Evaluación de la calidad de la Información Geográfica Voluntaria de la red vial de Bogotá D.C.
DOI:
https://doi.org/10.18172/cig.5280Palabras clave:
OpenStreetMap, red de carreteras, expresiones regulares, precisión posicional, precisión temáticaResumen
El aumento en la producción de Información Geográfica Voluntaria (VGI) ha venido creciendo considerablemente y se han realizado diversos estudios al respecto. Sin embargo, el desconocimiento de la calidad de la información generada en forma voluntaria y participativa, plantea retos y cuestionamientos sobre el uso de este tipo de información. En la revisión efectuada para el caso colombiano no se identificaron estudios relacionados con el tema; en consecuencia, se presenta este estudio sobre la evaluación de la calidad VGI de la malla vial de Bogotá respecto a la completitud, a la exactitud posicional y a la exactitud temática. Esta evaluación se realizó por medio de un proceso semiautomático que usa un buffer móvil y el centroide de las vías para realizar las comparaciones correspondientes entre dos fuentes de datos. Los resultados encontrados revelan que el método empleado permitió comparar hasta el 85,0% de los datos, además se calculó que la malla OSM (OpenStreetMap) tiene una completitud del 85,4%, sobre toda el área de Bogotá. Una exactitud posicional de 3,98 m y una exactitud temática relacionada al porcentaje de error en los atributos: Jerarquía vial, Dirección de flujo y Nombramiento de las vías de 35,8%, 15,0% y 34,6% respectivamente. La calidad VGI evaluada a través de la completitud, la exactitud posicional y la exactitud temática es considerada conjuntamente como deficiente, Sin embargo, evaluada la calidad separadamente a través de las medias indicadas, se concluyó que los datos VGI gozan de una completitud aceptable, una exactitud posicional óptima y una exactitud temática deficiente.
Descargas
Citas
Abdolmajidi, E., Mansourian, A., Will, J., Harrie, L. 2015. Matching authority and VGI road networks using an extended node-based matching algorithm. Geo-Spatial Information Science, 18(2-3), 65-80. https://doi.org/10.1080/10095020.2015.1071065
Ali, A.L., Schmid, F. 2014. Data quality assurance for Volunteered Geographic Information. In: Proceedings of the 8hth International Conference on Geographic Information Science, Springer International Publishing Switzerland, pp. 126-141.
Antoniou, V. 2011. User generated spatial content: an analysis of the phenomenon and its challenges for mapping agencies. Doctoral thesis. University College London. Retrieved from: http://discovery.ucl.ac.uk/1318053/
Antoniou, V., Skopeliti, A. 2015. Measures and indicators of VGI Quality: An Overview. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences II-3/W5, 345-351. https://doi.org/10.5194/isprsannals-II-3-W5-345-2015
Arsanjani, J., Mooney, P., Zipf, A., Schauss, A. 2015. Quality assessment of the contributed land use information from OpenStreetMap versus authoritative datasets. In OpenStreetMap in GIScience, pp. 37-58, Springer, Cham. https://doi.org/10.1007/978-3-319-14280-7_3
Ballatore, A., Zipf, A. 2015. A conceptual quality framework for Volunteered Geographic Information. In International Conference on Spatial Information Theory, pp. 89-107. Springer, Cham. https://doi.org/10.1007/978-3-319-23374-1_5
Bazeley, P., Jackson, K. 2013. Qualitative data analysis with NVivo. Sage Publications Limited, London, Thousand Oaks and New Delhi.
Codescu, M., Horsinka, G., Kutz, O., Mossakowski, T., Rau, R. 2011. Osmonto-an ontology of openstreetmap tags. State of the map Europe (SOTM-EU), 23-24.
Cristancho, C., Triana, E. 2018. Análisis demográfico y proyecciones poblacionales de Bogotá. Alcaldía Mayor de Bogotá, DC, Secretaría Distrital de Planeación, Alcaldía Mayor de Bogotá, Bogotá.
Da Costa, J.N. 2016a. Novel tool for examination of data completeness based on a comparative study of VGI data and official building datasets. Geodetski vestnik 60(3), 495-508. https://doi.org/10.15292/geodetski-vestnik.2016.03.495-508
Da Costa, J.N. 2016b. Towards building data semantic similarity analysis: OpenStreetMap and the Polish Database of Topographic Objects. In 2016 Baltic geodetic congress (BGC Geomatics), pp. 269-275. IEEE. https://doi.org/10.1109/BGC.Geomatics.2016.55
Darwish, A., Lakhtaria, K.I. 2011. The impact of the new Web 2.0 technologies in communication, development, and revolutions of societies. Journal of Advances in Information Technology 2(4), 204-216. https://doi.org/10.4304/jait.2.4.204-216
Dorn, H., Törnros, T., Zipf, A. 2015. Quality evaluation of VGI using authoritative data-A comparison with land use data in Southern Germany. ISPRS International Journal of Geo-Information 4(3), 1657-1671. https://doi.org/10.3390/ijgi4031657
Elias, E., Fernandes, V., Junior, M. 2018. Positional Accuracy Assessment of the VGI Data from OpenStreetMap - Case Study: Federal University of Bahia Campus in Brazil. In Proceedings of the 4th International Conference on Geographical Information Systems Theory, Applications and Management - GISTAM, pp. 231-238. https://doi.org/10.5220/0006707702310238
Elwood, S., Goodchild, M. F., Sui, D.Z. 2012. Researching volunteered geographic information: Spatial data, geographic research, and new social practice. Annals of the Association of American Geographers 102(3), 571-590. https://doi.org/10.1080/00045608.2011.595657
Esmaili, R., Naseri, F., Esmaili, A. 2013. Quality Assessment of Volunteered Geographic Information. American Journal of Geographic Information System 2(2), 19-26. https://doi.org/10.5923/j.ajgis.20130202.01
Fonte, C.C., Bastin, L., See, L., Foody, G., Lupia, F. 2015. Usability of VGI for validation of land cover maps. International Journal of Geographical Information Science 29(7), 1269-1291. https://doi.org/10.1080/13658816.2015.1018266
Foody, G.M., See, L., Fritz, S., Van der Velde, M., Perger, C., Schill, C., Boyd, D.S. 2013. Assessing the accuracy of volunteered geographic information arising from multiple contributors to an internet based collaborative project. Transactions in GIS 17(6), 847-860. https://doi.org/10.1111/tgis.12033
Gao, S., Li, L., Li, W., Janowicz, K., Zhang, Y. 2017. Constructing gazetteers from volunteered big geo-data based on Hadoop. Computers, Environment and Urban Systems 61, 172-186. https://doi.org/10.1016/j.compenvurbsys.2014.02.004
Geofabrik, 2018. OpenStreetMap data downloads. Retrieved from http://download.geofabrik.de/ (accessed 10.05.2018).
Goodchild, M.F., Hunter, G.J. 1997. A simple positional accuracy measure for linear features. International Journal of Geographical Information Science 11(3), 299-306. https://doi.org/10.1080/136588197242419
Goodchild, M.F., Li, L. 2012. Assuring the quality of volunteered geographic information. Spatial Statistics 1, 110-120. https://doi.org/10.1016/j.spasta.2012.03.002
Graser, A., Straub, M., Dragaschnig, M. 2014. Towards an open source analysis toolbox for street network comparison: Indicators, tools and results of a comparison of OSM and the official Austrian reference graph. Transactions in GIS 18(4), 510-526. https://doi.org/10.1111/tgis.12061
Greenwalt, C.R., Schultz, M. 1962. Principles of Error Theory and Cartographic Applications, Aeronautical Chart and Information Center. Technical Report No. 96.
Haklay, M., 2010. How good is volunteered geographical information? A comparative study of OpenStreetMap and Ordnance Survey datasets. Environment and planning B: Planning and Design 37(4), 682-703. https://doi.org/10.1068/b35097
Haklay, M., Weber, P. 2008. Openstreetmap: User-generated street maps. IEEE Pervasive Computing 7(4), 12-18. https://doi.org/10.1109/MPRV.2008.80
Hudson-Smith, A., Batty, M., Crooks, A., Milton, R. 2009. Mapping for the Masses Accessing Web 2.0 Through Crowdsourcing. Social Science Computer Review 27(4), 524-538. https://doi.org/10.1177/0894439309332299
IDECA (Infraestructura de Datos Espaciales para el Distrito Capital), 2017. Malla Vial Integral. Bogotá D. C. UAECD (Unidad Administrativa Especial de Catastro Distrital). Online consultations: http://www.ideca.gov.co/recursos/mapas/malla-vial-integral-bogota-dc
Ipeirotis, P.G., Provost, F., Sheng, V.S., Wang, J. 2014. Repeated labeling using multiple noisy labelers. Data Mining and Knowledge Discovery 28(2), 402-441. https://doi.org/10.1007/s10618-013-0306-1
ISO 19157, 2013 Geographic information-data quality. ISO (International Organization of Standardization).
Janelle, D.G., Goodchild, M.F. 2011. Concepts, principles, tools, and challenges in spatially integrated social science. The SAGE Handbook of GIS and Society 27-45. https://doi.org/10.4135/9781446201046.n2
Jonietz, D., Zipf, A. 2016. Defining fitness-for-use for crowdsourced points of interest (POI). ISPRS International Journal of Geo-Information 5(9), 149. https://doi.org/10.3390/ijgi5090149
Koukoletsos, T., Haklay, M., Ellul, C. 2012. Assessing data completeness of VGI through an automated matching procedure for linear data. Transactions in GIS, 16(4), 477-498. https://doi.org/10.1111/j.1467-9671.2012.01304.x
Kresse, W. 2012. Springer handbook of geographic information (pp. 118-120). D. M. Danko (Ed.). Springer, Science & Business Media, Berlin. https://doi.org/10.1007/978-3-540-72680-7
Lin, W. 2018. Volunteered Geographic Information constructions in a contested terrain: A case of OpenStreetMap in China. Geoforum 89, 73-82. https://doi.org/10.1016/j.geoforum.2018.01.005
Ludwig, I., Voss, A., Krause-Traudes, M. 2011. A Comparison of the Street Networks of Navteq and OSM in Germany. In Advancing geoinformation science for a changing world. Springer, Berlin, pp. 65-84. https://doi.org/10.1007/978-3-642-19789-5_4
Mahabir, R., Stefanidis, A., Croitoru, A., Crooks, A.T., Agouris, P. 2017. Authoritative and volunteered geographical information in a developing country: A comparative case study of road datasets in Nairobi, Kenya. ISPRS International Journal of Geo-Information 6(1), 24. https://doi.org/10.3390/ijgi6010024
Mobasheri, A., Zipf, A., Francis, L. 2018. OpenStreetMap data quality enrichment through awareness raising and collective action tools-experiences from a European project. Geo-spatial Information Science 21(3), 234-246. https://doi.org/10.1080/10095020.2018.1493817
Moreri, K.K., Fairbairn, D., James, P. 2018. Volunteered geographic information quality assessment using trust and reputation modelling in land administration systems in developing countries. International Journal of Geographical Information Science 32(5), 931-959. https://doi.org/10.1080/13658816.2017.1409353
Nelli, F. 2015. An introduction to data analysis. In Python Data Analytics. Apress, Berkeley, pp. 1-12.
OpenStreetMap Contributors, 2017a. Zoom Levels. Retrieved September 12, 2017, from https://wiki.openstreetmap.org/wiki/Zoom_levels
OpenStreetMap Contributors, 2017b. Completeness. Retrieved September 25, 2017, from https://wiki.openstreetmap.org/wiki/Completeness
OpenStreetMap Contributors, 2017c. Quality Assurance. Retrieved September 25, 2017, from https://wiki.openstreetmap.org/wiki/Quality_assurance
Sharma, P., Nagpal, B. 2020. Regex: an experimental approach for searching in cyber forensic. International Journal of Information Technology 12(2), 339-343. https://doi.org/10.1007/s41870-019-00401-y
Silberschatz, A., Korth, H.F., Sudarshan, S., Pérez, F. S., Santiago, A. I., Sánchez, A. V. 2002. Fundamentos de bases de datos (Vol. 11). McGraw-Hill. Ciudad de México, México.
Stein, A., Shi, W., Bijker, W. 2016. Quality aspects in spatial data mining. CRC Press.
Thalheim, B. 2013. Entity-relationship modeling: foundations of database technology. Springer Science & Business Media.
Van Oort, P. 2006. Spatial data quality: from description to application. Wageningen University and Research Netherlands.
Vannoni, M., McKee, M., Semenza, J.C., Bonell, C., Stuckler, D. 2020. Using volunteered geographic information to assess mobility in the early phases of the COVID-19 pandemic: a cross-city time series analysis of 41 cities in 22 countries from March 2nd to 26th 2020. Globalization and Health 16(1), 1-9. https://doi.org/10.1186/s12992-020-00598-9
Wu, H., Lin, A., Clarke, K.C., Shi, W., Cardenas-Tristan, A., Tu, Z. 2021. A comprehensive quality assessment framework for linear features from Volunteered Geographic Information. International Journal of Geographical Information Science 35(9), 1826-1847. https://doi.org/10.1080/13658816.2020.1832228
Yan, Y., Feng, C.C., Wang, Y.C. 2017. Utilizing fuzzy set theory to assure the quality of volunteered geographic information. GeoJournal 82(3), 517-532. https://doi.org/10.1007/s10708-016-9699-x
Zandbergen, P.A. 2009. Geocoding quality and implications for spatial analysis. Geography Compass 3(2), 647-680. https://doi.org/10.1111/j.1749-8198.2008.00205.x
Zhang, G., Zhu, A.X. 2018. The representativeness and spatial bias of volunteered geographic information: a review. Annals of GIS 24(3), 151-162. https://doi.org/10.1080/19475683.2018.1501607
Zhang, W.B., Leung, Y., Ma, J.H. 2019. Analysis of positional uncertainty of road networks in volunteered geographic information with a statistically defined buffer-zone method. International Journal of Geographical Information Science 33(9), 1807-1828. https://doi.org/10.1080/13658816.2019.1606430
Zielstra, D., Zipf, A. 2010. A comparative study of proprietary geodata and volunteered geographic information for Germany. In 13th AGILE International Conference on Geographic Information Science, pp. 1-15.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2022 Luis Armando Niño Beltran, Aquiles Enrique Darghan Contreras, Libia Denise Cangrejo Aljure, Edwin Francisco Grisales Camargo

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
El autor o autora conserva todos los derechos sobre su artículo y cede a la revista el derecho de la primera publicación, no siendo necesaria la autorización de la revista para su difusión una vez publicado. Una vez publicada la versión del editor el autor está obligado a hacer referencia a ella en las versiones archivadas en los repositorios personales o institucionales.
El artículo se publicará con una licencia Creative Commons de Atribución, que permite a terceros utilizar lo publicado siempre que se mencione la autoría del trabajo y la primera publicación en esta revista.
Se recomienda a los autores/as el archivo de la versión de editor en repositorios institucionales.