Subgrid snow depth coefficient of variation spanning alpine to sub-alpine mountainous terrain




snow distribution, subgrid variability, coefficient of variation, lidar, modeling


Given the substantial variability of snow in complex mountainous terrain, a considerable challenge of coarse scale modeling applications is accurately representing the subgrid variability of snowpack properties. The snow depth coefficient of variation (CVds) is a useful metric for characterizing subgrid snow distributions but has not been well defined by a parameterization for mountainous environments. This study utilizes lidar-derived snow depth datasets spanning alpine to sub-alpine mountainous terrain in Colorado, USA to evaluate the variability of subgrid snow distributions within a grid size comparable to a 1000 m resolution common for hydrologic and land surface models. The subgrid CVds exhibited a wide range of variability across the 321 km2 study area (0.15 to 2.74) and was significantly greater in alpine areas compared to subalpine areas. Mean snow depth was the dominant driver of CVds variability in both alpine and subalpine areas, as CVds decreased nonlinearly with increasing snow depths. This negative correlation is attributed to the static size of roughness elements (topography and canopy) that strongly influence seasonal snow variability. Subgrid CVds was also strongly related to topography and forest variables; important drivers of CVds included the subgrid variability of terrain exposure to wind in alpine areas and the mean and variability of forest metrics in subalpine areas. Two statistical models were developed (alpine and subalpine) for predicting subgrid CVds that show reasonable performance statistics. The methodology presented here can be used for characterizing the variability of CVds in snow-dominated mountainous regions, and highlights the utility of using lidar-derived snow datasets for improving model representations of snow processes.


Download data is not yet available.

Author Biography

Steven R. Fassnacht, Fort Collins, Colorado State University

ESS-Watershed Science, Professor


Akaike, H. 1974. A new look at the statistical model identification. IEEE Transactions on Automatic Control 19(6), 716-723.

Berris, S.N., Harr, R.D. 1987. Comparative snow accumulation and melt during rainfall in forested and clear‐cut plots in the Western Cascades of Oregon. Water Resources Research 23(1), 135–142.

Bierkens, M.F.P., Bell, V.A., Burek, P., Chaney, N., Condon, L.E., David, C.H., de Roo, A., Döll, P.P.D., Drost, N., Famiglietti, J.S., Flörke, M., Gochis, D.J., Houser, P., Hut, R., Keune, J., Kollet, S., Maxwell, R.M., Reager, J.T., Samaniego, L., Sudicky, E., Sutanudjaja, E.H., van de Giesen, N., Winsemius, H., Wood, E.F. 2015. Hyper-resolution global hydrological modelling: what is next? "Everywhere and locally relevant". Hydrological Processes 29 (2), 310-320.

Blöschl, G. 1999. Scaling issues in snow hydrology. Hydrological Processes 13 (14-15), 2149-2175.<2149::AID-HYP847>3.0.CO;2-8

Broxton, P.D., Harpold, A.A., Biederman, J.A., Troch, P.A., Molotch, N.P., Brooks, P.D. 2015. Quantifying the effects of vegetation structure on snow accumulation and ablation in mixed-conifer forests. Ecohydrology 8 (6), 1073-1094.

Bühler, Y., Marty, M., Egli, L.,Veitinger, J., Jonas, T., Thee, P., Ginzler, C. 2015. Snow depth mapping in high-alpine catchments using digital photogrammetry. The Cryosphere 9 (1), 229-243.

Carroll, T., Cline, D., Olheiser, C., Rost, A., Nilsson, A., Fall, G., Bovitz, C., Li, L. 2006. NOAA's National Snow Analyses, paper presented at 74th Annual Western Snow Conference, Las Cruces, NM.

Clark, M.P., Hendrikx, J., Slater, A.G., Kavetski, D., Anderson, B., Cullen, N.J., Kerr, T., Hreinsson, E.O., Woods, R.A. 2011. Representing spatial variability of snow water equivalent in hydrologic and land-surface models: A review. Water Resources Research 47 (7).

Deems, J.S., Fassnacht, S.R., Elder, K.J. 2006. Fractal distribution of snow depth from Lidar data. Journal of Hydrometeorology 7 (2), 285-297.

Deems, J.S., Fassnacht, S.R., Elder, K.J. 2008. Interannual consistency in fractal snow depth patterns at Two Colorado Mountain Sites. Journal of Hydrometeorology 9 (5), 977-988.

Deems, J.S., Painter, T.H., Finnegan, D.C. 2013. Lidar measurement of snow depth: a review. Journal of Glaciology 59 (215), 467-479.

Egli, L., Jonas, T. 2009. Hysteretic dynamics of seasonal snow depth distribution in the Swiss Alps. Geophysical Research Letters, 36 (2), L02501.

Elder, K., Rosenthal, W., Davis, R.E. 1998. Estimating the spatial distribution of snow water equivalence in a montane watershed. Hydrological Processes 12 (10-11), 1793-1808.<1793::AID-HYP695>3.0.CO;2-K

Ellis, C.R., Pomeroy, J.W. 2007. Estimating sub-canopy shortwave irradiance to melting snow on forested slopes. Hydrological Processes 21(19), 2581-2593.

Erickson, T.A., Williams, M.W., Winstral, A. 2005. Persistence of topographic controls on the spatial distribution of snow in rugged mountain terrain, Colorado, United States, Water Resources Research 41 (4).

Fassnacht, S.R., Deems, J.S. 2006. Measurement sampling and scaling for deep montane snow depth data. Hydrological Processes 20 (4), 829-838.

Fassnacht, S.R., Dressler, K.A., Hultstrand, D.M., Bales, R.C., Patterson, G. 2012. Temporal inconsistencies in coarse-scale snow water equivalent patterns: Colorado River Basin snow telemetry-topography regressions. Pirineos 167(0), 165-185.

Fassnacht, S.R., Hultstrand, M. 2015. Snowpack variability and trends at long-term stations in northern Colorado, USA. Proceedings of the International Association of Hydrological Sciences 371, 131-136.

Grünewald, T., Schirmer, M., Mott, R., Lehning, M. 2010. Spatial and temporal variability of snow depth and ablation rates in a small mountain catchment. The Cryosphere 4 (2), 215-225.

Grünewald, T., Stötter, J., Pomeroy, J.W., Dadic, R., Moreno Baños, I., Marturià, J., Spross, M., Hopkinson, C., Burlando, P., Lehning, M. 2013. Statistical modelling of the snow depth distribution in open alpine terrain. Hydrology and Earth System Sciences 17 (8), 3005-3021.

Harpold, A.A., Guo, Q., Molotch, N., Brooks, P.D., Bales, R., Fernandez-Diaz, J.C., Musselman, K.N., Swetnam, T.L., Kirchner, P., Meadows, M.W., Flanagan, J., Lucas, R. 2014. LiDAR-derived snowpack data sets from mixed conifer forests across the Western United States. Water Resources Research 50 (3), 2749-2755.

Hedstrom, N.R., Pomeroy, J.W. 1998. Measurements and modelling of snow interception in the boreal forest. Hydrological Processes 12(10-11), 1611-1625.;2-4

Hiemstra, C.A., Liston, G.E., Reiners, W.A. 2006. Observing, modelling, and validating snow redistribution by wind in a Wyoming upper treeline landscape. Ecological Modelling 197 (1-2), 35-51.

Jonas, T., Marty, C., Magnusson, J. 2009. Estimating the snow water equivalent from snow depth measurements in the Swiss Alps. Journal of Hydrology 378 (1-2), 161-167.

Kerr, T., Clark, M., Hendrikx, J., Anderson, B. 2013. Snow distribution in a steep mid-latitude alpine catchment. Advances in Water Resources 55, 17-24.

Kirchner, P. B., Bales, R. C., Molotch, N. P., Flanagan, J., Guo, Q. 2014. LiDAR measurement of seasonal snow accumulation along an elevation gradient in the southern Sierra Nevada, California. Hydrology and Earth System Sciences, 18 (10), 4261-4275.

Kumar, S.V., Peters-Lidardb, C.D., Tian, Y., Houser, P.R., Geiger, J., Olden, S., Lighty, L., Eastman, J.L., Doty, B., Dirmeyer, P., Adams, J., Mitchell, K., Wood, E.F., Sheffield, J. 2006. Land information system: An interoperable framework for high resolution land surface modeling. Environmental Modelling & Software 21 (10), 1402-1415.

Liston, G.E. 1999. Interrelationships among snow distribution, snowmelt, and snow cover depletion: Implications for atmospheric, hydrologic, and ecologic modeling. Journal of Applied Meteorology 38 (10), 1474-1487.<1474:IASDSA>2.0.CO;2

Liston, G.E. 2004. Representing subgrid snow cover heterogeneities in regional and global models. Journal of Climate 17 (6), 1381-1397.<1381:RSSCHI>2.0.CO;2

Liston, G.E., Hiemstra, C.A. 2011. Representing Grass- and Shrub-Snow-Atmosphere Interactions in Climate System Models. Journal of Climate 24 (8), 2061-2079.

López-Moreno, J.I., Fassnacht, S.R., Beguería, S., Latron, J.B.P. 2011. Variability of snow depth at the plot scale: implications for mean depth estimation and sampling strategies. The Cryosphere 5 (3), 617-629.

Lopez-Moreno, J.I., Fassnacht, S.R., Heath, J.T., Musselman, K.N., Revuelto, J., Latron, J., Moran-Tejeda, E., Jonas, T. 2013. Small scale spatial variability of snow density and depth over complex alpine terrain: Implications for estimating snow water equivalent. Advances in Water Resources 55, 40-52.

López-Moreno, J.I., Revuelto, J., Fassnacht, S.R., Azorín-Molina, C., Vicente-Serrano, S.M., Morán-Tejeda, E., Sexstone, G.A. 2015. Snowpack variability across various spatio-temporal resolutions. Hydrological Processes, 29 (6), 1213-1224.

Mallows, C.L. 1973. Some Comments on Cp. Technometrics 15 (4), 661.

McGrath, D., Sass, L., O'Neel, S., Arendt, A., Wolken, G., Gusmeroli, A., Kienholz, C., McNeil C. 2015. End-of-winter snow depth variability on glaciers in Alaska. Journal of Geophysical Research: Earth Surface 120 (8), 1530-1550.

Meromy, L., Molotch, N.P., Link, T.E., Fassnacht, S.R., Rice, R. 2013. Subgrid variability of snow water equivalent at operational snow stations in the western USA. Hydrological Processes 27 (17), 2383-2400.

Mizukami, N., Perica, S. 2008. Spatiotemporal characteristics of snowpack density in the mountainous regions of the Western United States. Journal of Hydrometeorology 9 (6), 1416-1426.

Molotch, N.P., Bales, R.C. 2005. Scaling snow observations from the point to the grid element: Implications for observation network design. Water Resources Research 41 (11), W11421.

Molotch, N.P., Colee, M.T., Bales, R.C., Dozier, J. 2005. Estimating the spatial distribution of snow water equivalent in an alpine basin using binary regression tree models: the impact of digital elevation data and independent variable selection. Hydrological Processes 19 (7), 1459-1479.

Molotch, N.P., Blanken, P.D., Williams, M.W., Turnipseed, A.A., Monson, R.K., Margulis, S.A. 2007. Estimating sublimation of intercepted and sub-canopy snow using eddy covariance systems. Hydrological Processes 21 (12), 1567-1575.

Montesi, J., Elder, K., Schmidt, R.A., Davis, R.E. 2004. Sublimation of intercepted snow within a Subalpine Forest Canopy at Two Elevations. Journal of Hydrometeorology 5 (5), 763-773.<0763:SOISWA>2.0.CO;2

Musselman, K.N., Molotch, N.P., Margulis, S.A., Kirchner, P.B., Bales, R.C. 2012. Influence of canopy structure and direct beam solar irradiance on snowmelt rates in a mixed conifer forest. Agricultural and Forest Meteorology 161, 46-56.

Nolan, M., Larsen, C., Stur, M. 2015. Mapping snow depth from manned aircraft on landscape scales at centimeter resolution using structure-from-motion photogrammetry. The Cryosphere, 9 (4), 1445-1463.

Pomeroy, J.W., Gray, D.M., Shook, K.R., Toth, B., Essery, R.L.H., Pietroniro, A., Hedstrom, N. 1998. An evaluation of snow accumulation and ablation processes for land surface modelling. Hydrological Processes 12 (15), 2339-2367.<2339::AID-HYP800>3.0.CO;2-L

Pomeroy, J.W., Marks, D., Link, T., Ellis, C., Hardy, J., Rowlands, A., Granger, R. 2009. The impact of coniferous forest temperature on incoming longwave radiation to melting snow. Hydrological Processes 23 (17), 2513-2525.

Revuelto, J., López-Moreno, J.I. Azorin-Molina, C., Vicente-Serrano, S.M. 2014. Topographic control of snowpack distribution in a small catchment in the central Spanish Pyrenees: intra- and inter-annual persistence. The Cryosphere 8 (5), 1989-2006.

Revuelto, J., Lopez-Moreno, J.I., Azorin-Molina, C., Vicente-Serrano, S. M. 2015. Canopy influence on snow depth distribution in a pine stand determined from terrestrial laser data. Water Resources Research 51 (5), 3476-3489.

Richer, E.E., Kampf, S.K., Fassnacht, S.R., Moore, C.C. 2013. Spatiotemporal index for analyzing controls on snow climatology: application in the Colorado Front Range. Physical Geography 34 (2), 85-107.

Sexstone, G.A., Fassnacht, S.R. 2014. What drives basin scale spatial variability of snowpack properties in northern Colorado? The Cryosphere 8 (2), 329-344.

Seyfried, M.S., Wilcox, B.P. 1995. Scale and the nature of spatial variability - Field examples having implications for hydrologic modeling. Water Resources Research 31 (1), 173-184.

Slater, A.G., Schlosser, C.A., Desborough, C.E., Pitman, A.J., Henderson-Sellers, A., Robock, A., Ya Vinnikov, K., Entin, J., Mitchell, K., Chen, F., Boone, A., Etchevers, P., Habets, F., Noilhan, J., Braden, H., Cox, P.M., de Rosnay, P., Dickinson, R.E., Yang, Z-L, Dai, Y-J, Zeng, Q., Duan, Q., Koren, V., Schaake, S., Gedney, N., Gusev, Ye M., Nasonova, O.N., Kim, J., Kowalczyk, E.A., Shmakin, A.-B., Smirnova, T.G., Verseghy, D., Wetzel, P., Xue, Y. 2001, The representation of snow in land surface schemes: Results from PILPS 2(d). Journal of Hydrometeorology 2 (1), 7-25.<0007:TROSIL>2.0.CO;2

Sturm, M., Holmgren, J., Liston, G.E. 1995. A seasonal snow cover classification-system for local to global applications. Journal of Climate 8 (5), 1261-1283.<1261:ASSCCS>2.0.CO;2

Sturm, M., Wagner, A.M. 2010. Using repeated patterns in snow distribution modeling: An Arctic example. Water Resources Research 46 (12), W12549.

Sturm, M., Taras, B., Liston, G.E., Derksen, C., Jonas, T., Lea, J. 2010. Estimating snow water equivalent using snow depth data and climate classes. Journal of Hydrometeorology 11 (6), 1380-1394.

Suding, K.N., Farrer, E.C., King, A.J., Kueppers, L., Spasojevic, M.J. 2015. Vegetation change at high elevation: scale dependence and interactive effects on Niwot Ridge. Plant Ecology & Diversity 8 (5-6), 713-725.

Suzuki, K., Nakai, Y. 2008. Canopy snow influence on water and energy balances in a coniferous forest plantation in northern Japan. Journal of Hydrology 352, 126-138. 10.1016/j.jhydrol.2008.01.007

Trujillo, E., Ramirez, J.A., Elder, K.J. 2007. Topographic, meteorologic, and canopy controls on the scaling characteristics of the spatial distribution of snow depth fields. Water Resources Research, 43 (7), W07409.

Trujillo, E., Molotch, N P. 2014. Snowpack regimes of the Western United States. Water Resources Research 50 (7), 5611-5623.

Trujillo, E., Lehning, M. 2015. Theoretical analysis of errors when estimating snow distribution through point measurements. The Cryosphere 9, 1249-1264.

Weiss, A.D. 2001. Topographic position and landforms analysis, in ESRI User Conference, edited, San Diego, USA.

Winstral, A., Elder, K., Davis, R.E. 2002. Spatial snow modeling of wind-redistributed snow using terrain-based parameters. Journal of Hydrometeorology 3 (5), 524-538.<0524:SSMOWR>2.0.CO;2

Winstral, A., Marks, D. 2014. Long-term snow distribution observations in a mountain catchment: Assessing variability, time stability, and the representativeness of an index site. Water Resources Research 50 (1), 293-305.

Wood, E.F., Roundy, J.K., Troy, T.J., van Beek, L. P.H., Bierkens, M.F.P., Blyth, E., de Roo, A., Döll, P., Ek, M., Famiglietti, J., Gochis, D., van de Giesen, N., Houser, P., Jaffé, P.R., Kollet, S., Lehner, B., Lettenmaier, D.P., Peters-Lidard, C., Sivapalan, M., Sheffield, J., Wade, A., Whitehead, P. 2011. Hyperresolution global land surface modeling: Meeting a grand challenge for monitoring Earth's terrestrial water. Water Resources Research 47 (5).

Yamazaki, T., Kondo, J., Watanabe, T., Sato, T. 1992. A heat-balance model with a canopy of one or two layers and its application to field experiments. Journal of Applied Meteorology and Climatology 31, 86–103.<0086:AHBMWA>2.0.CO;2

Yang, Z.L., Dickinson, R.D., Robock, A., Vinnikov, K.Y. 1997. Validation of the snow submodel of the biosphere-atmosphere transfer scheme with Russian snow cover and meteorological observational data. Journal of Climate 10 (2), 353-373.<0353:VOTSSO>2.0.CO;2

Zheng, Z., Kirchner, P.B., Bales, R.C. 2016. Topographic and vegetation effects on snow accumulation in the southern Sierra Nevada: a statistical summary from lidar data. The Cryosphere 10 (1), 257-269.




How to Cite

Sexstone GA, Fassnacht SR, López-Moreno JI, Hiemstra CA. Subgrid snow depth coefficient of variation spanning alpine to sub-alpine mountainous terrain. CIG [Internet]. 2022 May 17 [cited 2023 Sep. 22];48(1):79-96. Available from: