Coeficiente de variación del espesor de la nieve a escala de subcuadrícula en áreas montañosas alpinas y subalpinas

Autores/as

DOI:

https://doi.org/10.18172/cig.4951

Palabras clave:

Distribución de la nieve, variabilidad de la subcuadrícula, coeficiente de variación, lidar, modelos

Resumen

Dada la variabilidad de la nieve en áreas de montaña complejas, un reto importante de las aplicaciones de modelado a gran escala es representar con precisión la variabilidad de las propiedades de la capa de nieve a escala de subcuadrícula. El coeficiente de variación (CVds) del espesor de la nieve es una medida útil para caracterizar la distribución de la nieve en subcuadrículas, pero no ha sido bien definido mediante una parametrización para entornos montañosos. Este estudio utiliza datos de espesor de la nieve derivados de LIDAR en áreas montañosas alpinas y subalpinas de Colorado, EE. UU. La finalidad es evaluar la variabilidad de la distribución de la nieve a escala de subcuadrícula dentro de un tamaño de cuadrícula de una resolución de 1000 m habitual para modelos hidrológicos y de superficie del terreno. Los CVds de la subcuadrícula mostraron un amplio rango de variabilidad en el área de estudio de 321 km2 (0,15 a 2,74) y fueron significativamente mayores en las áreas alpinas en comparación con las áreas subalpinas. El espesor medio de la nieve fue el factor determinante de la variabilidad del CVds tanto en áreas alpinas como subalpinas, ya que el CVds disminuyó de forma no lineal con el incremento del espesor de la nieve. Esta correlación negativa se atribuye al tamaño estático de los elementos rugosos (topografía y dosel) que influyen fuertemente en la variabilidad estacional de la nieve. El CVds de la subcuadrícula también estuvo muy relacionado con la topografía y las variables forestales. Los controladores determinantes del CVds fueron la variabilidad a escala de subcuadrícula de la exposición del terreno al viento en áreas alpinas y la media y variabilidad de las métricas forestales en áreas subalpinas. Se desarrollaron dos modelos estadísticos (alpino y subalpino) para predecir el CVds a escala de subcuadrícula que muestran estadísticamente rendimientos razonables. La metodología presentada aquí puede ser utilizada para caracterizar la variabilidad de CVds en regiones montañosas dominadas por la nieve, y subraya la utilidad de usar conjuntos de datos de nieve derivados de LIDAR para mejorar las representaciones de modelos de procesos de nieve.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Steven R. Fassnacht, Colorado State University

ESS-Watershed Science, Professor

Citas

Akaike, H. 1974. A new look at the statistical model identification. IEEE Transactions on Automatic Control 19(6), 716-723. https://doi.org/10.1109/TAC.1974.1100705

Berris, S.N., Harr, R.D. 1987. Comparative snow accumulation and melt during rainfall in forested and clear‐cut plots in the Western Cascades of Oregon. Water Resources Research 23(1), 135–142. https://doi.org/10.1029/WR023i001p00135

Bierkens, M.F.P., Bell, V.A., Burek, P., Chaney, N., Condon, L.E., David, C.H., de Roo, A., Döll, P.P.D., Drost, N., Famiglietti, J.S., Flörke, M., Gochis, D.J., Houser, P., Hut, R., Keune, J., Kollet, S., Maxwell, R.M., Reager, J.T., Samaniego, L., Sudicky, E., Sutanudjaja, E.H., van de Giesen, N., Winsemius, H., Wood, E.F. 2015. Hyper-resolution global hydrological modelling: what is next? "Everywhere and locally relevant". Hydrological Processes 29 (2), 310-320. https://doi.org/10.1002/hyp.10391

Blöschl, G. 1999. Scaling issues in snow hydrology. Hydrological Processes 13 (14-15), 2149-2175.https://doi.org/10.1002/(SICI)1099-1085(199910)13:14/15<2149::AID-HYP847>3.0.CO;2-8

Broxton, P.D., Harpold, A.A., Biederman, J.A., Troch, P.A., Molotch, N.P., Brooks, P.D. 2015. Quantifying the effects of vegetation structure on snow accumulation and ablation in mixed-conifer forests. Ecohydrology 8 (6), 1073-1094. https://doi.org/10.1002/eco.1565

Bühler, Y., Marty, M., Egli, L.,Veitinger, J., Jonas, T., Thee, P., Ginzler, C. 2015. Snow depth mapping in high-alpine catchments using digital photogrammetry. The Cryosphere 9 (1), 229-243. https://doi.org/10.5194/tc-9-229-2015

Carroll, T., Cline, D., Olheiser, C., Rost, A., Nilsson, A., Fall, G., Bovitz, C., Li, L. 2006. NOAA's National Snow Analyses, paper presented at 74th Annual Western Snow Conference, Las Cruces, NM.

Clark, M.P., Hendrikx, J., Slater, A.G., Kavetski, D., Anderson, B., Cullen, N.J., Kerr, T., Hreinsson, E.O., Woods, R.A. 2011. Representing spatial variability of snow water equivalent in hydrologic and land-surface models: A review. Water Resources Research 47 (7). https://doi.org/10.1029/2011WR010745

Deems, J.S., Fassnacht, S.R., Elder, K.J. 2006. Fractal distribution of snow depth from Lidar data. Journal of Hydrometeorology 7 (2), 285-297. https://doi.org/10.1175/JHM487.1

Deems, J.S., Fassnacht, S.R., Elder, K.J. 2008. Interannual consistency in fractal snow depth patterns at Two Colorado Mountain Sites. Journal of Hydrometeorology 9 (5), 977-988. https://doi.org/10.1175/2008JHM901.1

Deems, J.S., Painter, T.H., Finnegan, D.C. 2013. Lidar measurement of snow depth: a review. Journal of Glaciology 59 (215), 467-479. https://doi.org/10.3189/2013JoG12J154

Egli, L., Jonas, T. 2009. Hysteretic dynamics of seasonal snow depth distribution in the Swiss Alps. Geophysical Research Letters, 36 (2), L02501. https://doi.org/10.1029/2008GL035545

Elder, K., Rosenthal, W., Davis, R.E. 1998. Estimating the spatial distribution of snow water equivalence in a montane watershed. Hydrological Processes 12 (10-11), 1793-1808. https://doi.org/10.1002/(SICI)1099-1085(199808/09)12:10/11<1793::AID-HYP695>3.0.CO;2-K

Ellis, C.R., Pomeroy, J.W. 2007. Estimating sub-canopy shortwave irradiance to melting snow on forested slopes. Hydrological Processes 21(19), 2581-2593. https://doi.org/10.1002/hyp.6794

Erickson, T.A., Williams, M.W., Winstral, A. 2005. Persistence of topographic controls on the spatial distribution of snow in rugged mountain terrain, Colorado, United States, Water Resources Research 41 (4). https://doi.org/10.1029/2003wr002973

Fassnacht, S.R., Deems, J.S. 2006. Measurement sampling and scaling for deep montane snow depth data. Hydrological Processes 20 (4), 829-838. https://doi.org/10.1002/hyp.6119

Fassnacht, S.R., Dressler, K.A., Hultstrand, D.M., Bales, R.C., Patterson, G. 2012. Temporal inconsistencies in coarse-scale snow water equivalent patterns: Colorado River Basin snow telemetry-topography regressions. Pirineos 167(0), 165-185. https://doi.org/10.3989/Pirineos.2012.167008

Fassnacht, S.R., Hultstrand, M. 2015. Snowpack variability and trends at long-term stations in northern Colorado, USA. Proceedings of the International Association of Hydrological Sciences 371, 131-136. https://doi.org/10.5194/piahs-371-131-2015

Grünewald, T., Schirmer, M., Mott, R., Lehning, M. 2010. Spatial and temporal variability of snow depth and ablation rates in a small mountain catchment. The Cryosphere 4 (2), 215-225. https://doi.org/10.5194/tc-4-215-2010

Grünewald, T., Stötter, J., Pomeroy, J.W., Dadic, R., Moreno Baños, I., Marturià, J., Spross, M., Hopkinson, C., Burlando, P., Lehning, M. 2013. Statistical modelling of the snow depth distribution in open alpine terrain. Hydrology and Earth System Sciences 17 (8), 3005-3021. https://doi.org/10.5194/hess-17-3005-2013

Harpold, A.A., Guo, Q., Molotch, N., Brooks, P.D., Bales, R., Fernandez-Diaz, J.C., Musselman, K.N., Swetnam, T.L., Kirchner, P., Meadows, M.W., Flanagan, J., Lucas, R. 2014. LiDAR-derived snowpack data sets from mixed conifer forests across the Western United States. Water Resources Research 50 (3), 2749-2755. https://doi.org/10.1002/2013WR013935

Hedstrom, N.R., Pomeroy, J.W. 1998. Measurements and modelling of snow interception in the boreal forest. Hydrological Processes 12(10-11), 1611-1625. https://doi.org/10.1002/(SICI)1099-1085(199808/09)12:10/11%3C1611::AID-HYP684%3E3.0.CO;2-4

Hiemstra, C.A., Liston, G.E., Reiners, W.A. 2006. Observing, modelling, and validating snow redistribution by wind in a Wyoming upper treeline landscape. Ecological Modelling 197 (1-2), 35-51. https://doi.org/10.1016/j.ecolmodel.2006.03.005

Jonas, T., Marty, C., Magnusson, J. 2009. Estimating the snow water equivalent from snow depth measurements in the Swiss Alps. Journal of Hydrology 378 (1-2), 161-167. https://doi.org/10.1016/j.jhydrol.2009.09.021

Kerr, T., Clark, M., Hendrikx, J., Anderson, B. 2013. Snow distribution in a steep mid-latitude alpine catchment. Advances in Water Resources 55, 17-24. https://doi.org/10.1016/j.advwatres.2012.12.010

Kirchner, P. B., Bales, R. C., Molotch, N. P., Flanagan, J., Guo, Q. 2014. LiDAR measurement of seasonal snow accumulation along an elevation gradient in the southern Sierra Nevada, California. Hydrology and Earth System Sciences, 18 (10), 4261-4275. https://doi.org/10.5194/hess-18-4261-2014

Kumar, S.V., Peters-Lidardb, C.D., Tian, Y., Houser, P.R., Geiger, J., Olden, S., Lighty, L., Eastman, J.L., Doty, B., Dirmeyer, P., Adams, J., Mitchell, K., Wood, E.F., Sheffield, J. 2006. Land information system: An interoperable framework for high resolution land surface modeling. Environmental Modelling & Software 21 (10), 1402-1415. https://doi.org/10.1016/j.envsoft.2005.07.004

Liston, G.E. 1999. Interrelationships among snow distribution, snowmelt, and snow cover depletion: Implications for atmospheric, hydrologic, and ecologic modeling. Journal of Applied Meteorology 38 (10), 1474-1487. https://doi.org/10.1175/1520-0450(1999)038<1474:IASDSA>2.0.CO;2

Liston, G.E. 2004. Representing subgrid snow cover heterogeneities in regional and global models. Journal of Climate 17 (6), 1381-1397. https://doi.org/10.1175/1520-0442(2004)017<1381:RSSCHI>2.0.CO;2

Liston, G.E., Hiemstra, C.A. 2011. Representing Grass- and Shrub-Snow-Atmosphere Interactions in Climate System Models. Journal of Climate 24 (8), 2061-2079. https://doi.org/10.1175/2010JCLI4028.1

López-Moreno, J.I., Fassnacht, S.R., Beguería, S., Latron, J.B.P. 2011. Variability of snow depth at the plot scale: implications for mean depth estimation and sampling strategies. The Cryosphere 5 (3), 617-629. https://doi.org/10.5194/tc-5-617-2011

Lopez-Moreno, J.I., Fassnacht, S.R., Heath, J.T., Musselman, K.N., Revuelto, J., Latron, J., Moran-Tejeda, E., Jonas, T. 2013. Small scale spatial variability of snow density and depth over complex alpine terrain: Implications for estimating snow water equivalent. Advances in Water Resources 55, 40-52. https://doi.org/10.1016/j.advwatres.2012.08.010

López-Moreno, J.I., Revuelto, J., Fassnacht, S.R., Azorín-Molina, C., Vicente-Serrano, S.M., Morán-Tejeda, E., Sexstone, G.A. 2015. Snowpack variability across various spatio-temporal resolutions. Hydrological Processes, 29 (6), 1213-1224. https://doi.org/10.1002/hyp.10245

Mallows, C.L. 1973. Some Comments on Cp. Technometrics 15 (4), 661.

McGrath, D., Sass, L., O'Neel, S., Arendt, A., Wolken, G., Gusmeroli, A., Kienholz, C., McNeil C. 2015. End-of-winter snow depth variability on glaciers in Alaska. Journal of Geophysical Research: Earth Surface 120 (8), 1530-1550. https://doi.org/10.1002/2015JF003539

Meromy, L., Molotch, N.P., Link, T.E., Fassnacht, S.R., Rice, R. 2013. Subgrid variability of snow water equivalent at operational snow stations in the western USA. Hydrological Processes 27 (17), 2383-2400. https://doi.org/10.1002/hyp.9355

Mizukami, N., Perica, S. 2008. Spatiotemporal characteristics of snowpack density in the mountainous regions of the Western United States. Journal of Hydrometeorology 9 (6), 1416-1426. https://doi.org/10.1175/2008JHM981.1

Molotch, N.P., Bales, R.C. 2005. Scaling snow observations from the point to the grid element: Implications for observation network design. Water Resources Research 41 (11), W11421. https://doi.org/10.1029/2005WR004229

Molotch, N.P., Colee, M.T., Bales, R.C., Dozier, J. 2005. Estimating the spatial distribution of snow water equivalent in an alpine basin using binary regression tree models: the impact of digital elevation data and independent variable selection. Hydrological Processes 19 (7), 1459-1479. https://doi.org/10.1002/hyp.5586

Molotch, N.P., Blanken, P.D., Williams, M.W., Turnipseed, A.A., Monson, R.K., Margulis, S.A. 2007. Estimating sublimation of intercepted and sub-canopy snow using eddy covariance systems. Hydrological Processes 21 (12), 1567-1575. https://doi.org/10.1002/hyp.6719

Montesi, J., Elder, K., Schmidt, R.A., Davis, R.E. 2004. Sublimation of intercepted snow within a Subalpine Forest Canopy at Two Elevations. Journal of Hydrometeorology 5 (5), 763-773. https://doi.org/10.1175/1525-7541(2004)005<0763:SOISWA>2.0.CO;2

Musselman, K.N., Molotch, N.P., Margulis, S.A., Kirchner, P.B., Bales, R.C. 2012. Influence of canopy structure and direct beam solar irradiance on snowmelt rates in a mixed conifer forest. Agricultural and Forest Meteorology 161, 46-56. https://doi.org/10.1016/j.agrformet.2012.03.011

Nolan, M., Larsen, C., Stur, M. 2015. Mapping snow depth from manned aircraft on landscape scales at centimeter resolution using structure-from-motion photogrammetry. The Cryosphere, 9 (4), 1445-1463. https://doi.org/10.5194/tc-9-1445-2015

Pomeroy, J.W., Gray, D.M., Shook, K.R., Toth, B., Essery, R.L.H., Pietroniro, A., Hedstrom, N. 1998. An evaluation of snow accumulation and ablation processes for land surface modelling. Hydrological Processes 12 (15), 2339-2367. https://doi.org/10.1002/(SICI)1099-1085(199812)12:15<2339::AID-HYP800>3.0.CO;2-L

Pomeroy, J.W., Marks, D., Link, T., Ellis, C., Hardy, J., Rowlands, A., Granger, R. 2009. The impact of coniferous forest temperature on incoming longwave radiation to melting snow. Hydrological Processes 23 (17), 2513-2525. https://doi.org/10.1002/hyp.7325

Revuelto, J., López-Moreno, J.I. Azorin-Molina, C., Vicente-Serrano, S.M. 2014. Topographic control of snowpack distribution in a small catchment in the central Spanish Pyrenees: intra- and inter-annual persistence. The Cryosphere 8 (5), 1989-2006. https://doi.org/10.5194/tc-8-1989-2014

Revuelto, J., Lopez-Moreno, J.I., Azorin-Molina, C., Vicente-Serrano, S. M. 2015. Canopy influence on snow depth distribution in a pine stand determined from terrestrial laser data. Water Resources Research 51 (5), 3476-3489. https://doi.org/10.1002/2014WR016496

Richer, E.E., Kampf, S.K., Fassnacht, S.R., Moore, C.C. 2013. Spatiotemporal index for analyzing controls on snow climatology: application in the Colorado Front Range. Physical Geography 34 (2), 85-107. https://doi.org/10.1080/02723646.2013.787578

Sexstone, G.A., Fassnacht, S.R. 2014. What drives basin scale spatial variability of snowpack properties in northern Colorado? The Cryosphere 8 (2), 329-344. https://doi.org/10.5194/tc-8-329-2014

Seyfried, M.S., Wilcox, B.P. 1995. Scale and the nature of spatial variability - Field examples having implications for hydrologic modeling. Water Resources Research 31 (1), 173-184. https://doi.org/10.1029/94WR02025

Slater, A.G., Schlosser, C.A., Desborough, C.E., Pitman, A.J., Henderson-Sellers, A., Robock, A., Ya Vinnikov, K., Entin, J., Mitchell, K., Chen, F., Boone, A., Etchevers, P., Habets, F., Noilhan, J., Braden, H., Cox, P.M., de Rosnay, P., Dickinson, R.E., Yang, Z-L, Dai, Y-J, Zeng, Q., Duan, Q., Koren, V., Schaake, S., Gedney, N., Gusev, Ye M., Nasonova, O.N., Kim, J., Kowalczyk, E.A., Shmakin, A.-B., Smirnova, T.G., Verseghy, D., Wetzel, P., Xue, Y. 2001, The representation of snow in land surface schemes: Results from PILPS 2(d). Journal of Hydrometeorology 2 (1), 7-25. https://doi.org/10.1175/1525-7541(2001)002<0007:TROSIL>2.0.CO;2

Sturm, M., Holmgren, J., Liston, G.E. 1995. A seasonal snow cover classification-system for local to global applications. Journal of Climate 8 (5), 1261-1283. https://doi.org/10.1175/1520-0442(1995)008<1261:ASSCCS>2.0.CO;2

Sturm, M., Wagner, A.M. 2010. Using repeated patterns in snow distribution modeling: An Arctic example. Water Resources Research 46 (12), W12549. https://doi.org/10.1029/2010WR009434

Sturm, M., Taras, B., Liston, G.E., Derksen, C., Jonas, T., Lea, J. 2010. Estimating snow water equivalent using snow depth data and climate classes. Journal of Hydrometeorology 11 (6), 1380-1394. https://doi.org/10.1175/2010JHM1202.1

Suding, K.N., Farrer, E.C., King, A.J., Kueppers, L., Spasojevic, M.J. 2015. Vegetation change at high elevation: scale dependence and interactive effects on Niwot Ridge. Plant Ecology & Diversity 8 (5-6), 713-725. https://doi.org/10.1080/17550874.2015.1010189

Suzuki, K., Nakai, Y. 2008. Canopy snow influence on water and energy balances in a coniferous forest plantation in northern Japan. Journal of Hydrology 352, 126-138. https://doi.org/ 10.1016/j.jhydrol.2008.01.007

Trujillo, E., Ramirez, J.A., Elder, K.J. 2007. Topographic, meteorologic, and canopy controls on the scaling characteristics of the spatial distribution of snow depth fields. Water Resources Research, 43 (7), W07409. https://doi.org/10.1029/2006WR005317

Trujillo, E., Molotch, N P. 2014. Snowpack regimes of the Western United States. Water Resources Research 50 (7), 5611-5623. https://doi.org/10.1002/2013WR014753

Trujillo, E., Lehning, M. 2015. Theoretical analysis of errors when estimating snow distribution through point measurements. The Cryosphere 9, 1249-1264. https://doi.org/10.5194/tc-9-1249-2015

Weiss, A.D. 2001. Topographic position and landforms analysis, in ESRI User Conference, edited, San Diego, USA.

Winstral, A., Elder, K., Davis, R.E. 2002. Spatial snow modeling of wind-redistributed snow using terrain-based parameters. Journal of Hydrometeorology 3 (5), 524-538. https://doi.org/10.1175/1525-7541(2002)003<0524:SSMOWR>2.0.CO;2

Winstral, A., Marks, D. 2014. Long-term snow distribution observations in a mountain catchment: Assessing variability, time stability, and the representativeness of an index site. Water Resources Research 50 (1), 293-305. https://doi.org/10.1002/2012WR013038

Wood, E.F., Roundy, J.K., Troy, T.J., van Beek, L. P.H., Bierkens, M.F.P., Blyth, E., de Roo, A., Döll, P., Ek, M., Famiglietti, J., Gochis, D., van de Giesen, N., Houser, P., Jaffé, P.R., Kollet, S., Lehner, B., Lettenmaier, D.P., Peters-Lidard, C., Sivapalan, M., Sheffield, J., Wade, A., Whitehead, P. 2011. Hyperresolution global land surface modeling: Meeting a grand challenge for monitoring Earth's terrestrial water. Water Resources Research 47 (5). https://doi.org/10.1029/2010WR010090

Yamazaki, T., Kondo, J., Watanabe, T., Sato, T. 1992. A heat-balance model with a canopy of one or two layers and its application to field experiments. Journal of Applied Meteorology and Climatology 31, 86–103. https://doi.org/10.1175/1520-0450(1992)031<0086:AHBMWA>2.0.CO;2

Yang, Z.L., Dickinson, R.D., Robock, A., Vinnikov, K.Y. 1997. Validation of the snow submodel of the biosphere-atmosphere transfer scheme with Russian snow cover and meteorological observational data. Journal of Climate 10 (2), 353-373. https://doi.org/10.1175/1520-0442(1997)010<0353:VOTSSO>2.0.CO;2

Zheng, Z., Kirchner, P.B., Bales, R.C. 2016. Topographic and vegetation effects on snow accumulation in the southern Sierra Nevada: a statistical summary from lidar data. The Cryosphere 10 (1), 257-269. https://doi.org/10.5194/tc-10-257-2016

Descargas

Publicado

2022-05-17

Cómo citar

1.
Sexstone GA, Fassnacht SR, López-Moreno JI, Hiemstra CA. Coeficiente de variación del espesor de la nieve a escala de subcuadrícula en áreas montañosas alpinas y subalpinas. CIG [Internet]. 17 de mayo de 2022 [citado 22 de febrero de 2025];48(1):79-96. Disponible en: https://publicaciones.unirioja.es/ojs/index.php/cig/article/view/4951

Número

Sección

Artículos