Evaluation of the quality of the Voluntary Geographic Information for the road network in Bogotá D.C





Voluntary Geographic Information (VGI), quality, integrity, accuracy, road network, regular expressions


The production of Voluntary Geographic Information has been growing considerably and continues to be an active area of research. However, the lack of knowledge about the quality of information generated on a voluntary and participatory basis raises challenges and questions about its use. In the review carried out for the Colombian case, no studies related to the subject were identified; consequently, this study is presented on the evaluation of the quality of this type of information on the road network of Bogotá with respect to completeness, positional accuracy and thematic accuracy. This evaluation was carried out by means of a semi-automatic process that uses a mobile buffer and the centroid of the roads to make the corresponding comparisons between two data sources. The results found reveal that the method used allowed to compare up to 85.0% of the data, and that the OpenStreetMap mesh has a completeness of 85.4%, over the entire area of Bogotá. A positional accuracy of 3.98 m and a thematic accuracy related to the percentage of error in the attributes: Road hierarchy, direction of flow and road naming of 35.8%, 15.0% and 34.6% respectively. The quality evaluated through completeness, positional and thematic accuracy in synergistic terms is deficient with respect to the minimum quality levels established in the standard data model, however, the evaluation for each of the attributes shows an acceptable quality in terms of completeness and thematic accuracy.


Download data is not yet available.

Author Biography

Edwin F. Grisales Camargo, Universidad Nacional de Colombia

Facultad de Ciencias Agrarias, Docente de Cátedra. Sistemas de Información Geográfica, Análisis y modelamiento espacial.


Abdolmajidi, E., Mansourian, A., Will, J., Harrie, L. 2015. Matching authority and VGI road networks using an extended node-based matching algorithm. Geo-Spatial Information Science, 18(2-3), 65-80. https://doi.org/10.1080/10095020.2015.1071065

Ali, A.L., Schmid, F. 2014. Data quality assurance for Volunteered Geographic Information. In: Proceedings of the 8hth International Conference on Geographic Information Science, Springer International Publishing Switzerland, pp. 126-141.

Antoniou, V. 2011. User generated spatial content: an analysis of the phenomenon and its challenges for mapping agencies. Doctoral thesis. University College London. Retrieved from: http://discovery.ucl.ac.uk/1318053/

Antoniou, V., Skopeliti, A. 2015. Measures and indicators of VGI Quality: An Overview. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences II-3/W5, 345-351. https://doi.org/10.5194/isprsannals-II-3-W5-345-2015

Arsanjani, J., Mooney, P., Zipf, A., Schauss, A. 2015. Quality assessment of the contributed land use information from OpenStreetMap versus authoritative datasets. In OpenStreetMap in GIScience, pp. 37-58, Springer, Cham. https://doi.org/10.1007/978-3-319-14280-7_3

Ballatore, A., Zipf, A. 2015. A conceptual quality framework for Volunteered Geographic Information. In International Conference on Spatial Information Theory, pp. 89-107. Springer, Cham. https://doi.org/10.1007/978-3-319-23374-1_5

Bazeley, P., Jackson, K. 2013. Qualitative data analysis with NVivo. Sage Publications Limited, London, Thousand Oaks and New Delhi.

Codescu, M., Horsinka, G., Kutz, O., Mossakowski, T., Rau, R. 2011. Osmonto-an ontology of openstreetmap tags. State of the map Europe (SOTM-EU), 23-24.

Cristancho, C., Triana, E. 2018. Análisis demográfico y proyecciones poblacionales de Bogotá. Alcaldía Mayor de Bogotá, DC, Secretaría Distrital de Planeación, Alcaldía Mayor de Bogotá, Bogotá.

Da Costa, J.N. 2016a. Novel tool for examination of data completeness based on a comparative study of VGI data and official building datasets. Geodetski vestnik 60(3), 495-508. https://doi.org/10.15292/geodetski-vestnik.2016.03.495-508

Da Costa, J.N. 2016b. Towards building data semantic similarity analysis: OpenStreetMap and the Polish Database of Topographic Objects. In 2016 Baltic geodetic congress (BGC Geomatics), pp. 269-275. IEEE. https://doi.org/10.1109/BGC.Geomatics.2016.55

Darwish, A., Lakhtaria, K.I. 2011. The impact of the new Web 2.0 technologies in communication, development, and revolutions of societies. Journal of Advances in Information Technology 2(4), 204-216. https://doi.org/10.4304/jait.2.4.204-216

Dorn, H., Törnros, T., Zipf, A. 2015. Quality evaluation of VGI using authoritative data-A comparison with land use data in Southern Germany. ISPRS International Journal of Geo-Information 4(3), 1657-1671. https://doi.org/10.3390/ijgi4031657

Elias, E., Fernandes, V., Junior, M. 2018. Positional Accuracy Assessment of the VGI Data from OpenStreetMap - Case Study: Federal University of Bahia Campus in Brazil. In Proceedings of the 4th International Conference on Geographical Information Systems Theory, Applications and Management - GISTAM, pp. 231-238. https://doi.org/10.5220/0006707702310238

Elwood, S., Goodchild, M. F., Sui, D.Z. 2012. Researching volunteered geographic information: Spatial data, geographic research, and new social practice. Annals of the Association of American Geographers 102(3), 571-590. https://doi.org/10.1080/00045608.2011.595657

Esmaili, R., Naseri, F., Esmaili, A. 2013. Quality Assessment of Volunteered Geographic Information. American Journal of Geographic Information System 2(2), 19-26. https://doi.org/10.5923/j.ajgis.20130202.01

Fonte, C.C., Bastin, L., See, L., Foody, G., Lupia, F. 2015. Usability of VGI for validation of land cover maps. International Journal of Geographical Information Science 29(7), 1269-1291. https://doi.org/10.1080/13658816.2015.1018266

Foody, G.M., See, L., Fritz, S., Van der Velde, M., Perger, C., Schill, C., Boyd, D.S. 2013. Assessing the accuracy of volunteered geographic information arising from multiple contributors to an internet based collaborative project. Transactions in GIS 17(6), 847-860. https://doi.org/10.1111/tgis.12033

Gao, S., Li, L., Li, W., Janowicz, K., Zhang, Y. 2017. Constructing gazetteers from volunteered big geo-data based on Hadoop. Computers, Environment and Urban Systems 61, 172-186. https://doi.org/10.1016/j.compenvurbsys.2014.02.004

Geofabrik, 2018. OpenStreetMap data downloads. Retrieved from http://download.geofabrik.de/ (accessed 10.05.2018).

Goodchild, M.F., Hunter, G.J. 1997. A simple positional accuracy measure for linear features. International Journal of Geographical Information Science 11(3), 299-306. https://doi.org/10.1080/136588197242419

Goodchild, M.F., Li, L. 2012. Assuring the quality of volunteered geographic information. Spatial Statistics 1, 110-120. https://doi.org/10.1016/j.spasta.2012.03.002

Graser, A., Straub, M., Dragaschnig, M. 2014. Towards an open source analysis toolbox for street network comparison: Indicators, tools and results of a comparison of OSM and the official Austrian reference graph. Transactions in GIS 18(4), 510-526. https://doi.org/10.1111/tgis.12061

Greenwalt, C.R., Schultz, M. 1962. Principles of Error Theory and Cartographic Applications, Aeronautical Chart and Information Center. Technical Report No. 96.

Haklay, M., 2010. How good is volunteered geographical information? A comparative study of OpenStreetMap and Ordnance Survey datasets. Environment and planning B: Planning and Design 37(4), 682-703. https://doi.org/10.1068/b35097

Haklay, M., Weber, P. 2008. Openstreetmap: User-generated street maps. IEEE Pervasive Computing 7(4), 12-18. https://doi.org/10.1109/MPRV.2008.80

Hudson-Smith, A., Batty, M., Crooks, A., Milton, R. 2009. Mapping for the Masses Accessing Web 2.0 Through Crowdsourcing. Social Science Computer Review 27(4), 524-538. https://doi.org/10.1177/0894439309332299

IDECA (Infraestructura de Datos Espaciales para el Distrito Capital), 2017. Malla Vial Integral. Bogotá D. C. UAECD (Unidad Administrativa Especial de Catastro Distrital). Online consultations: http://www.ideca.gov.co/recursos/mapas/malla-vial-integral-bogota-dc

Ipeirotis, P.G., Provost, F., Sheng, V.S., Wang, J. 2014. Repeated labeling using multiple noisy labelers. Data Mining and Knowledge Discovery 28(2), 402-441. https://doi.org/10.1007/s10618-013-0306-1

ISO 19157, 2013 Geographic information-data quality. ISO (International Organization of Standardization).

Janelle, D.G., Goodchild, M.F. 2011. Concepts, principles, tools, and challenges in spatially integrated social science. The SAGE Handbook of GIS and Society 27-45. https://doi.org/10.4135/9781446201046.n2

Jonietz, D., Zipf, A. 2016. Defining fitness-for-use for crowdsourced points of interest (POI). ISPRS International Journal of Geo-Information 5(9), 149. https://doi.org/10.3390/ijgi5090149

Koukoletsos, T., Haklay, M., Ellul, C. 2012. Assessing data completeness of VGI through an automated matching procedure for linear data. Transactions in GIS, 16(4), 477-498. https://doi.org/10.1111/j.1467-9671.2012.01304.x

Kresse, W. 2012. Springer handbook of geographic information (pp. 118-120). D. M. Danko (Ed.). Springer, Science & Business Media, Berlin. https://doi.org/10.1007/978-3-540-72680-7

Lin, W. 2018. Volunteered Geographic Information constructions in a contested terrain: A case of OpenStreetMap in China. Geoforum 89, 73-82. https://doi.org/10.1016/j.geoforum.2018.01.005

Ludwig, I., Voss, A., Krause-Traudes, M. 2011. A Comparison of the Street Networks of Navteq and OSM in Germany. In Advancing geoinformation science for a changing world. Springer, Berlin, pp. 65-84. https://doi.org/10.1007/978-3-642-19789-5_4

Mahabir, R., Stefanidis, A., Croitoru, A., Crooks, A.T., Agouris, P. 2017. Authoritative and volunteered geographical information in a developing country: A comparative case study of road datasets in Nairobi, Kenya. ISPRS International Journal of Geo-Information 6(1), 24. https://doi.org/10.3390/ijgi6010024

Mobasheri, A., Zipf, A., Francis, L. 2018. OpenStreetMap data quality enrichment through awareness raising and collective action tools-experiences from a European project. Geo-spatial Information Science 21(3), 234-246. https://doi.org/10.1080/10095020.2018.1493817

Moreri, K.K., Fairbairn, D., James, P. 2018. Volunteered geographic information quality assessment using trust and reputation modelling in land administration systems in developing countries. International Journal of Geographical Information Science 32(5), 931-959. https://doi.org/10.1080/13658816.2017.1409353

Nelli, F. 2015. An introduction to data analysis. In Python Data Analytics. Apress, Berkeley, pp. 1-12.

OpenStreetMap Contributors, 2017a. Zoom Levels. Retrieved September 12, 2017, from https://wiki.openstreetmap.org/wiki/Zoom_levels

OpenStreetMap Contributors, 2017b. Completeness. Retrieved September 25, 2017, from https://wiki.openstreetmap.org/wiki/Completeness

OpenStreetMap Contributors, 2017c. Quality Assurance. Retrieved September 25, 2017, from https://wiki.openstreetmap.org/wiki/Quality_assurance

Sharma, P., Nagpal, B. 2020. Regex: an experimental approach for searching in cyber forensic. International Journal of Information Technology 12(2), 339-343. https://doi.org/10.1007/s41870-019-00401-y

Silberschatz, A., Korth, H.F., Sudarshan, S., Pérez, F. S., Santiago, A. I., Sánchez, A. V. 2002. Fundamentos de bases de datos (Vol. 11). McGraw-Hill. Ciudad de México, México.

Stein, A., Shi, W., Bijker, W. 2016. Quality aspects in spatial data mining. CRC Press.

Thalheim, B. 2013. Entity-relationship modeling: foundations of database technology. Springer Science & Business Media.

Van Oort, P. 2006. Spatial data quality: from description to application. Wageningen University and Research Netherlands.

Vannoni, M., McKee, M., Semenza, J.C., Bonell, C., Stuckler, D. 2020. Using volunteered geographic information to assess mobility in the early phases of the COVID-19 pandemic: a cross-city time series analysis of 41 cities in 22 countries from March 2nd to 26th 2020. Globalization and Health 16(1), 1-9. https://doi.org/10.1186/s12992-020-00598-9

Wu, H., Lin, A., Clarke, K.C., Shi, W., Cardenas-Tristan, A., Tu, Z. 2021. A comprehensive quality assessment framework for linear features from Volunteered Geographic Information. International Journal of Geographical Information Science 35(9), 1826-1847. https://doi.org/10.1080/13658816.2020.1832228

Yan, Y., Feng, C.C., Wang, Y.C. 2017. Utilizing fuzzy set theory to assure the quality of volunteered geographic information. GeoJournal 82(3), 517-532. https://doi.org/10.1007/s10708-016-9699-x

Zandbergen, P.A. 2009. Geocoding quality and implications for spatial analysis. Geography Compass 3(2), 647-680. https://doi.org/10.1111/j.1749-8198.2008.00205.x

Zhang, G., Zhu, A.X. 2018. The representativeness and spatial bias of volunteered geographic information: a review. Annals of GIS 24(3), 151-162. https://doi.org/10.1080/19475683.2018.1501607

Zhang, W.B., Leung, Y., Ma, J.H. 2019. Analysis of positional uncertainty of road networks in volunteered geographic information with a statistically defined buffer-zone method. International Journal of Geographical Information Science 33(9), 1807-1828. https://doi.org/10.1080/13658816.2019.1606430

Zielstra, D., Zipf, A. 2010. A comparative study of proprietary geodata and volunteered geographic information for Germany. In 13th AGILE International Conference on Geographic Information Science, pp. 1-15.




How to Cite

Niño Beltran LA, Darghan Contreras AE, Cangrejo Aljure LD, Grisales Camargo EF. Evaluation of the quality of the Voluntary Geographic Information for the road network in Bogotá D.C. CIG [Internet]. 2022 Aug. 25 [cited 2023 Dec. 2];49(1):191-210. Available from: https://publicaciones.unirioja.es/ojs/index.php/cig/article/view/5280