez, J.I., Giraldo, J.D., Quevedo, D.I. 2003. Regionalización de características medias de la cuenca con aplicación en la estimación de caudales máximos. Meteorológica Colombiana 7, 141-147.

Miller, V.C. 1953. A quantitative geomorphic study of drainage basin characteristics inthe Clinch Mountain area, Virginia and Tennessee. Office of Naval Research, GeographyBranch, Project NR 389-042, Technical Report, 3, Columbia University.

Noto, L.V., La Loggia, G. 2009. Use of L-moments approach for regional flood frequency analysis in Sicily, Italy. Water Resources Management 23, 2207-2229. https://doi.org/10.1007/s11269-008-9378-x.

Poveda, G., Vélez J., Mesa O., Ceballos L., Zuluaga M. y Hoyos, C. 2002. Estimación de caudales mínimos para Colombia mediante regionalización y aplicación de la curva de recesión de caudales. Meteorológica Colombiana 6, 73-80.

Rusticucci, M., Zazulie, N., Raga G.B. 2014. Regional winter climate of the southern central Andes: Assessing the performance of ERA-Interim for climate studies. Journal of Geophysical Research Atmospheres 119, 8568-8582. https://doi.org/10.1002/2013JD021167

Schumm, S.A. 1956. Evolution of drainage systems and slopes in badlands at Perth Amboy, New Jersey. GSA Bulletin, 67 (5), 597-646. https://doi.org/10.1130/0016-7606(1956)67[597:EODSAS]2.0.CO;2

Seluchi, M.E., Garreaud, R.D., Norte, F.A., Saulo, A.C. 2006. Influence of the subtropical Andes on baroclinic disturbances: A cold front case study. Monthly Weather Review 134, 3317-3335. https://doi.org/10.1175/MWR3247.1

Song, J., Xia, J., Zhang, L., Wang, Z., Wan, H., She, D. 2016. Streamflow prediction in ungauged basins by regressive regionalization: a case study in Huai River Basin, China. Hydrology Research 47 (5). https://doi.org/10.2166/nh.2015.155

Teklu, T.H., Knut, A. 2017. Regional flood frequency analysis and prediction in ungauged basins including estimation of major uncertainties formid-Norway. Journal of Hydrology: Regional Studies 9, 104-126.

Témez, J.R. 1987. Cálculo hidrometeorológico de caudales máximos en pequeñas cuencas naturales. Dirección General de Carreteras, MOPU. 124 pp.

Tucci, C.E.M. 1997. Regionalização de vazões. 2° ed. En: Hidrologia: Ciência e Aplicação. Tucci, C (Org). ABRH, Porto Alegre, p.573-620.

Viale, M., Bianchi, E., Cara, L., Ruiz, L., Villalba, R., Pitte, P., Masiokas, M., Rivera, J., Zalazar., L. 2019. Contrasting climates al both sides of the Andes in Argentina and Chile. Frontiers in Environmental Science 7 (69). http://doi.org/10.3389/fenvs.2019.00069.

Vich, A.I.J., Norte, F.A., Lauro, C. 2014. Análisis regional de frecuencias de caudales de ríos pertenecientes a cuencas con nacientes en la Cordillera de los Andes. Meteorológica 39 (1), 3-26.

Vich, A.I.J. Norte, F. 2012. Análisis de frecuencias regional en cuencas con nacientes en la cordillera de Los Andes de Argentina. XI Congreso Argentino de Meteorología. CongreMet XI. Mendoza junio de 2012.

Vich, A.I.J. 1999. Aguas continentales. Formas y procesos. Manual de Aplicaciones prácticas. Mendoza. ZETA Editores.

Viglione, A., Claps P., Laio, F. 2007. Mean annual runoff estimation in North-Western Italy, In: G. Water resources assessment and management under water scarcity scenarios. La Loggia (Ed.). CDSU Publ. Milano.

Published

01-07-2021

How to Cite

1.
Lauro C, Vich A, Moreiras S, Bastidas L, Otta S, Vaccarino E. Annual maximum flow regionalization of Colorado River System, Argentina. CIG [Internet]. 2021 Jul. 1 [cited 2024 Apr. 25];47(2):355-70. Available from: https://publicaciones.unirioja.es/ojs/index.php/cig/article/view/4465

Issue

Section

Articles